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LARGE ORBITS OF OPERATORS AND OPERATOR SEMIGROUPS

VLADIMIR MÜLLER

Abstract. We give a survey of results concerning ”large” orbits of operators and strongly

continuous operator semigroups.

1. Introduction

Denote by B(X) the set of all bounded linear operators acting on a Banach space X. For
simplicity we assume that all Banach spaces are complex unless stated explicitly otherwise.
However, all the notions make sense also in real Banach spaces and most of the results remain
true (with slight modifications) in the real case as well.

Let X be a Banach space and let T ∈ B(X). By an orbit of T we mean a sequence of the
form (Tnx)∞n=0, where x ∈ X is a fixed vector.

By a weak orbit of T we mean a sequence of the form (〈Tnx, x∗〉)∞n=0, where x ∈ X and x∗

are fixed vectors.
Orbits of operators appear frequently in operator theory. They are closely connected with

the famous invariant subspace/subset problem, they play a central role in the linear dynamics
and appear also in other branches of functional analysis, for example in harmonic analysis, local
spectral theory or in the theory of operator semigroups.

Typically, the behaviour of an orbit (Tnx) depends essentially on the choice of the initial
vector x. This can be illustrated by the following simple example:

Example 1.1. Let S be the backward shift on a Hilbert space H, i.e., Se0 = 0 and Sei =
ei−1 (i ≥ 1), where {ei : i = 0, 1, 2, . . . } is an orthonormal basis in H. Let T = 2S. Then:

(i) there is a dense subset of points x ∈ H such that ‖Tnx‖ → 0;
(ii) there is a dense subset of points x ∈ H such that ‖Tnx‖ → ∞;
(iii) there is a residual subset (= complement of a set of the first category) of points x ∈ H

such that the set {Tnx : n = 0, 1, . . . } is dense in H.

Vectors of type (iii) (i.e., with dense orbits) are called hypercyclic. Hypercyclic vectors (and
similar classes of vectors, like supercyclic, chaotic, frequently hypercyclic, mixing, weakly mixing
vectors etc.) have been studied intensely by many authors. We refer to [BMa] or [GP] for a
detailed information about these vectors.

The aim of this note is to give a survey of results concerning vectors with ”large” orbits (for
example orbits of type (ii) in the above example).

Apart from the orbits of operators we consider also orbits of operator semigroups. Let T =
(T (t))t≥0 be a strongly continuous semigroup of operators on a Banach space X, i.e, a mapping
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2 VLADIMIR MÜLLER

T : [0,∞) → B(X) continuous in the strong operator topology such that T (0) = IX and
T (t+s) = T (t)T (s) for all t, s ∈ [0,∞). By an orbit of T we mean a function t 7→ T (t)x (t ≥ 0)
where x ∈ X is a fixed vector. Similarly, a weak orbit of T is a mapping t 7→ 〈T (t)x, x∗〉 where
x ∈ X and x∗ ∈ X∗ are fixed.

2. Large orbits

There are various possibilities how an orbit {Tnx : n ∈ N} can be large. We consider the
following possibilities:
A. ‖Tnx‖ is large for infinitely many powers n;
B. ‖Tnx‖ is large for all n;
C. ‖Tnx‖ is large for many n (for example, for all n in a set of density 1, or of positive upper
density);
D. various summability conditions (for example

∑
‖Tnx‖/‖Tn‖ = ∞).

A. Orbits of the first type are described by the Banach-Steinhaus theorem.

Theorem 2.1. Let T ∈ B(X). The following statements are equivalent:

(i) supn ‖Tn‖ = ∞;

(ii) there exists x ∈ X such that supn ‖Tnx‖ = ∞;

(iii) there exists a residual subset of vectors x with the property that supn ‖Tnx‖ = ∞.

More precisely, it is possible to prove the following stronger result:

Theorem 2.2. Let T ∈ B(X), let (an)n≥0 be a sequence of positive numbers such that an → 0.

Then the set of all x ∈ X with the property that

‖Tnx‖ ≥ an‖Tn‖ for infinitely many powers n

is residual.

Indeed, for k ∈ N set

Mk =
{
x ∈ X : there exists n ≥ k such that ‖Tnx‖ > an‖Tn‖

}
.

Clearly, Mk is an open set. We prove that Mk is dense. Let x ∈ X and ε > 0. Choose n ≥ k

such that anε−1 < 1. There exists z ∈ X of norm 1 such that ‖Tnz‖ > anε−1‖Tn‖. Then

2an‖Tn‖ < ‖Tn(2εz)‖ ≤ ‖Tn(x + εz)‖+ ‖Tn(x− εz)‖,

and so either ‖Tn(x + εz)‖ > an‖Tn‖ or ‖Tn(x − εz)‖ > an‖Tn‖. Thus either x + εz ∈ Mk or
x− εz ∈ Mk, and so dist{x,Mk} ≤ ε. Since x and ε were arbitrary, the set Mk is dense.

By the Baire category theorem, the intersection
⋂∞

k=1 Mk is a dense Gδ-set, hence it is residual.
Clearly, each x ∈

⋂∞
k=1 Mk satisfies ‖Tnx‖ > an‖Tn‖ for infinitely many powers n.

The previous simple result can be applied for example in the local spectral theory.

Definition 2.3. Let T ∈ B(X) and x ∈ X. The local spectral radius of T at x is defined by
rT (x) = lim supn→∞ ‖Tnx‖1/n.
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Recall that the spectral radius r(T ) of T satisfies r(T ) = limn→∞ ‖Tn‖1/n.
It is easy to see that rT (x) ≤ r(T ) for each x ∈ X and r(Tn) = r(T )n for all n.
If we set an = n−1 in Theorem 2.2, we obtain

rT (x) = lim sup
n→∞

‖Tnx‖1/n ≥ lim sup
n→∞

(
‖Tn‖

n

)1/n

= r(T )

for each x satisfying ‖Tnx‖ ≥ n−1‖Tn‖ for infinitely many n.

Corollary 2.4. Let T ∈ B(X). Then the set {x ∈ X : rT (x) = r(T )} is residual.

B. It is much more difficult to construct orbits such that ‖Tnx‖ is large for all n. The following
result is based on the spectral theory.

Theorem 2.5. [M1], see also [Be] Let T ∈ B(X), let (an)∞n=0 be a sequence of positive numbers

satisfying limn→∞ an = 0. Then:

(i) for each ε > 0 there exists x ∈ X such that ‖x‖ ≤ sup{an : j = 0, 1, . . . } + ε and

‖Tnx‖ ≥ anr(Tn) for all n ≥ 0;

(ii) there is a dense subset L of X with the following property: for each y ∈ L we have

‖Tny‖ ≥ anr(Tn) for all n sufficiently large.

As mentioned above, the previous result is based on the spectral theory, therefore it requires
complex Banach spaces. However, considering the complexification of a real Banach space it is
possible to prove statement (i) without changes and a modified version of (ii), see [M2].

Corollary 2.6. The set
{
x ∈ X : lim supn→∞ ‖Tnx‖1/n = r(T )

}
is residual for each T ∈ B(X).

The set
{
x ∈ X : lim infn→∞ ‖Tnx‖1/n = r(T )

}
is dense.

In particular, there is a dense subset of points x ∈ X with the property that the limit

limn→∞ ‖Tnx‖1/n exists and is equal to r(T ).

For every operator T we have r(T ) = infn ‖Tn‖1/n = infn sup x∈X
‖x‖=1

‖Tnx‖1/n. The previous

corollary implies that the infimum and supremum can be interchanged.

Corollary 2.7. Let T ∈ B(X). Then

sup
x∈X
‖x‖=1

inf
n≥1

‖Tnx‖1/n = inf
n≥1

sup
x∈X
‖x‖=1

‖Tnx‖1/n = r(T ).

In general it is not possible to replace the word ”dense” in Corollary 2.6 by ”residual”.

Example 2.8. Let H be a separable Hilbert space with an orthonormal basis {ej : j = 0, 1, . . . }
and let S be the backward shift, Sej = ej−1 (j ≥ 1), Se0 = 0. Then r(S) = 1 and the set{
x ∈ H : lim infn→∞ ‖Snx‖1/n = 0

}
is residual.

In particular, the set
{
x ∈ H : the limit limn→∞ ‖Snx‖1/n exists

}
is of the first category (but

it is always dense by Corollary 2.6).
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Indeed, for k ∈ N let

Mk =
{
x ∈ X : there exists n ≥ k such that ‖Snx‖ < k−n

}
.

Clearly, Mk is an open subset of X. Further, Mk is dense in X. To see this, let x ∈ X and
ε > 0. Let x =

∑∞
j=0 αjej and choose n ≥ k such that

∑∞
j=n |αj |2 < ε2. Set y =

∑n−1
j=0 αjej .

Then ‖y − x‖ < ε and Sny = 0. Thus y ∈ Mk and Mk is a dense open subset of X.
By the Baire category theorem, the intersection M =

⋂∞
k=0 Mk is a dense Gδ-subset of X,

hence it is residual.
Let x ∈ M . For each k ∈ N there is an nk ≥ k such that ‖Snkx‖ < k−nk , and so

lim infn→∞ ‖Snx‖1/n = 0.
Since the set

{
x ∈ H : lim supn→∞ ‖Snx‖1/n = r(S) = 1

}
is also residual, we see that the set{

x ∈ H : the limit limn→∞ ‖Snx‖1/n exists
}

is of the first category.

Remark 2.9. If r(T ) = 1 and an > 0, an → 0, then Theorem 2.5 says that there exists x such
that ‖Tnx‖ ≥ an for all n. This is the best possible result since the previous example S ∈ B(H)
satisfies Snx → 0 for all x ∈ H. By Theorem 2.5, there are orbits converging to 0 arbitrarily
slowly.

Second method of constructing orbits with ‖Tnx‖ large for all n is based on the plank results
of K. Ball:

Theorem 2.10. [B1] Let X be a real or complex Banach space, an ≥ 0,
∑∞

n=1 an < 1, fn ∈ X∗,

‖fn‖ = 1 (n ∈ N) and let y ∈ X. Then there exists x ∈ X such that ‖x− y‖ ≤ 1 and

|〈x, fn〉| ≥ an

for all n.

Theorem 2.11. [B2] Let X be a complex Hilbert space, an ≥ 0,
∑∞

n=1 a2
n ≤ 1, fn ∈ X,

‖fn‖ = 1 (n ∈ N). Then there exists x ∈ X such that ‖x‖ = 1 and

|〈x, fn〉| ≥ an

for all n.

It is interesting to note that there is a difference between real and complex Hilbert spaces.
From this point of view real Hilbert spaces are not better than general Banach spaces.

The plank theorems imply easily the existence of large orbits of operators, see [M4], Sec. 37.

Theorem 2.12. Let X, Y be Banach spaces, let (Tn) ⊂ B(X, Y ) be a sequence of operators.

Let (an) be a sequence of positive numbers such that
∑∞

n=1 an < ∞. Then there exists x ∈ X

such that ‖Tnx‖ ≥ an‖Tn‖ for all n ∈ N.

Moreover, it is possible to choose such an x in each ball in X of radius greater than
∑∞

n=1 an.

Corollary 2.13. [MV] Let T ∈ B(X) satisfy
∑∞

n=1 ‖Tn‖−1 < ∞. Then there exists a dense

subset of points x ∈ X such that ‖Tnx‖ → ∞.

Better results can be obtained for Hilbert space operators.
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Theorem 2.14. [M4] Let H, K be Hilbert spaces and let (Tn) ⊂ B(H,K) be a sequence of

operators. Let an be a sequence of positive numbers such that
∑∞

n=1 a2
n < ∞. Let ε > 0. Then:

(i) there exists x ∈ H such that ‖x‖ ≤
(∑∞

n=1 a2
n

)1/2
+ ε and ‖Tnx‖ ≥ an‖Tn‖ for all n;

(ii) there is a dense subset of vectors x ∈ H such that ‖Tnx‖ ≥ an‖Tn‖ for all n sufficiently

large.

Corollary 2.15. [MV] Let T ∈ B(H) be a Hilbert space operator and
∑∞

n=1 ‖Tn‖−2 < ∞.

Then there exists a dense subset of points x ∈ H such that ‖Tnx‖ → ∞.

Corollary 2.16. Let T ∈ B(X) satisfy
∑∞

n=1 ‖Tn‖−1 < ∞. Then T has a non-trivial closed

invariant subset.

If X is a Hilbert space, then it is sufficient to assume that
∑∞

n=1 ‖Tn‖−2 < ∞.

Corollary 2.17. Let T ∈ B(X) satisfy r(T ) 6= 1. Then T has a non-trivial closed invariant

subset.

Indeed, if r(T ) > 1, then there exists an x ∈ X with ‖Tnx‖ → ∞. If r(T ) < 1, then
‖Tnx‖ → 0 for each x ∈ X. In both cases the orbit of x is a non-trivial closed subset invariant
for T .

The previous results are in some sense the best possible.

Example 2.18. [MV] There exist a Banach space X and an operator T ∈ B(X) such that
‖Tn‖ = n + 1 for all n, but there is no vector x ∈ X with ‖Tnx‖ → ∞.

There exists a Hilbert space operator T such that ‖Tn‖ =
√

n + 1 for all n and there in no
vector x with ‖Tnx‖ → ∞.

C. Definition 2.19. Let A ⊂ N. The lower (upper) density of A is defined by

dens A = lim inf
n→∞

n−1 card{a ∈ A : 1 ≤ a ≤ n}

and

dens A = lim sup
n→∞

n−1 card{a ∈ A : 1 ≤ a ≤ n},

respectively. If dens A = dens A then this common value is called the density of A and denoted
by dens A.

Definition 2.20. Let T ∈ B(X), x ∈ X. We say that the orbit of x is distributionally
unbounded if there exists a subset A ⊂ N with dens A = 1 such that limn∈A ‖Tnx‖ = ∞.

Theorem 2.21. [BBMP] Let T ∈ B(X). Then the following statements are equivalent:

(i) There exists x ∈ X with distributionally unbounded orbit;

(ii) there exists a residual subset of points x ∈ X with distributionally unbounded orbits;

(iii) there exist x ∈ X and a subset A ⊂ N with dens A > 0 such that limn∈A ‖Tnx‖ = ∞.
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The following example is a modification of Example 2.18.

Example 2.22. Let ε > 0. Then there exist a Banach space X and an operator T ∈ B(X) such
that ‖Tn‖ = (n+1)1−ε for all n and there is no vector x with distributionally unbounded orbit.
By the previous theorem, if x ∈ X and A ⊂ N such that limn∈A ‖Tnx‖ = ∞ then dens A = 0.

D. It is also possible to consider orbits that are large in the sense of
∑ ‖T nx‖

‖T n‖ , see [M4], Sec. 37.

Theorem 2.23. Let T ∈ B(X), r(T ) 6= 0 and let 0 < p < ∞. Then the set{
x ∈ X :

∞∑
j=0

(
‖T jx‖
r(T j)

)p

= ∞
}

is residual.

Theorem 2.24. Let T ∈ B(X) be a non-nilpotent operator and 0 < p < 1. Then the set{
x ∈ X :

∞∑
j=0

(
‖T jx‖
‖T j‖

)p

= ∞
}

is residual.

The previous result is not true for p = 1.

Example 2.25. There are a Banach space X and a non-nilpotent operator T ∈ B(X) such
that

∑∞
n=0

‖T nx‖
‖T n‖ < ∞ for all x ∈ X.

For complex Hilbert spaces the last two statements are modified in the following way:

Theorem 2.26. Let H be a complex Hilbert space, let T ∈ B(H) be a non-nilpotent operator

and 0 < p < 2. Then the set {
x ∈ H :

∞∑
j=0

(
‖T jx‖
‖T j‖

)p

= ∞
}

is residual.

Morover, there exists a non-nilpotent operator T ∈ B(H) on a separable Hilbert space H

such that
∑∞

n=0

(‖T nx‖
‖T n‖

)2
< ∞ for all x ∈ H.

The results 2.23 - 2.26 can be found in [M4]. The last example - a Hilbert space operator

satisfying
∑(

‖T nx‖
‖T n‖

)2
< ∞ for all x - is an easy modification of Example 2.25. Hint: consider

the backward weighted shift with weights k+1
k (k = 1, 2, . . . ).

3. Orbits of operator semigroups

Many results from the previous section can be reformulated also for strongly continuous
semigroups of operators.
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Let T = (T (t))t≥0 be a strongly continuous semigroup of operators on a Banach space X.
Let ω0 be the growth bound of T . Recall that r(T (t)) = eω0t for all t ≥ 0. Recall also that T is
locally bounded by the Banach-Steinhaus theorem. Let K = sup0≤t≤1 ‖T (t)‖.

The local boundedness of operator semigroups enables to reformulate all results for orbits of
operators to the semigroup case. Indeed, if n− 1 < t ≤ n for some positive integer n and x ∈ X

then

‖T (n)x‖ ≤ ‖T (n− t)‖ · ‖T (t)x‖ ≤ K‖T (t)x‖,

so ‖T (t)x‖ ≥ K−1‖T (n)x‖ = K−1‖T (1)nx‖. Thus if an orbit of the operator T (1) is large (in
any sense), the corresponding orbit of the semigroup T is also large.

We mention only two sample results:

Theorem 3.1. Let T = (T (t))t≥0 be a strongly continuous semigroup on a Banach space X,

let f : [0,∞) → (0,∞) be a bounded function such that limt→∞ f(t) = 0.

Then there exists x ∈ X such that

‖T (t)x‖ ≥ f(t)eω0t

for all t ≥ 0.

Moreover, for any ε > 0 is is possible to find such an x ∈ X with ‖x‖ < sup{f(t) : t ≥ 0}+ ε,

cf. [N], p. 78.

Theorem 3.2. Let T = (T (t))t≥0 be a strongly continuous semigroup on a Banach space X,

let f : [0,∞) → [0,∞) be a non-increasing function, f ∈ L1.

Then there exists x ∈ X such that

‖T (t)x‖ ≥ f(t) · ‖T (t)‖ (t ≥ 0).

If X is a Hilbert space then it is possible to take f ∈ L2.

4. Weak orbits of operators

Some results for orbits can be generalized also for weak orbits.
The following result can be obtained by applying the plank theorem twice.

Theorem 4.1. [M4], Sec. 39. Let T ∈ B(X), an ≥ 0,
∑∞

n=1

√
an < ∞. Then there exist x ∈ X

and x∗ ∈ X∗ such that

|〈Tnx, x∗〉| ≥ an ‖Tn‖ (n ∈ N).

Moreover, given any balls B ⊂ X and B′ ⊂ X∗ of radii greater than
∑

a
1/2
n , then it is possible

to find such x ∈ B and x∗ ∈ B′.

If X is a Hilbert space, then it is sufficient to require that
∑

an < ∞.

Generalizations of results based on the spectral theory (for example Theorem 2.5) are more
complicated. Usually it is necessary to assume that T is power bounded or that Tn → 0 in some
sense.
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Theorem 4.2. [BM] Let H be a Hilbert space, T ∈ B(H), Tn → 0 in the weak operator

topology, let r(T ) = 1. Let (an) be any sequence of nonnegative numbers such that an → 0.

Then there exists x ∈ H such that

|〈Tnx, x〉| ≥ an

for all n ∈ N.

In particular, the statement is true for all completely non-unitary contractions T satisfying

r(T ) = 1.

A better result can be obtained if we assume that 1 ∈ σ(T ).

Theorem 4.3. [BM] Let H be a Hilbert space, T ∈ B(H), Tn → 0 in the weak operator

topology, 1 ∈ σ(T ), let (an) be a sequence of nonnegative numbers, an → 0. Then there exists

x ∈ H such that

Re 〈Tnx, x〉 ≥ an (n ∈ N).

Let X be a Banach space. A subset C ⊂ X is called a cone if C + C ⊂ C and tC ⊂ C for
each t ≥ 0.

Corollary 4.4. [M3] Let H be a Hilbert space, let T ∈ B(H) be power bounded and 1 ∈ σ(T ).
Then T has a nontrivial closed invariant cone.

Indeed, a standard reduction technique gives that without loss of generality we may assume
that Tn → 0 (WOT ). Let x be the vector constructed in the previous theorem. Let C be the
closed cone generated by the vectors Tnx (n ≥ 0). Then Re 〈y, x〉 ≥ 0 for all y ∈ C, and so C

is non-trivial since −x /∈ C. Clearly C is a closed cone invariant for T .

Similar results can be proved also for Banach space operators, see [M3].

Theorem 4.5. Let X be a Banach space, c0 6⊂ X, T ∈ B(X), Tn → 0 in the strong operator

topology, 1 ∈ σ(T ). Then there exist nonzero vectors x ∈ X, x∗ ∈ X∗ such that

Re 〈Tnx, x∗〉 ≥ 0

for all n ∈ N.

Corollary 4.6. Let X be a reflexive Banach space, T ∈ B(X) power bounded, 1 ∈ σ(T ). Then

T has a nontrivial closed invariant cone.

We apply now the previous results to unitary operators. This gives statements about Fourier
coefficients of L1 functions.

Let µ be a non-negative finite Borel measure on the unit circle T = {z ∈ C : |z| = 1}. Consider
the Hilbert space H := L2(µ) and the operator Uµ ∈ B(H) deefined by (Uµf)(z) = zf(z) (f ∈
H, z ∈ T). Clearly Uµ is a unitary operator.

Let f, g ∈ H. Then

〈Un
µ f, g〉 =

∫
znfḡdµ,

so the weak orbit of Uµ is formed by the Fourier coefficients of the function f̄g ∈ L1(µ).
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Recall that µ is called Rajchman if its Fourier transform µ̂(n) =
∫

e−2πintdµ(t) vanishes at
infinity, i.e., lim|n|→∞ µ̂(n) = 0. In particular, each absolutely continuous measure is Rajchman
(the converse is not true). It is easy to see that µ is Rajchman if and only if Un

µ → 0 in the
weak operator topology.

Theorem 4.7. [BM] Let µ be a Rajchman measure. Let (an)∞n=0 be a sequence of positive

numbers satisfying an → 0 and sup an < 1. Then there exists f ∈ L1(µ) of norm 1 such that

f ≥ 0 a.e. and |f̂(n)| > a|n| for all integers n.

If 1 ∈ suppµ then it is possible to find f ≥ 0 such that Re f̂(n) > a|n| for all n.

The previous theorem is not true in general for non-Rajchman measures. For an example see
[BM].

Example 4.8. There exists a unitary operator U ∈ B(H) and a sequence (an) of positive
numbers with an → 0 such that there are no x, y ∈ H satisfying

|〈Unx, y〉| ≥ an

for all n ∈ N.

The following result is an example of weak orbits that are large in the sense of density.

Theorem 4.9. [MT] Let T be a power bounded operator on a Hilbert space H. Let r(T ) = 1,

let (an) be a sequence of non-negative numbers such that limn→∞ an = 0. Then there exist

x ∈ H, ‖x‖ = 1 and a subset A ⊂ N with dens A = 1 such that

|〈Tnx, x〉| ≥ an

for all n ∈ A.

Theorem 4.10. Let T ∈ B(X), r(T ) ≥ 1, let (an) be a sequence of non-negative numbers such

that limn→∞ an = 0. Then there exist x ∈ X, x∗ ∈ X∗, ‖x‖ = ‖x∗‖ = 1 and a subset A ⊂ N
with dens A = 1 such that

|〈Tnx, x∗〉| ≥ an

for all n ∈ A.

The following results are an analogy to Theorems 2.23 – 2.26, see [M4], Sec. 39.

Theorem 4.11. Let T ∈ B(X), r(T ) 6= 0 and let 0 < p < ∞. Then the set{
(x, x∗) ∈ X ×X∗ :

∞∑
j=0

(
|〈T jx, x∗〉|

r(T j)

)p

= ∞
}

is residual in X ×X∗.

Theorem 4.12. Let T ∈ B(X) be a non-nilpotent operator and 0 < p < 1/2. Then the set{
(x, x∗) ∈ X ×X∗ :

∞∑
j=0

(
|〈T jx, x∗〉|
‖T j‖

)p

= ∞
}

is residual in X ×X∗.
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If X is a complex Hilbert space then the result is true for all p, 0 < p < 1.

Again the conditions on p cannot be improved.

Example 4.13. There are a Banach space X and a non-nilpotent operator T ∈ B(X) such

that
∑∞

n=0

(
|〈T nx,x∗〉|
‖T n‖

)1/2
< ∞ for all x ∈ X and x∗ ∈ X∗.

There exists a non-nilpotent Hilbert space operator T ∈ B(H) and a such that
∑∞

n=0
|〈T nx,y〉|
‖T n‖ <

∞ for all x, y ∈ X.

We finish this section with a results concerning large weak orbits of the type 〈Tnx, x〉 for a
Hilbert space operator T . This type of orbits is connected with questions concerning the joint
numerical ranges.

Theorem 4.14. [DM] Let T be an operator on a Hilbert space H. Let an ≥ 0,
∑∞

n=1 a
1/2
n < 1.

Then there exists a unit vector x ∈ H such that

|〈Tnx, x〉| ≥ an

4
‖Tn‖

for all n ∈ N.

We do not know if the condition
∑

a
1/2
n < 1 can be improved.

5. Weak orbits of operator semigroups

It is also possible to prove some results concerning large weak orbits for semigroups of oper-
ators. We refer to [MT] for the proofs and more details.

We start with an analogy to Theorem 4.2.

Theorem 5.1. Let H be a Hilbert space, T = (T (t))t≥0 a strongly continuous semigroup on

H, T weakly stable (i.e., T (t) → 0 in the weak operator topology as t → ∞), let ω0 = 0. Let

f : [0,∞) → [0,∞) be a bounded function, limt→∞ f(t) = 0. Then there exists x ∈ H such that

|〈T (t)x, x〉| ≥ f(t) (t ≥ 0).

Moreover, for any ε > 0 it is possible to find such an x ∈ H with ‖x‖ ≤ sup{f(t) : t ≥ 0}+ ε.

The only known application of the plank theorem for weak orbits of operator semigroups is
the following result.

Theorem 5.2. Let H be a Hilbert space, T = (T (t))t≥0 norm continuous semigroup and ε > 0
Then there exist x, y ∈ H such that

|〈T (t)x, y〉| ≥ 1
(t + 1)2+ε

‖T (t)‖

for all t ≥ 0.
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The upper density of a subset A ⊂ [0,∞) is defined by

dens A = lim sup
t→∞

t−1m
(
A ∩ [0, t]

)
,

where m is the Lebesgue measure. Similarly, the density of A is defined by

dens A = lim
t→∞

t−1m
(
A ∩ [0, t]

)
,

if the limit exists.

Theorem 5.3. Let H be a Hilbert space, T = (T (t))t≥0 a bounded strongly continuous

semigroup on H, ω0 = 0. Let f : [0,∞) → [0,∞) be a bounded function, limt→∞ f(t) = 0.

Then there exists x ∈ H, ‖x‖ = 1 and B ⊂ [0,∞) with dens B = 1 such that

|〈T (t)x, x〉| ≥ f(t)

for all t ∈ B.

The next result is an application of the previous theorem to Fourier transforms.

Theorem 5.4. Let µ be a finite positive Borel measure on R, let f : [0,∞) → [0,∞) be a

function satisfying limt→∞ f(t) = 0. Then there exists a positive function g ∈ L1(µ) and a

subset B ⊂ [0,∞) with dens B = 1 such that the Fourier transform ĝ satisfies

|ĝ(t)| ≥ f(|t|)

for all t ∈ B ∪ (−B).

Theorem 5.5. Let T = (T (t))t≥0 be a strongly continuous semigroup on a Banach space X

with generator A, let σ(A)∩ {z : Re z ≥ 0} 6= ∅. Let f : [0,∞) → [0,∞) be a function such that

limt→∞ f(t) = 0. Then there exist x ∈ X, x∗ ∈ X∗ with ‖x‖ ≤ 1, ‖x∗‖ ≤ 1 and a set B ⊂ [0,∞)
with dens B = 1 such that

|〈T (t)x, x∗〉| ≥ f(t)

for all t ∈ B.
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