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Abstract

The aim of this paper is to proceed in the study of the system which
will be specified below. The system concerns fluid flow in a simple hy-
draulic system consisting of a pipe with generator on one side and a valve
or more complicated hydraulic elements, on the other end of the pipe.
The purpose is a rigorous mathematical analysis of the corresponding lin-
earized system.

Here, we analyze the linearized problem near the fixed steady state
which already have been explicitely described. The theory of mixed linear
partial differential systems and other tools are applied to derive as explicit
form of the solution as possible.

Mathematics Subject Classification (2000): 76T10, 35L50, 35L45
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1 Introduction

In this paper we are going to analyze the mathematical model of a fluid flow of a
real liquid in a pipe with in-flow and out-flow boundary conditions corresponding
to hydraulic elements which are employed in the system to model the situation
in a real hydraulic machinery. In next section we formulate the general problem
which can be derived from physical balance laws applied in the system (see[1]).

Since the system is highly nonlinear and contains the features of general
nonlinear hyperbolic systems which have not yet been managed even in much
simpler cases, the necessary reasonably physical must be made to get at least
partial picture about what is going on in the real machinery.

One step have already been made in [2] where we found some solutions
in a closed form: stationary solutions, purely time-dependent solutions and a
mixture of both (called combined solutions).

*Supported by GA CR Grant 201/08/0012 and RVO 67985840
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Our ambition in the present paper is to analyze linearized system around a
steady state or around special dynamical solutions.

We organize the paper as follows. In next section we formulate the general
problem with some comments and present the particular results from [[2]] to
have a base for the further formulation and analysis of the linearized problems.
The section 2 is started with general scheme of linearization in a quite general
setting to facilitate rather awckward linearization of the general system. Section
3 is devoted to the analysis of the linearized system, and finally, Section 3
brings for considerations for linearization arround a dynamical solution (in a
closed form). In spite of restrictions we are forced to make, we believe that our
approach is useful in the engineering practice, based on the authors’ experience
in application of similar mathematical approach to other problems.

2 Formulation of the problem

We consider the following equations for the two phase flow of real fluids in a
pipe of the length [ is possible to write in the form (see for instance [1]):

wy + py 'pe + flw) =0, (2.1)

pi + poc®(p,7)w, =0, (2:2)

Y +wye = g(v,p), x€(0,0), te€(0,T), (T>0), (2.3)
w(x,0) = wo(x), (2.4)

p(x,0) = po(x), (2.5)

¥(z,0) = v (z), z€]0,], (2.6)
C(p(0,),7(0,8)) + Qv (p(0,t), H(t)) — Sow(0,t) + @H(t) =0, (2.7
w(l, t) = h(t), (2.8)

H(t)+ @ (¢, H(t), H(t),p(0,1), p:(0,£)) =0, t€[0,T], (2.9)
H(0) = Hy, H(0) = Hj. (2.10)

The quantities occurring in (2.1)-(2.10) have the following meaning;:
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w=w(x,t) the velocity of the liquid in the point z and in the time ¢,

p(z,t) the pressure,
v =~(z,t) the mass of the freed air in the unit volume of the liquid,
0o the density of the liquid,

c¢=c(p,v) the sound velocity in the liquid and in the liquid
containing the air, respectively (given function of p, ~),

f=f(w) the coefficient of the resistance (the friction of the liquid
on the wall of the duct),

K ((3=")/Ku —p) if (¥—7)/Ku <p,
K., K, the constants characterizing the proportionality of the
velocity of loosening, and dissolution on the pressure
gradient, respectively,

9(7,p)

Ky the coefficient of absorption,

o the total mass of the air in the unit volume,

wo, Po, Yo the initial distribution of the velocity, the mass, and the
pressure of the loosened air in unit volume, respectively,

C=C(p,v) the hydraulic capacity (the given function of p, 7),

H the throw of the valve,

Qv =Qv(p,H) the flow through the valve (the given function of p, H),

So the cross-section of the duct,

® the acting facing of the valve,

h the flow rate caused by the hydrogenerator at the end
of the duct,

Hy, Hy the initial position, and the velocity of the valve,
respectively.

In what follows, we assume that all given functions are sufficiently smooth,
and the solution will be sought smooth as well, i.e., continuously differentiable.

In what follows let us also assume for simplicity that instead of (2.9), (2.10)
we have elementary condition

H(t) = Hy = const. (2.11)

The special solutions of our problem will be the functions w, p, - satisfying
the equations (2.1), (2.2), and (2.3). The special feature of these solutions is
that despite the fact that they do not satisfy all initial and boundary conditions,
they express physical characteristics qualitatively analogous to those described
by (2.1)-(2.10).

2.1 Stationary solution

Three functions w = w(z), p = p(x), v = y(z) depending only on the length
coordinate x of the pipe, and satisfying equations (2.1), (2.2), and (2.3) are
called stationary solution. For this case, equations reduce to a simple system of
three ordinary differential equations [2]
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po '+ flw) =0,
pOCQ(p, ’Y)w/ = 07
wy = g(v,p), =€ (0,1),

~~
o o
o =
= =

where p’ = dp/dz etc. Analogously as in [1] the function ¢(p, ) will be assumed
in the form
c1p’

— 2.4
cop? + v +c3 24)

c(p,y) =

where ¢; > 0, ¢ = 1, 2, 3 are constants. The physical principles suggest the
condition ¢(p,~y) > 0. Since the trivial solution with p = 0 is not interesting, the
equation (2.2) gives us w’ = 0 and from here we have

w = wp = constant. (2.5)
Consequently, (2.1) implies

p(x) = po — pof(wo)z, (2.6)

and for the function v we obtain the equation

1
= wfog(%po = pof(wo)). (2.7)
The constants wg, pp may be chosen arbitrarily. Also the integration of (2.7)
gives an additional free integration constant 9. From various compatibility
reasons we choose

1 t
wy = tlim — [ h(s)ds. (2.8)
assuming that this limit exists.
The number pg in (2.6) is then determined from (2.7), i.e., from

Qv (po, Ho) — Sowo = 0 (2.9)

supposing that equation (2.9) is solvable with respect to py. It remains to
determine the function v from (2.7). This is substantially not difficult but a
little bit lengthy computation. After doing that, the steady state problem is
completely solved.

3  Oscillatory solutions
Oscillatory solutions are called such solutions of equations (2.1) to (2.3) which

do not depend on the space variable z. Thus, w = w(t), p = p(t), v =~v(¢). In
this case, the system (2.1) to (2.3) may be write as follows:
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WA flw) = 0, (3.1)
p = 0
¥ = gv,p), t>0. (3.3)

Equation (3.1) is solvable provided that

m = ui}rég{f’(w) > —00. (3.4)

Clearly, p is given by
p(t) = pp = const., (3.5)
and it remains to determine v from the equation

5 = g(v, po)- (3.6)

which is a consequence of elementary existence theorem for ODE.
We are free to prescribe the initial conditions

w(0) = wo, ¥(0) =0 (3.7)

with given constants wg, Yo which is a little bit far from the required generality.
For example, for the case

f(w) = klw|w. (3.8)
we obtain
— Wo
w(t) = m. (3.9)

3.1 Combined solutions

By combined solution we mean such solution of equations (2.1) to (2.3) which is
neither stationary - nor oscillatory, and for which at least one of the functions
w, p, v depends only on x or t.

In [2] we considered ” Anzatz” w = w(t), p = p(x). For this case the equa-
tions (2.1), (2.2), (2.3) have the form

1
W+ —p' + f(w) =0, (3.1)
Po
Y+ wye = g(7, ). (3.2)
Then we obtain

p'(z) = const. (3.3)
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Instead of (2.7), (2.8), we chose for p the boundary conditions

p(0) =po, p(l) =p1. (3.4)
Then

P1— Do
Y

p(x) =po +

as it follows from (3.3). Consequently, (3.1) gives us

W+ fw) = L0 (3.6)
pol
for the function w. If we suppose (3.4) and supply the initial condition
w(0) = wo (3.7)

we know that there exists a global solution w(t) of the problem (3.6), (3.7). If
we know such solution we can find out the function v from the equation

p1L—p
Y+ w(t)re = g(v,p0 + = l ) (3.8)

by the method of characteristics. We prescribe the initial condition

v(x,0) = vo(z). (3.9)

In coincidence with the theory of hyperbolic equation we prescribe boundery
conditions accordingly. For example, if w(t) > 0, we must prescribe

7(0,8) = ~°(2), (3.10)

If w(t) < 0 it is necessary to prescribe the out-flow condition

(1) =) (3.11)

In [2] we have completely resolved the case

Po —P1
pol f(wo) <0,

[(=8) ==f(), ['(§) 20, (R (3.12)

Physical interpretation of these assumptions is given.

Then we determine v by the method of characteristics. After a tedious
but principially clear discussion of a greater number of cases, and under the
assumption

p1 > Do, ’U}<07



Two phase flow arising in hydraulics 7

Yo ($ — /Ot w(s)ds) <¥—-Kg (po L h ;PO (z+ /tow(s)ds)), (3.13)

we get

v(x,t) = ¢(t) = p(t;2,t) — y(t)

5= Ko + 222)

—exp(—%t) (’y— KH<p0 + 1)1;}9()(36+/t0w(8) ds)) (3.14)

— (x - /Otw(s) ds)) - KHPO ;Pl /Ot exp(—%(t — s))w(s)ds.

So, we are able to compute y(z,t) in terms of w(t).
On the other hand, for quite frequent physically justified choice f(w) =
klw|w we are able to solve the problem explicitly. The result is

where

Now it is possible to express the whole combined solution via quadratures.
Finally, if we assume f = 0, w = wiz + wo, p = p(t), and v = ~(t) where
wp, wp are constants, then the system reduces to two ODE’s, namely,

p(t) = poc®(p(t),(t)),
g(p(t),~(t)), t>0,

2-
—~
~~
~
I

p(0) = po = const.
7(0) =~y = const.

3.2 Linearized system

Let us start with the general description of the linearization principle which we
use for the system (2.1)-(2.9). Let us consider the model equation (system)

u + F(u), = Z(u), u(t) € By, Z(u) € Ba, (3.15)
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where B; are Banach spaces of functions dependent of x and F' is a sufliciently
smooth mapping from B; into Bs. Assume that we have a steady state w,
satisfying the equation

By subtraction we get for u := u — us the equation

Uy + Fus + @) — Fug)e = Z(u) — Z(us). (3.17)

Now we have

F(us + 1), — F(us)y = (F'(us)u)z + Z'(us)u + higher order terms. (3.18)

Here F'(us) and Z'(us) denote the Fréchet derivatives of F' and Z at the
point ug, respectively. By the linearized equation at the point us corresponding
to equation (2.1) we call the equation

Uy + (F'(us)0)y = Z' (us)u. (3.19)

Applying the linearization procedure to the system (2.1)-(2.9) and putting
u = (w,p,’y)T, W=W—=Ws, P=DP=Ps, V=7~ Vs> and Z(u) = (Ovoag(pvv)%
we obtain the following system:

Wi+ pg Py + J'(ws)@=0
_ > _ Oc? _ 9 _
D¢ + pOwsa:aip(psa fYS)p + pOwswa(pm %)7 + pocC (psa 'ys)ww =0 (320)

_ _ _ dyg _ 0y _
Ve + VszxW + WY, = 677('787178)’7 + %(Vsaps)p'
The system (3.20) is a first order linear system of the type

us + A(x)u, + B(x)u = G, (3.21)

where v = u(z,t) = (W(x,t),p(x,t),¥(z,t))" is an unknown threedimensional
vector, and A(z) and B(z) are given 3 x 3 matrices and G a given threedimen-
sional vector, namely,

0 ot 0
Alx)=| po(ps,7s) 0 0 |, (3.22)
0 0 ws
[ (ws) 0 0
2 2
B(l‘) = 0 %L(psa ’Vs) pOwsg%%(psv A/s) s (323)
Voo —5e(VerDs) =52 (VssDs)

G(z) = (0,0,9(ps(x),7s(2))) . (3.24)
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Comming out from the theory of first order partial differential equations, we
are interested in the properties of the matrix A(z). Solving equation

det (A — A(z)) = 0,

where I is the identical matrix, we get eigenvalues of the matrix A(x) :

A(7) = c(ps(x),75(®)),  Aa(x) = —c(ps(),7s(2)),  As(z) = ws(z). (3.25)
Let us impose initial conditions to the system (3.20):
E(I?O) :@0(17)7 ﬁ(l‘,O) :T?O(I)v W(I,O) :7(1‘)7 x € [071] (326)

It remains to input linearized boundary condition corresponding to the con-
dition (2.7), which in this particular case is of the form

C(p(oat)77(07t)> + QV(p(Ovt)7HO) - SOw(Oat) =0. (327)

By an easy manipulation in the spirit of preceeding linearization proceedures
we arrive at the following linearized boundary condition derived from (3.27):

(G 00070000+ ZL2 0 0,1) 0 +

(zf@s(omo(o» - 8f@s(omo(m) (10, 1) — 7(0)) (3.28)
—So(w((), t) - wS(O)) = SOws(O) - C(pS(O),’yS(O)) - QV(ps(O)’ 73(0))'
In terms of w, p,7 condition (3.28) reads
(5 220070+ X220 ) g0,
" (g§<ps<o>,%<o» - Zf@s(om(m) 500 (3.29)
_SOE(Oﬂ t) = SOwS(O) - C(ps (0)7 '75(0)) - QV(ps (0)7 '78(0))'

We intend to adapt some procedures known from the theory of linear hyper-
bolic systems to the problem defined by (3.20), or in more concise equivalent
form (3.21), with initial conditions (3.26) and boundary condition (3.28). To
this end we employ the left eigenvectors

0(x) = (0 (), 05 (), b5(x)), i=1,2,3, (3.30)

corresponding to the eigenvalues \',i = 1,2,3 of the matrix A(x). These eigen-
vectors are computed from the equations

(1 (), (), 63(2)) (Ns(2)] = A=) = 0. (3.31)
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Elementary algebra leads to the result

b(z) = (c(ps(@),75(2)), po 7, 0),  if ws(x) # c(ps(x),7s(x)),
EQ(Z‘) = (_c(ps( ) ( ) p ) if ws(x) a —C(ps(x)v%(l“)% (332)
l3(z) = 0,1) if ws(z) # £e(ps(),vs(x))

Denote for short

cs = cs(x) = cs(ps(x), vs(x)). (3.33)
Multiply the system (3.21) by ¢;,7 = 1,2, respectively. Then we get

biug + Al ~ugp + 0 - (B-u)=0-G. i=1,2,3. (3.34)
Substituting
v=1L-u, (3.35)
where the matrix L is given by
L= (0;)},—y, with £;; = ¢, (3.36)
we obtain the system (3.34) in the form
(i)t + Xi(vi)e + i - (T + B)- (L) =4;- G, i=1,2,3, (3.37)
which in vector notation reads
vi+Av, +L-(I+B) (L ")) =L-G, (3.38)

denoting by A the diagonal matrix given by

A= (Xij)? -1, where \ij = \idyj, i,j=1,2,3. (3.39)

Denote

C=L-(I+B)-L"" and F=L-G. (3.40)
Then system (3.38) reads

vy + Avy + Cv = F. (3.41)

Now we are in position to use comfortably the method of characteristics.
Define functions &; = &;(x,t;7) as solutions of the problems

dgi(z, t; 7)

I =N(&(z,t57)), x€]0,0),t>0, 7>0, &z, t;t)=a (3.42)

Clearly, by our assumptions and the theory od ODE’s the problem (3.41) has a
unique solution for each (z,t).
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Then the functions

zi(x,t;7) = vi(x + N (& (x, 6 7)) (T —t),7), i=1,2,3, (3.43)

satisfy the relations

dzi(z ;) d - e 3
T - %Uz(x+)\z(§z(x7tv7—))(7 t)77—)
8% . 81}7; (£ . _
= S+ MGt = 0,7+ a4 M6 )7~ 1),7) (340
< (il 7)) + ( — t)%@i(m,t;f)xi(&(x,m)))

= Fi(gi(xJ”—)) - Cij(gi(x7t;7—)) : Zj(fi(.%',t;T), T))

accepting the Einstein summation convention.
Finally, we arrive at the system

%;t”-) - Fi(gi(‘%t; 7)) - Cij(&(:&t;T)) : Zj(gi($7t;7—))7
CBET) _yfew i), (3.49)
§Z(I,t,t) =z,
with
C1ps\ & 2
A2 = Fe(ps(z),7s(2) = + Ps(2) (3.46)

02p3($)2 + st($> + CS’
As(x) = wy(x).

This implies that the explicit form of the system (3.42) is

dg;? c1ps (&7 (. t57)?
g (x,t;7) =+ s 5 ) (3.47)
T chs(gi ('T7ta7-)) +VS(€1 (.’I},t,T)) +C37
dg? (x,t;7) = w(&(x, ;7))
d’]‘ ) ) - (2 b b .
Since ws = wy = const, we find
55’(:3, t;7) = wo(r — t) + . (3.48)

As far as the solutions of equations (3.47) are concerned, we know, that the
solutions &% exist. We can decompose the set {7 € (0,00)} into components
where g is given by one prescription and by the other on the rest. On these
intervals the solution is given by one respective formula which inserted into
(3.47) yields equation given by one analytical expression.
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Let us express the equations (3.47) in a more explicit form. To simplify
notation, write ¢ instead of ¢''2, and K instead of K, or Ky, respectively.
Then in the respective interval - satisfies the equation

v =g(v.p) = 9(v,po€ +p1) = K(% — po& — p1)- (3.49)
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