
IN
ST
IT
U
TE

of
MA

THEMATICS

A
ca
de
m
y
of
Sc
ie
nc
es

Cz
ec
h
Re
pu
bl
ic INSTITUTE of MATHEMATICS

A
CA

D
EM

Y
of

SC
IE
N
CE

S
of

th
e
CZ
EC

H
RE

PU
BL
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3 Fräıssé sequences 8
3.1 Basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 The existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Cofinality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 The back-and-forth principle . . . . . . . . . . . . . . . . . . . . . . . 15
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1 Introduction

When studying a given class of structures, it is an interesting and important issue
to find a “special” object that is universal for the class, namely, every other object
“embeds” into this special one. A better property of this special object would be
some sort of homogeneity, namely, that every isomorphism between two “small”
substructures extends to an automorphism of the special object (as we shall see later,
the exact meaning of “small” will depend on the class under consideration). Probably
one of the earliest results in this spirit was Cantor’s theorem on the uniqueness of
the set of rational numbers among all countable linear orders. More precisely, Q
is the only (up to isomorphism) countable linear order which contains all other
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countable linear orders and every isomorphism between two finite subsets extends
to an automorphism of Q. A typical statement of Cantor’s theorem is different: the
extension property is equivalent to saying that Q is order dense and has no end-
points. The argument used in the proof is now called the “back-and-forth” method:
an automorphism extending a given finite isomorphism is constructed inductively,
interchanging the domain and the co-domain at each step.

It was Urysohn who found an analogue of Cantor’s back-and-forth argument1

for metric spaces. Namely, he found a complete separable metric space U which has
very similar properties to the rationals, now considering isometries between finite
subsets. Urysohn’s work [40] was actually forgotten for many years; it received some
significant attention in the end of the 20th century due to problems in topological
dynamics; perhaps the most representative work is [22].

One of the most important works on this subject, independent of Urysohn, was
done by Roland Fräıssé [12] in 1954. This is a model-theoretic approach to the back-
and-forth argument, which can be partially applied also to the case of Urysohn’s
metric space. Roughly speaking, Fräıssé considers a class K of finite (or, at least,
finitely generated) models of some first order language. The class should have the
amalgamation property, that is, each two embeddings of the same model Z ∈ K can
be extended to a further embedding into a bigger model in K. In other words, given
two embeddings f : Z → X, g : Z → Y , there should exist a model W ∈ K and
embeddings f ′ : X → W and g′ : Y → W satisfying f ′ ◦f = g′ ◦g. If such a class has
only countably many isomorphic types and each two models embed into a common
one (the joint embedding property), then there exists a countable model U that can
be represented as the union of a chain of models from the class K, contains isomorphic
copies of all models in K and has the following strong homogeneity property: every
isomorphism between submodels of U which are in K extends to an automorphism
of U. Furthermore, the model U is unique up to isomorphism. It is often called the
Fräıssé limit of the class K.

This line of investigation was further continued by Jónsson [17] and Morley
& Vaught [30] (see also Yasuhara [41]), where uncountable classes of models were
studied. Besides the amalgamation property, typical cardinal-arithmetic assumption
κ = 2<κ is needed for the existence of the universal homogeneous structure of
cardinality κ. One has to mention a curious independent work of Trnková [39] with
metamathematical results on universal categories, in the setting of Bernays-Gödel
set theory. One of the main tools is the amalgamation property for certain classes
of categories, treated just as first-order structures.

All the authors cited above assume that the class of structures is closed under
unions of chains of length less than the size of the universal homogeneous structure
(in the last case, the union of any chain of small categories is a category). One
of the objectives of this work is to relax this assumption and to make the theory
general enough for capturing new cases and obtaining new examples of universal

1 It seems that the back-and-forth argument was actually developed by Huntington (1904) and
Hausdorff (1914), see http://en.wikipedia.org/wiki/Cantor_back-and-forth_method.
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homogeneous objects.
We believe that category theory is the proper language for Fräıssé-Jónsson lim-

its. In fact, this has already been confirmed by the works of Droste & Göbel [10, 11],
where the authors consider some categories of first-order structures with special
types of embeddings, obtaining new applications in algebra and theoretical com-
puter science. In this context, one has to mention a recent work of Pech & Pech [34]
where the authors, based on the results of Droste & Göbel, develop the theory of
Fräıssé limits in comma categories, leading to universal homomorphisms and uni-
versal retractions. Finally, Irwin & Solecki [14] presented a variant of Fräıssé theory
with reversed arrows, i.e., epimorphisms of finite structures instead of embeddings.
By this way, they obtained an interesting new characterization of the pseudo-arc—a
certain connected compact metric space, never associated to Fräıssé limits before.

There is no doubt that universal structures with strong homogeneity properties
can be discovered or identified in various areas of pure mathematics, theoretical
computer science and even mathematical physics (see [8]). Model-theoretic Fräıssé
limits are nowadays important objects of study in combinatorics, permutation group
theory and topological dynamics, see Macpherson’s survey [29] for more informa-
tion and further references. Category theory brings much more freedom for dealing
with Fräıssé limits, offering the possibility of constructing new objects from old and
eliminating superfluous assumptions. It has been demonstrated in [10, 11, 34] that
category-theoretic approach brings new important examples of universal homoge-
neous objects and the work [14] shows that one of the simplest constructions in
category theory, namely, passing to the opposite category, leads to new and some-
what surprising examples. Actually, one of the author’s construction of a universal
pre-image for a certain class of compact linearly ordered spaces [24] turns out to be
the Fräıssé limit of a category whose arrows are increasing quotient maps.

Summarizing, category-theoretic approach offers powerful tools for constructing
new universal homogeneous objects as well as identifying existing objects, discover-
ing their homogeneity properties.

Here a notational issue has to be pointed out. Namely, in category theory the
notion of a “universal object” is totally different from the notion of a “universal
structure” in model theory and related areas. In order to avoid this confusion, we
shall replace the adjective “universal” by “cofinal” in the latter case. Namely, an
object U is defined to be cofinal for a class K if every object from K embeds into U ,
where “embedding” will be just an arrow of a category under consideration.

hhhaggg

As mentioned above, the aim of this work is extending the theory of Fräıssé-
Jónsson limits in the framework of pure category theory. The key point of our
approach is dealing with sequences instead of (co-)limits, where a sequence is nothing
but a functor from an ordinal into the category. The crucial notion is that of a Fräıssé
sequence, a sequence which is supposed to “converge” to a universal (cofinal, in our
terminology) homogeneous object in a bigger category, where homogeneity is meant
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with respect to the original category. In other words, we deal with the base category
of “small” objects and we use sequences for encoding the category of “large” objects.
This approach is similar in spirit to the idea of forcing in set theory, where one deals
with approximations of a generic object, often working in the base model instead of
its forcing extension.

The paper is organized as follows. Section 2 contains basic notation, including a
very short treatment of categories of sequences. Section 3 presents the main ideas
of this work: Fräıssé sequences, their existence and properties. Section 4 deals with
discontinuity: We describe a way of dealing with Fräıssé sequences that are con-
tinuous with respect to some quasi-limiting operator. We also introduce the notion
of an amalgamation structure, specializing the result on cofinality of a Fräıssé se-
quence in the category of sequences. Section 5 contains selected examples of classes
of categories with Fräıssé sequences, demonstrating the ideas of previous sections.
In particular, we discuss categories of functors (diagrams), monoids, and certain
categories of trees. We also present an example of a category with many incompara-
ble Fräıssé sequences. Section 6 deals with categories of embedding-projection pairs,
aiming at applications to Banach space theory and topology of compact spaces.

Finally, Section 7 contains applications, the first four of them are equivalent to
the Continuum Hypothesis. One of the results there, which actually could fit into the
model-theoretic framework, is the existence of a unique Banach space of density ℵ1

that is isometrically universal for this class of spaces and isometrically homogeneous
for separable Banach spaces2. It turns out that such a Banach space has not been
discovered before. Another result is a Banach space P, complementably universal
for the class of spaces with monotone Schauder bases of length 6 ω1. More precisely,
every Banach space from this class is linearly isometric to a 1-complemented sub-
space of P. Yet another result shows the existence of a Banach space of density ℵ1

that is complementably universal for the class of Banach spaces with the so-called
projectional resolution of the identity. This class of Banach spaces had been studied
extensively by several authors, in particular, in connections with renorming theory,
see the monographs [7] and [9] for further references. We also present a dual result
in topology, for the class of Valdivia compact spaces that can be described in the
language of retractions onto metrizable compacta. We show that there exists a Val-
divia compact K of weight ℵ1 such that all other Valdivia compacta of the same
weight embed as retracts into K. Both results are straightforward applications of
Section 6, by considering two natural categories of embedding-projection pairs. An-
other result, now without any cardinal-arithmetic assumptions, is the existence of a
sequence of continuous functions on the Cantor set which is universal both for quo-
tient maps and for topological embeddings. This is obtained by adapting the ideas
of embedding-projection pairs to the category of finite nonempty sets. We finally
describe, again without any cardinal-arithmetic assumptions, a linearly ordered set

2There is a recent work [3] elaborating the method of constructing Gurarĭı-like Banach spaces
using amalgamations. The article [3] was however partially inspired by our result, with a reference
to an early draft of this work.
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of size ℵ1 which could serve as a natural generalization of the rationals, with homo-
geneity property involving increasing embeddings and projections at the same time.
Its topological counterpart identifies as a Fräıssé limit the author’s example [24] of a
universal pre-image for the class of linearly ordered Valdivia compacta, thus showing
its homogeneity and uniqueness with respect to these properties.

2 Preliminaries

Categories will usually be denoted by letters K, L, M, etc. All functors considered
here are assumed to be covariant, unless otherwise specified. Let K be a category.
We shall write “a ∈ K” for “a is an object of K”. Given a, b ∈ K, we shall denote by
K(a, b) the set of all K-morphisms from a to b. The composition of two compatible
arrows f and g will be denoted by g ◦ f . A subcategory of K is a category L such
that each object of L is an object of K and each arrow of L is an arrow of K (with
the same domain and co-domain). We write L ⊆ K. Recall that a subcategory L of
K is full if L(a, b) = K(a, b) for every objects a, b ∈ L. We say that L is cofinal in K
if for every object x ∈ K there exists an object y ∈ L such that K(x, y) 6= ∅. The
opposite category to K will be denoted by Kop. That is, the objects of Kop are the
objects of K and all arrows are reversed, i.e. Kop(a, b) = K(b, a) for every a, b ∈ K.
Recall that a category K is ordered if |K(x, y)| 6 1 and K(x, y) 6= ∅ 6= K(y, x) implies
x = y for every K-objects x, y. Removing the last condition we get the notion of
a quasi-ordered category. Every (not necessarily ordered) category induces a partial
order 6 on the objects of K defined by the formula K(x, y) 6= ∅ iff x 6 y. Every
partially ordered set 〈P,6〉 can be viewed as an ordered category KP with P the
class of objects and the class of arrows defined by KP (x, y) = {〈x, y〉} whenever
x 6 y and KP (x, y) = ∅ otherwise. In particular, ordinals treated as well ordered
sets are important examples of ordered categories.

Let K be a category. We say that K has the amalgamation property if for every
a, b, c ∈ K and for every morphisms f ∈ K(a, b), g ∈ K(a, c) there exist d ∈ K and
morphisms f ′ ∈ K(b, d) and g′ ∈ K(c, d) such that f ′ ◦ f = g′ ◦ g. If, additionally, for
every arrows f ′′, g′′ such that f ′′ ◦ f = g′′ ◦ g there exists a unique arrow h satisfying
h ◦ f ′ = f ′′ and h ◦ g′ = g′′ then the pair 〈f ′, g′〉 is a pushout of 〈f, g〉. Reversing
the arrows, we define the reversed amalgamation and the pullback. We say that K
is directed if for every a, b ∈ K there exists g ∈ K such that both sets K(a, g), K(b, g)
are nonempty. In model theory, where the arrows are embeddings, this is usually
called the joint embedding property.

Fix a category K and fix an ordinal δ > 0. An inductive δ-sequence in K is
formally a covariant functor from δ (treated as a poset category) into K. In other
words, it could be described as a pair of the form 〈{aξ}ξ<δ, {aηξ}ξ<η<δ〉, where δ is
an ordinal, {aξ : ξ < δ} ⊆ K and aηξ ∈ K(aξ, aη) are such that a%η ◦ a

η
ξ = a%ξ for every

ξ < η < % < δ. We shall denote such a sequence shortly by ~a. The ordinal δ is the
length of ~a.
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Let κ be an infinite cardinal. A category K is κ-complete if all inductive sequences
of length < κ have co-limits in K. Every category is ℵ0-complete, since the co-limit
of a finite sequence is its last object. A category K is κ-bounded if for every inductive
sequence ~x in K of length λ < κ there exist y ∈ K and a co-cone of arrows {yα}α<λ
such that yα : xα → y and yβ ◦ xβα = yα for every α < β < λ. Obviously, every
κ-complete category is κ-bounded. We shall write “σ-complete” and “σ-bounded”
for “ℵ1-complete” and “ℵ1-bounded” respectively.

We shall need the following notion concerning families of arrows. Fix a family of
arrows F in a given category K. We shall write Dom(F ) for the set {dom(f) : f ∈
F}. We say that F is dominating in K if the family of objects Dom(F ) is cofinal
in F and moreover for every a ∈ Dom(F ) and for every arrow f : a→ x in K there
exists an arrow g in K such that g ◦ f ∈ F .

For all undefined category-theoretic notions we refer to Mac Lane [28] or John-
stone [16].

2.1 Categories of sequences

Fix a category K and denote by Seq<κ(K) the class of all sequences in K which
have length < κ. We shall write Seq6κ(K) instead of Seq<κ+(K) and σK instead of
Seq6ℵ0(K). We would like to turn Seq<κ(K) into a category in such a way that an

arrow from a sequence ~a into a sequence ~b induces an arrow from lim~a into lim~b,
whenever K is embedded into a category in which sequences ~a, ~b have co-limits.

Fix two sequences ~a and ~b in a given category K. Let λ = dom(~a), % = dom(~b).

A transformation from ~a to ~b is, by definition, a natural transformation from ~a into
~b ◦ ϕ, where ϕ : λ → % is an order preserving map (i.e. a covariant functor from λ
into %, treated as ordered categories).

In order to define an arrow from ~a to ~b we need to identify some transformations.
Fix two natural transformations F : ~a→ ~b ◦ ϕ and G : ~a→ ~b ◦ ψ. We shall say that
F and G are equivalent if the following conditions hold:

(1) For every α there exists β > α such that ϕ(α) 6 ψ(β) and b
ψ(β)
ϕ(α) ◦ F (α) =

G(β) ◦ aβα.

(2) For every α there is β > α such that ψ(α) 6 ϕ(β) and b
ϕ(β)
ψ(α)◦G(α) = F (β)◦aβα.

It is rather clear that this defines an equivalence relation, which is actually a congru-
ence on the category of transformations. Every equivalence class of this relation will
be called an arrow (or morphism) from ~a to ~b. It is easy to check that this indeed
defines a category structure on all sequences in K. Formally, this is the quotient cat-
egory with respect to the equivalence relation described above. The identity arrow
of ~a is the equivalence class of the identity natural transformation id~a : ~a→ ~a.

Categories of sequences are special cases (or rather “parts”) of more general
categories called Ind-completions, see Chapter VI of Johnstone’s monograph [16].

We shall later need the following two facts.
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Lemma 2.1. Let K be a category, κ > ℵ0 a regular cardinal, and let ~~x be a κ-
sequence in Seq6κ(K) whose elements are sequences of length κ. Then ~~x has co-limit
in Seq6κ(K).

Proof. Refining inductively each ~xα (α < κ) to a cofinal subsequence, we may assume

that all bonding maps are natural transformations. Now look at ~~x as a functor from
κ × κ into K and let ~y be the diagonal sequence. Then ~y is easily seen to be the
co-limit of ~~x.

Proposition 2.2. Assume K is a κ-complete category, where κ = cf κ > ℵ0. Then
Seq6κ(K) is κ+-complete.

Proof. The fact that K is κ-complete implies that so is Seq6κ(K). Finally, κ+-comp-
leteness follows from Lemma 2.1.

2.2 Partial orders and trees

By a tree we mean a partially ordered set 〈T,6〉 which is a meet semilattice, i.e.
every two elements of T have the greatest lower bound, and for every t ∈ T the
interval {x ∈ T : x < t} is well ordered. Every tree T has a single minimal element
0T , called the root of T . An immediate successor of t ∈ T is an element s > t
such that no x ∈ T satisfies t < x < s. The set of all immediate successors of t
will be denoted by t+. A subtree of a tree T is a subset S ⊆ T which is again a
semilattice, possibly with a different infimum. A tree T is binary if every t ∈ T has
at most two immediate successors. We shall denote by maxT the set of all maximal
elements of T . A tree T is bounded if for every x ∈ T there is t ∈ maxT such that
x 6 t. Recall that an initial segment of a poset 〈T,6〉 is a subset A of T satisfying
{x ∈ T : x 6 t} ⊆ A for every t ∈ A. Given a tree T and t ∈ T , we define the level
of t in T as the order type of the interval [0, t) = {s ∈ T : s < t}. We denote it by
LevT (t). The height of T , ht(T ) is the minimal ordinal α such that no t ∈ T satisfies
LevT (t) = α.

For all undefined set-theoretic notions we refer to Jech [15] or Kunen [27].

3 Fräıssé sequences

Below we introduce the key notion of this work.
Let K be a category and let κ be a cardinal. A Fräıssé sequence of length κ in

K (briefly: a κ-Fräıssé sequence) is an inductive sequence ~u satisfying the following
conditions:

(U) For every x ∈ K there exists ξ < κ such that K(x, uξ) 6= ∅.

(A) For every ξ < κ and for every arrow f ∈ K(uξ, y), where y ∈ K, there exist
η > ξ and g ∈ K(y, uη) such that uηξ = g ◦ f .
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An inductive sequence satisfying (U) will be called K-cofinal. More generally, a
collection U of objects of K is K-cofinal if for every x ∈ K there is u ∈ U such that
K(x, u) 6= ∅. Condition (A) will be called amalgamation property.

3.1 Basic properties

Let ~v be a κ-sequence in a category K. We say that ~v has the extension property if
the following holds:

(E) For every arrows f : a → b, g : a → vα in K, where α < κ, there exist β > α
and an arrow h : b→ vβ such that vβα ◦ g = h ◦ f .

Clearly, this condition implies (A).

Proposition 3.1. Let ~u be a κ-Fräıssé sequence in a category K. Then K is directed.
Moreover, the following conditions are equivalent:

(a) ~u has the extension property.

(b) K has the amalgamation property.

Proof. The first statement is trivial. Assume (a) and fix arrows f : z → x, g : z → y.
Using (U), find h : x → uα, α < κ. Using (E), find β > α and k : y → uβ such that
k ◦ g = uβα ◦ h ◦ f . Thus (b) holds.

Finally, assume (b) and fix arrows f : a → b and g : a → uα, α < κ. Using
(b), find arrows f1 : b → w and g1 : uα → w so that f1 ◦ f = g1 ◦ g. Using (A)
for the sequence ~u, we find β > α and h : w → uβ so that h ◦ g1 = uβα. Thus
(h ◦ f1) ◦ f = h ◦ g1 ◦ g = uβα ◦ g, which shows that (a) holds.

Proposition 3.2. Assume K is a directed category. Then every sequence in K sat-
isfying condition (A) is Fräıssé.

Proof. Let ~u be a sequence in K satisfying (A). Fix x ∈ K. Since K is directed,
there exist w ∈ K and arrows f : u0 → w, g : x → w. Using (A), we find an arrow
h : w → uξ such that h ◦ f = uξ0. Thus K(x, uξ) 6= ∅, which shows (U).

Proposition 3.3. Let K be a category, let ~u be an inductive sequence of length κ in
K and let S ⊆ κ be unbounded in κ.

(a) If ~u is a Fräıssé sequence in K then ~u � S is Fräıssé in K.

(b) If K has the amalgamation property and ~u � S is a Fräıssé sequence in K then
so is ~u.

Proof. Assume ~u is a Fräıssé sequence. Then ~u � S clearly satisfies (U). In order
to check (A), fix f : uξ → y with ξ ∈ S. Then uηξ = g ◦ f for some arrow g and
for some η > ξ. Since S is unbounded in κ, there is α ∈ S such that α > η. Then
uαξ = uαη ◦ g ◦ f , which shows that ~u � S satisfies (A).

9



Now assume ~u � S is a Fräıssé sequence. Clearly, ~u satisfies (U). Fix f : uξ → y,
ξ < κ. Find α ∈ S with α > ξ. Using the amalgamation property of K, find
f ′ : uα → z such that the diagram

uα
f ′ // z

uξ

uαξ

OO

f // y

g

OO

commutes for some arrow g in K. Now, using (A) for ~u � S, we can find β ∈ S such
that β > α and h ◦ f ′ = uβα holds for some h : z → uβ. This shows that ~u satisfies
(A).

Recall that we consider sequences up to equivalence with respect to the relation
defined in Section 2. Thus, we need to show that being a Fräıssé sequence does not
depend on the representation. This is indeed true, assuming amalgamations:

Proposition 3.4. Let K be a category with the amalgamation property and let
~g : ~u→ ~v, ~h : ~v → ~u be transformations of sequences such that ~g ◦ ~h is equivalent to
the identity of ~v. If ~u is a Fräıssé sequence then so is ~v.

Proof. Condition (U) is obvious. Fix a K-arrow e : vα → y and assume hα : vα → uα′ .
Using the amalgamation property, find k : uα′ → w and ` : y → w such that `◦e = k◦
hα. Using the fact that ~u is Fräıssé, find β > α′ and a K-arrow f such that f ◦k = uβα′ .

Finally, if β′ > α is such that gβ : uβ → vβ′ , then vβ
′

α = gβ ◦ uβα′ ◦ hα = gβ ◦ f ◦ ` ◦ e.
This shows (A).

A Fräıssé sequence can possibly have finite length. In that case, by Proposition
3.3(a), there is also a Fräıssé sequence of length one—it is an object u which is cofinal
in K and which satisfies the following version of (A): given f ∈ K(u, x), where x ∈ K,
there exists g ∈ K(x, u) such that g ◦ f = idu. We shall call u a Fräıssé object in K.
Given a Fräıssé object u, the sequence u → u → . . . , where each arrow is identity,
is a Fräıssé sequence of length ω. Thus, it follows from Theorem 3.15 below that a
possible Fräıssé object is unique, up to isomorphism. Below we give a direct proof
of this fact.

Proposition 3.5. Assume u, v are Fräıssé objects in a category K. Then u ≈ v.
If moreover all arrows in K are monomorphisms then every arrow f : u → x is an
isomorphism.

Proof. Applying (U) for v, we find a morphism f0 : u → v which, using (A) for u,
has a left inverse g0 : v → u, i.e. g0 ◦ f0 = idu. Now, using (A) for v, we obtain an
arrow f1 : u→ v such that f1 ◦ g0 = idv. Observe that

f1 = f1 ◦ idu = f1 ◦ (g0 ◦ f0) = (f1 ◦ g0) ◦ f0 = idv ◦ f0 = f0.

Hence f0 ◦ g0 = idv, which shows that f0 is an isomorphism.
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Finally, let f : u → x be a morphism in K. Again by (A), f has a left inverse
g : x → u. Assuming g is a monomorphism, we deduce that f ◦ g = idx, because
g ◦ (f ◦ g) = g ◦ idx. Thus f is an isomorphism.

We finish this subsection with the following stability result which is well-known
for model-theoretic Fräıssé limits.

Theorem 3.6. Let K be a category, κ > ℵ0 a regular cardinal, and let ~~u : κ →
Seq6κ(K) be a sequence in Seq6κ(K) such that each ~uα is a κ-Fräıssé sequence in K.

Then the co-limit of ~~u in Seq6κ(K) is a Fräıssé sequence in K.

Recall that by Lemma 2.1, the co-limit of ~~u indeed exists.

Proof. Since every cofinal subsequence of a Fräıssé sequence is again Fräıssé, we can
inductively refine each ~uα so that the bonding maps become natural transformations.
We look at ~~u as a “two-dimensional sequence” in K and we denote by uα,β the βth

object of the sequence ~uα. Now the co-limit of ~~u is the diagonal sequence ~v, where
vα = uα,α for α < κ. It is clear that ~v satisfies (U). Fix a K-arrow f : vξ → y. Since ~uξ
is Fräıssé, there are η > ξ and a K-arrow g : y → uξ,η such that g ◦ f = uξ,ηξ,ξ . Finally,
let h = uη,ηξ,η ◦ g, where uη,ηξ,η is the suitable component of the natural transformation
from ~uξ to ~uη. Then h ◦ f = vηξ , which shows that ~v satisfies (A).

3.2 The existence

We present below a simple yet useful criterion for the existence of a Fräıssé sequence.
In case of sequences of length 6 ℵ1, this criterion becomes a characterization.

Recall that a family of arrows F is dominating in K if it satisfies the following
two conditions.

(D1) The family Dom(F ) is cofinal in K, i.e. for every x ∈ K there is a ∈ Dom(F )
such that K(x, a) 6= ∅.

(D2) Given a ∈ Dom(F ) and f : a → y in K, there exist g : y → b in K such that
g ◦ f ∈ F .

Theorem 3.7 (Existence). Let κ be an infinite regular cardinal and let K be a
κ-bounded directed category with the amalgamation property. Assume further that
F ⊆ Arr(K) is dominating in K and |F | 6 κ. Then there exists a Fräıssé sequence
of length κ in K.

Proof. Let Dom(F ) = {aα}α<κ and enumerate F × κ as {〈fα, iα〉}α<κ so that for
each p ∈ F ×κ the set {α < κ : p = 〈fα, iα〉} is unbounded in κ. We shall construct
inductively a κ-Fräıssé sequence ~u, so that the following conditions are satisfied:

(i) uαη ◦ u
η
ξ = uαξ for every ξ < η < α (i.e. ~u is indeed a sequence).
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(ii) uα ∈ Dom(F ) and K(aα, uα) 6= ∅.

(iii) Given ξ < α, if ξ = iα and dom(fα) = uξ then there exists an arrow h in K
such that h ◦ fα = uαξ .

We start with u0 = a0. Assume that β < κ is such that uξ and uηξ have been
constructed for all ξ < η < β. Using the fact that K is κ-bounded, find v ∈ K and
jα : uα → v such that jξ = jη ◦ uηξ holds for every ξ < η < β. Using the fact that K
is directed, we may ensure that K(aβ, v) 6= ∅. Now, if fβ : uξ → y and ξ = iβ < β
then, using amalgamation, we may find arrows h : v → w and g : y → w so that
g ◦fβ = h◦jξ holds. Using (D1), we may further assume that w ∈ Dom(F ). Finally,
set uβ := w and uβη := h ◦ jη for η < β. It is clear that conditions (i) – (iii) are
satisfied.

It follows that the construction can be carried out. It remains to check that
~u : κ → K is a Fräıssé sequence. Condition (i) says that ~u is indeed an inductive
sequence. Conditions (D1) and (ii) imply (U). In order to justify (A), fix ξ < κ and
f ∈ K(uξ, x), where x ∈ K. We need to find α > ξ and an arrow g so that g ◦f = uαξ .
Since uξ ∈ Dom(F ), using (D2), we can find g ∈ F such that g = k ◦ f for some
arrow k. Now find α > ξ such that fα = g and iα = ξ. By (iii), h ◦ g = uα+1

ξ for

some arrow h. Hence (h ◦ k) ◦ f = uα+1
ξ , which completes the proof.

The existence of a Fräıssé sequence can also be proved by using a Baire category
argument. We shall demonstrate it below for the countable case, where the classical
Baire Category Theorem is invoked.

Corollary 3.8. Let K be a directed category with the amalgamation property. As-
sume that K is dominated by a countable family of arrows. Then K has an ω-Fräıssé
sequence.

Proof. Without loss of generality, we may assume that a countable dominating fam-
ily F is a subcategory of K. An ω-sequence ~x in F may be regarded as a function
from ∆ = {〈m,n〉 : m 6 n} into F satisfying the obvious conditions. Thus, the set
S of all ω-sequences in F is a closed subspace of the Polish space F ∆, endowed
with the product topology. Given an object x in F , let Ux be the set of all ~x ∈ S
for which there exists an arrow x → ~x. Clearly, Ux is open and dense in S. Given
an arrow f : a→ b in F and n ∈ ω, let

Vf,n = {~x ∈ S : xn = a =⇒ (∃ m > n)(∃ g) g ◦ f = xmn }.

Again, Vf,n is open and dense in S (for the density one needs to use amalgamations).
Using the Baire Category Theorem, we can find a sequence ~u ∈ S that belongs to
all the sets defined above. It is easy to check, using the fact that F is dominating
in K, that ~u is a Fräıssé sequence in K.

The argument above can be repeated in the general case, however one has to use
the topological space Sκ, where κ is a regular cardinal and the topology is generated
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by open sets of the form Vs = {x : s ⊆ x}, where s ∈ S<κ. It is a standard and easy
fact that in this topology, the intersection of κ many open dense sets is dense in Sκ.

We shall sometimes need the following variant of Theorem 3.7, involving a func-
tor:

Proposition 3.9. Let K be a directed category with the amalgamation property. Let
κ > ℵ0 be a regular cardinal and let Φ: K→ L be a functor satisfying the following
condition:

(C ) For every ~x ∈ Seq<κ(K) there exist a ∈ K and a co-cone of arrows F in K
such that 〈Φ(a),Φ[F ]〉 is the co-limit of Φ[~x] in L.

If K has a Fräıssé sequence of length κ then there exists a κ-Fräıssé sequence ~u in
K such that Φ[~u] is continuous in L.

Proof. Note that the assumptions on the existence of a κ-Fräıssé sequence imply
that K is dominated by at most κ many arrows. Repeat the construction from the
proof of Theorem 3.7, taking care that Φ(uδ) be the co-limit of Φ[~u � δ] at every
limit stage δ.

Selected examples of Fräıssé sequences will be described in Sections 5 and 7.
Below we illustrate the main concepts in the case of ordered categories.

Example 3.10. Let 〈P,6〉 be a partially ordered (or, more generally, quasi-ordered)
set, treated as a category. Observe that the amalgamation property is equivalent to
directedness. A sequence in P is nothing but a well ordered chain. Note that a
subset of P is dominating iff it is cofinal. In particular, a sequence in P is Fräıssé iff
it is cofinal in P . Finally, it is well known and easy to show by a simple transfinite
induction that a directed poset with no maximal element has a well ordered cofinal
chain of type κ (a κ-Fräıssé sequence in our terminology) if and only if it is κ-
bounded (i.e. every subset of cardinality < κ has an upper bound in P ) and has any
cofinal set of cardinality κ. Such a cardinal κ is necessarily regular.

3.3 Cofinality

Below we discuss the crucial property of a Fräıssé sequence: cofinality in the category
of sequences.

Theorem 3.11 (Cofinality for ω-sequences). Assume ~u is a Fräıssé sequence in
a category K with the amalgamation property. Then for every countable inductive
sequence ~x in K there exists a morphism of sequences F : ~x→ ~u.

Proof. We use the extension property (property (E)) of the sequence ~u, which is
equivalent to the amalgamation property of K (Proposition 3.1). Let ~x be an ω-
sequence in K. Using (U), find an arrow f0 : x0 → uα0 . Now assume that arrows
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f0, . . . , fn−1 have been defined so that fm : xm → uαm and the diagram

x`
f` // uα`

xk

x`k

OO

fk // uαk

u
α`
αk

OO

commutes for every k < ` < n (in particular α0 6 α1 6 . . . 6 αn−1). Using (E), find
αn > αn−1 and an arrow f : xn → uαn so that f ◦ xnn−1 = uαnαn−1

◦ fn−1 and define
fn := f . Given m < n− 1, by the induction hypothesis, we get

fn ◦ xnm = fn ◦ xnn−1 ◦ xn−1
m = uαnαn−1

◦ fn−1 ◦ xn−1
m = uαnαn−1

◦ uαn−1
αm ◦ fm = uαnαm ◦ fm.

Finally, setting F = {fn}n∈ω, we obtain the required morphism F : ~x→ ~u.

The proof above can be easily extended to uncountable sequences, assuming
continuity:

Theorem 3.12. Let K be a category with the amalgamation property and let ~u be
a Fräıssé sequence of regular length κ in K. Then for every continuous sequence
~x ∈ Seq6κ(K) there exists an arrow of sequences F : ~x→ ~u.

Proof. We repeat the construction from the proof of Theorem 3.11. In the case of a
limit ordinal δ, we let αδ to be the supremum of {αξ : ξ < δ} and we define fδ to be
the unique arrow satisfying fδ ◦ xδα = fα for every α < δ. This is possible, because
xδ together with the co-cone of arrows {xδξ}ξ<δ is, by assumption, the co-limit of
~x � δ. Thus, the construction from the proof of Theorem 3.11 can be carried out,
obtaining the desired arrow F : ~x→ ~u.

We shall see later that an uncountable Fräıssé sequence may not be cofinal for
ω1-sequences. From Theorem 3.11 we immediately get the following characterization
of the existence of a Fräıssé sequence of length ω1.

Corollary 3.13. Let K be a category with the amalgamation property. There exists
a Fräıssé sequence of length ω1 in K if and only if K is σ-bounded and dominated by
a family consisting of at most ℵ1 arrows.

Proof. The “if” part is a special case of Theorem 3.7. Let ~u be an ω1-Fräıssé sequence
in K. Then K is directed and the family {uβα : α 6 β < ω1} is dominating in K. Fix

~x ∈ σK. Theorem 3.11 says that there exists an arrow of sequences ~f : ~x → ~u,
so some uα provides a bound for ~x. Thus, every countable sequence is bounded in
K.
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3.4 The back-and-forth principle

Fix a category K. Let ~u, ~v be Fräıssé sequences in K. We shall say that 〈~u,~v〉 satisfies
the back-and-forth principle if for every α below the length of ~u, for every arrow
f : uα → ~v there exists an isomorphism of sequences h : ~u→ ~v such that h◦u∞α = f ,
i.e. the following diagram commutes:

~u
h // ~v

uα

u∞α

OO

f

>>~~~~~~~~

Since there exists at least one arrow f : u0 → ~v, this implies that ~u ≈ ~v. We shall
say that ~u satisfies the back-and-forth principle if 〈~u, ~u〉 does. The following simple
statement shows the importance of this property.

Proposition 3.14 (Homogeneity). Assume K is a category with the amalgamation
property and ~u is a Fräıssé sequence in K which satisfies the back-and-forth principle.
Then for every arrows f : a→ b, i : a→ ~u and j : b→ ~u there exists an isomorphism
of sequences h : ~u→ ~u such that h ◦ i = j ◦ f , i.e. the following diagram commutes.

~u
h // ~u

a

i

OO

f
// b

j

OO

Proof. Let α be such that i = u∞α ◦ iα for some iα : a → uα. Let ~v be the sequence
obtained from ~u by cutting all objects with indices below α and adding the arrow
iα : a→ uα at the beginning. That is,

a
iα // uα

uα+1
α // uα+1 // . . .

Since K has the amalgamation property, by Proposition 3.4, ~v is Fräıssé. The back-
and-forth principle applied to j ◦ f yields the required isomorphism h.

It turns out that countable Fräıssé sequences always satisfy the back-and-forth
principle. We shall see in Section 5.5 that this not true for sequences of length ω1.

Theorem 3.15 (Uniqueness). Assume that ~u, ~v are ω-Fräıssé sequences in a given
category K. Assume further that k, ` < ω and f : uk → v` is an arrow in K. Then
there exists an isomorphism F : ~u→ ~v in σK such that the diagram

~u
F // ~v

uk

u∞k

OO

f // v`

v∞`

OO

commutes. In particular ~u ≈ ~v.
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Notice that in the statement above we do not need to assume that the given
category has the amalgamation property.

Proof. We construct inductively arrows fn : ukn → v`n , gn : v`n → ukn+1 , where
k0 6 `0 < k1 6 `1 < . . . and for each n ∈ ω the diagram

ukn
fn

!!DD
DD

DD
DD

u
kn+1
kn // ukn+1

fn+1

$$HH
HH

HH
HH

H

u
kn+2
kn+1 // ukn+2

//___

v`n

gn

;;xxxxxxxxx

v
`n+1
`n

// v`n+1

gn+1

::vvvvvvvvv
//_________

commutes.
We start with f0 := f , k0 := k, `0 := `, possibly replacing f by some arrow

of the form jm` ◦ f to ensure that k0 6 `0. Using property (A) of the sequence ~u,
find k1 > k0 and g1 : v0 → uk1 such that g1 ◦ f = uk10 . Assume that fm, gm have
already been constructed for m 6 n. Using the amalgamation of ~v, find `n+1 > kn+1

and an arrow fn+1 : ukn+1 → v`n+1 such that fn+1 ◦ gn = v
`n+1

`n
. Now, using the

amalgamation of ~u, we find kn+2 > `n+1 and an arrow gn+1 : v`n+1 → ukn+2 such that

gn+1◦fn+1 = u
kn+2

kn+1
. By the induction hypothesis, gn◦fn = u

kn+1

kn
, therefore the above

diagram commutes. This finishes the construction.
Finally, set F = {fn}n∈ω and G = {gn}n∈ω. Then F : ~u → ~v, G : ~v → ~u are

morphisms of sequences and by a simple induction we show that

(*) gn ◦ v`n`m ◦ fm = u
kn+1

km
and fn ◦ uknkm+1

◦ gm = v`n`m

holds for every m < n < ω. This shows that F ◦G = id~v and G◦F = id~u, therefore F
is an isomorphism. The equality v∞0 ◦f = F ◦u∞0 means that v`n0 ◦f = fn◦ukn0 should
hold for every n ∈ ω. Fix n > 0. Applying (*) twice (with m = 0 and m = n − 1
respectively), we get

fn ◦ ukn0 = fn ◦ gn−1 ◦ v`n−1

0 ◦ f = v`n`n−1
◦ v`n−1

0 ◦ f = v`n0 ◦ f.

Thus v∞0 ◦ f = F ◦ u∞0 .
Finally, notice that, by property (U) of the sequence ~v, for some ` < ω there

exists an arrow f : u0 → v`, so applying the first part we see that ~u ≈ ~v.

3.5 Fräıssé sequences and functors

We now discuss a possible extension of the notion of a Fräıssé sequence, involving a
functor. The motivation is two-fold: First, we may want to have a sequence that is
not Fräıssé in a given category K, yet resembles the Fräıssé property when moving to
a different, richer category L. Second, given a Fräıssé sequence, we may be unable
to show its cofinality, however we may succeed after transferring the sequence to
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a different category. Of course, this makes sense only if the functor we are using
preserves relevant information.

Fix a functor Φ: K → L. We say that a sequence ~u : κ → L is Fräıssé over Φ if
the following conditions are satisfied.

(UΦ) For every x ∈ L there is α < κ such that L(x,Φ(uα)) 6= ∅.

(AΦ) Given α < κ and f : uα → y in K, there are β > α and an arrow g : y → Φ(uβ)
such that Φ(uβα) = g ◦ Φ(f).

In case of the identity functor (where K = L) this is just the usual notion of a Fräıssé
sequence.

Proposition 3.16. Let Φ: K → L be a covariant functor and let ~u be a Fräıssé
sequence in K. If Φ[K] is cofinal in L then ~u is Fräıssé over Φ.

Aiming at the problem of existence and cofinality, we now introduce the following
natural concept. Let Φ: K→ L be a covariant functor. We say that Φ has the mixed
amalgamation property if for every objects a, b, c in K, for every arrow f : a → b in
K and for every arrow g : Φ(a)→ Φ(c) in L, there exist d ∈ K and arrows f ′ : c→ d,
g′ : Φ(b)→ Φ(d) in K and L respectively, such that the following diagram

Φ(b)
g′ // Φ(d)

Φ(a)

Φ(f)

OO

g // Φ(c)

Φ(f ′)

OO

is commutative. The usual amalgamation can be rephrased as the amalgamation
property of the identity functor. Given a category L and its subcategory K, we say
that 〈K,L〉 has the mixed amalgamation property if the inclusion functor K ⊆ L has
this property.

In order to formulate the existence result, we need to adapt the notion of a
dominating family. Let Φ: K → L be a functor. A family F ⊆ K will be called
Φ-dominating if

(D1Φ) For every K-object x, there is a ∈ Dom(F ) such that L(Φ(x),Φ(a)) 6= ∅.

(D2Φ) Given a ∈ Dom(F ) and a K-arrow f : a → y, there exist h : a → b in F and
an L-arrow g : Φ(y)→ Φ(b) such that Φ(h) = g ◦ Φ(f).

Theorem 3.17. Let κ be an infinite regular cardinal and let Φ: K→ L be a functor
satisfying the following conditions:

(F1) For every K-objects x, y there exists a K-object z such that K(x, z) 6= ∅ 6=
L(Φ(y),Φ(z)).

(F2) Φ has the mixed amalgamation property.
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(F3) K is κ-bounded and has a Φ-dominating family consisting of 6 κ arrows.

Then there exists a κ-Fräıssé sequence over Φ. If, additionally, Φ satisfies condition
(C ) of Proposition 3.9 then there exists a κ-Fräıssé sequence over Φ such that Φ[~u]
is continuous.

Proof. This is actually a repetition of the arguments from the proof of Theorem 3.7
combined with Proposition 3.9. The only difference is that we need to use mixed
amalgamations. More precisely, having defined uξ and uηξ for ξ < η 6 β, as in
the proof of Theorem 3.7, given a K-arrow f : uα → y that belongs to a fixed
Φ-dominating family F , we use the mixed amalgamation property followed by con-
dition (D2Φ) in order to get a K-object uβ+1 and a K-arrow uβ+1

β : uβ → uβ+1 such

that uβ+1
β ∈ F and Φ(uβ+1

β ) = g ◦ Φ(f) for some g ∈ L.
If Φ satisfies (C ) then we use this condition at limit steps in order to make the

sequence Φ-continuous.

The mixed amalgamation property is also the main tool for showing cofinality of
a Fräıssé sequence “transferred” to a different, possibly much bigger, category. As
we shall see in Subsection 5.6, there exist quite natural pairs of categories K ⊆ L
such that K has neither the amalgamation property nor a Fräıssé sequence, yet there
exists a Fräıssé sequence over the inclusion K ⊆ L.

Theorem 3.18. Let κ be an infinite regular cardinal and let Φ: K→ L be a functor
with the mixed amalgamation property. Assume further that ~u : κ → K is a Fräıssé
sequence over Φ. Then for every sequence ~x ∈ Seq6κ(K) such that Φ[~x] is continuous
in L, there exists an arrow F : Φ[~x]→ Φ[~u] in Seq6κ(L).

Proof. Fix a sequence ~x in K, of length λ = cf λ 6 κ, and assume that Φ[~x] is continu-

ous in L. We define inductively arrows fα : Φ[xα]→ Φ[uθ(α)] so that ~f = {fα}α<λ will
be an arrow of sequences in L. We start with an arbitrary arrow f0 : Φ[x0]→ Φ[uθ(0)],
using the fact that ~u is Fräıssé over Φ. Fix α > 0 and suppose fξ have already been
defined for all ξ < α so that

fη ◦ Φ[xηξ ] = Φ[u
θ(η)
θ(ξ) ] ◦ fξ

holds for every ξ < η < α.
If α is a limit ordinal, define θ(α) = supξ<α θ(ξ) and, using the continuity of Φ[~x],

let fα : Φ[xα]→ Φ[uθ(α)] be the unique arrow satisfying fα ◦Φ[xαξ ] = Φ[u
θ(α)
θ(ξ) ] ◦ fξ for

every ξ < α.
Now assume that α = β + 1. Using the mixed amalgamation property of Φ,

we find an arrow g : uθ(β) → w in K and an arrow h : Φ[xα] → Φ[w] in L such that
h◦Φ[jαβ ] = Φ[g]◦fβ. Since ~u is Fräıssé over Φ, there are γ > θ(β) and k : Φ[w]→ Φ[uγ]
such that Φ[uγθ(β)] = k ◦ Φ[g]. Finally, set θ(α) := γ and fα := k ◦ h.

This finishes the construction and completes the proof.
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4 Fräıssé-Jónsson categories

In this section we describe a way of dealing with discontinuous Fräıssé sequences.
Namely, it may happen that “short” sequences do not have co-limits, however there
is a (sometimes quite natural) operator of quasi-limit (see the definition below). If
this operator is good enough, the back-and-forth principle holds. If moreover the
quasi-limit commutes with certain amalgamations, it is possible to prove cofinality
of a quasi-continuous Fräıssé sequence. The results of this section are motivated by
applications, described later.

4.1 Quasi-limiting operators

What is really needed for the back-and-forth principle? It is rather clear that the
existence of co-limits for “short” sequences is sufficient, because then one can restrict
attention to continuous Fräıssé sequences. Looking for specific applications, we are
forced to relax this condition. So, let us analyze co-limits for a moment.

Given a category K, let ∆ (K) be the category of all diagrams of the form {fξ}ξ<λ
where λ is an ordinal and all fξs have the same co-domain. In other words, ∆ (K)
is the category of all functors from posets of the form λ ∪ {∞} where λ has the
discrete order (different elements are incomparable) and∞ > ξ for every ξ ∈ λ. The
arrows are natural transformations. Assume all sequences in K of length < κ have co-
limits in K. Then we have an operator lim: Seq<κ(K)→ ∆ (K) which assigns to each
sequence ~x : λ → K its co-limiting co-cone lim ~x. This is indeed a functor, because
of the universality of the co-limit. In the back-and-forth argument, we actually deal
with isomorphisms at each limit step, so it turns out that only some properties of
lim are needed.

Denote by Seqiso
<κ(K) the category Seq<κ(K) restricted to isomorphisms of se-

quences only. A quasi-limiting operator for Seq<κ(K) is a functor L : Seqiso
<κ(K) →

∆ (K) assigning to each sequence ~x a co-cone L ~x for ~x. More precisely, given an

isomorphism of sequences ~h : ~x → ~y there exists an isomorphism h∞ : L ~x → L ~y
commuting with ~h in the usual sense. We say that L is a partial quasi-limiting
operator if it is defined on a subcategory of Seqiso

<κ(K) with the property that if L ~x
is defined then so is L ~y whenever ~y ≈ ~x. An example is the co-limiting operator,
defined only for sequences that have co-limits.

Typical examples of quasi-limiting operators come from co-limits, “computed”
in a bigger category containing K.

Proposition 4.1. Let F : K → L be a faithful functor, κ = cf κ > ℵ0, and assume
the following conditions are satisfied:

(~1) For every sequence ~x in K of length λ < κ there exists a co-cone L ~x :=
{x∞ξ }ξ<λ ⊆ K such that {F (x∞ξ )}ξ<λ is the co-limiting co-cone of F (~x) in L.

(~2) For every K-objects a, b, for every L-isomorphism h : F (a)→ F (b) there exists
a K-isomorphism g : a→ b such that h = F (g).
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Then L is a quasi-limiting operator on Seq<κ(K) satisfying F (L ~x) = limF (~x) for
every ~x ∈ Seq<κ(K).

Proof. Fix an isomorphism of sequences ~h : ~x → ~y in K. Let the co-cones L ~x, L ~y
have co-domains x and y, respectively. There is an isomorphism k : x → y in L,
commuting with F (~h). That is, for every α, β such that hα : xα → xβ, we have a
commuting diagram

F (xα)

F (hα)
��

F (x∞α ) // F (x)

k
��

F (yβ)
F (y∞β )

// F (y)

commutes. Let g : x→ y be an isomorphism such that F (g) = k. Then the diagram

xα

hα
��

x∞α // x

g

��
yβ

y∞β

// y

is commutative, because F is faithful. This shows that L is indeed a functor from
Seqiso

<κ(K) into the co-cones of K. The faithfulness of F guarantees that L is well
defined, i.e. the co-cone in condition (~1) is unique, up to isomorphism.

The next example shows that quasi-limiting operators may have nothing to do
with co-limits.

Example 4.2. Consider ω1 as a poset category. For each limit ordinal δ < ω1 add
its copy δ+, incomparable with δ and such that ξ < δ+ < η whenever ξ < δ < η. Let
K = ω1 ∪{δ+ : δ ∈ lim(ω1)}. It is clear that no strictly increasing sequence has a co-
limit in K. On the other hand, there exists a quasi-limiting operator L : Seq<ω1

(K)→
∆iso (K) defined by

L ~x = sup
n∈ω

P (xn),

where P is the canonical projection of K onto ω1.
This example also shows that a quasi-limiting operator may not be unique, since

the formula L +~x = (L ~x)+ defines another one.

Note that in the example above, as in every poset category, the back-and-forth
principle holds for every two Fräıssé sequences. A Fräıssé sequence in a poset is a
cofinal chain whose length is a regular cardinal. If such a chain exists, then it is
equivalent to any other cofinal chain. Summarizing: an infinite poset P has a Fräıssé
sequence if and only if it is κ-directed (i.e. every subset of cardinality < κ has an
upper bound) for some cardinal κ, and dominated by κ many elements, i.e. P has a
cofinal subset of cardinality κ. Of course, such a cardinal κ must be regular.
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4.2 The back-and-forth principle revisited

Let K be a category and let L be a partial quasi-limiting operator on Seq<κ(K). Let
% < κ be an ordinal. We say that a sequence ~x : %→ K is L -continuous if for every
limit ordinal δ < % it holds that

xδ = L (~x � δ)

with the co-cone {xδξ}ξ<δ. This means in particular that L is defined on all subse-
quences of ~x.

The following fact is rather trivial, knowing the proof of Theorem 3.7.

Proposition 4.3. Let K be a directed category with the amalgamation property. Let
κ > ℵ0 be a regular cardinal and let L be a quasi-limiting operator on Seq<κ(K). If
K has a Fräıssé sequence of length κ then K also has an L -continuous one.

Theorem 4.4. Let κ > ℵ0 be a regular cardinal and let K be a category with a
partial quasi-limiting operator L on Seq<κ(K). Then every two L -continuous κ-
Fräıssé sequences in K satisfy the back-and-forth principle.

Proof. Let ~u, ~v be L -continuous Fräıssé sequences of length κ in K and fix an arrow
f : u0 → ~v. We construct inductively arrows fα : uψ(α) → vϕ(α) and gα : vϕ(α) →
uψ(α+1), where ϕ : κ → κ, ψ : κ → κ are increasing functions, so that the following
conditions are satisfied.

(i) α 6 ψ(α) 6 ϕ(α) < ψ(α + 1).

(ii) gα ◦ fα = u
ψ(α+1)
ψ(α) and fα+1 ◦ gα = v

ϕ(α+1)
ϕ(α) .

(iii) ξ < η =⇒ v
ϕ(η)
ϕ(ξ) ◦ fξ = fη ◦ uψ(η)

ψ(ξ) .

We start with ψ(0) = 0, ϕ(0) = α and f0 = f , where 0 < α < κ is such that f is
equivalent to f0 : u0 → vα.

Fix β > 0 and assume that {fα}α<β and {gα}α<β have already been defined, so
in particular ϕ(α), ϕ(α), ψ(α) and ψ(α + 1) have been defined for every α < β.

Suppose first that β is a successor ordinal, say β = α + 1. Using the fact that
~v is Fräıssé, find ϕ(β) > ψ(α) and fβ : uψ(β) → vϕ(β) so that the second part of (ii)
holds. Using the fact that ~u is Fräıssé, find ψ(β+ 1) > ϕ(β) and gβ : vϕ(β) → uψ(β+1)

so that the first part of (ii) holds. Clearly, (i) is satisfied and (iii) follows easily from
the inductive hypothesis and (ii).

Assume now that β is a limit ordinal. Let % := supα<β ϕ(α) = supα<β ψ(α) and
define ϕ(β) := ψ(β) := %, ψ(β + 1) := % + 1. By the induction hypothesis % > β,
therefore (i) holds. Observe that % is a limit ordinal.

First, observe that F = {fξ}ξ<% and G = {gξ}ξ<% witness an isomorphism be-
tween ~u � % and ~v � %, which extends to an isomorphism of their L -limits h : u% → v%.
More specifically,

(T) h ◦ u%ψ(ξ) = v%ϕ(ξ) ◦ fξ and h−1 ◦ v%ϕ(ξ) = u%ψ(ξ+1) ◦ gξ
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hold for every ξ < %.
Define fβ := h and gβ := u%+1

% ◦ h−1. Then, gβ ◦ fβ = u%+1
% , i.e. the first part of

(ii) holds for β in place of α (the second part is taken care of in the next, successor,
inductive step). The first equation in (T) shows (iii). This finishes the inductive
construction.

We claim that ~f = {fα}α<κ is an isomorphism from ~u to ~v which witnesses

the back-and-forth principle. For this aim, we first observe that ~f is an arrow of
sequences, because of (iii). Define ~g = {gα}α<κ. We claim that g is an arrow of

sequences, inverse to ~f .
Using (ii) and (iii), we see that

gη ◦ vϕ(η)
ϕ(ξ) = gη ◦ vϕ(η)

ϕ(ξ+1) ◦ v
ϕ(ξ+1)
ϕ(ξ) = gη ◦ vϕ(η)

ϕ(ξ+1) ◦ fξ+1 ◦ gξ
= gη ◦ fη ◦ uψ(η)

ψ(ξ+1) ◦ gξ = u
ψ(η+1)
ψ(η) ◦ uψ(η)

ψ(ξ+1) ◦ gξ
= u

ψ(η+1)
ψ(ξ+1) ◦ gξ

for every ξ < η, which shows that ~g = {gα}α<κ is indeed an arrow of sequences.

Furthermore, again by (ii), we deduce that ~g is the inverse of ~f , which shows that
~f is an isomorphism.

Finally, ~f ◦ u∞0 = f , by the first stage of the construction.

As a corollary, we obtain the result proved in [11], stated there in a different
language.

Corollary 4.5. Let K be a category. Every two continuous Fräıssé sequences in K
of the same regular length satisfy the back-and-forth principle.

Theorem 4.6. Let κ > ℵ0 be a regular cardinal and let K be a full, cofinal and
relatively κ-complete subcategory of a category L with the amalgamation property.
Then

(a) There exists at most one, up to isomorphism, κ-Fräıssé sequence in K.

(b) A possible κ-Fräıssé sequence in K is cofinal for Seq6κ(K) and satisfies the
back-and-forth principle.

Proof. Let ~u be a κ-Fräıssé sequence in K. Since K is full and cofinal in L, ~u is Fräıssé
in L. Let us make this sequence continuous in L, by adding co-limits at each limit
ordinal below κ. Denote the extended sequence by ũ. Since L has the amalgamation
property, the sequence ũ is Fräıssé in L (by Proposition 3.3(b)). Given another κ-
Fräıssé sequence ~v, let us extend it in the same way, obtaining a Fräıssé sequence ṽ
in L. By Corollary 4.5, the two extended sequences ũ, ṽ satisfy the back-and-forth
principle. Since K is a full subcategory of L, we conclude that ~u, ~v satisfy the back-
and-forth principle in K. This shows (a) and the first part of (b). The second part
of (b) follows from Theorem 3.12 and the fact that each κ-sequence in K can be
completed to a continuous κ-sequence in L.
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Corollary 4.7. Let κ be a regular cardinal and let K be a directed category with
the amalgamation property and with a dominating family consisting of at most κ
arrows. Assume further that either K is κ-complete or K is κ-bounded and Seq<κ(K)
has the amalgamation property. Then

(a) There exists a unique, up to isomorphism, κ-Fräıssé sequence ~u in K.

(b) The sequence ~u is cofinal for Seq6κ(K) and satisfies the back-and-forth princi-
ple.

4.3 Amalgamation structures

We now describe a general way of obtaining cofinality, using a quasi-limiting op-
erator and amalgamations. As we shall see later, it may happen that sequences of
amalgamations do not converge and any inductive procedure of mapping a given
sequence into a Fräıssé sequence fails at the first limit step. It is possible, however,
that some special amalgamations survive limit steps. For this aim, we consider the
following concepts.

Fix a category K with the amalgamation property. An amalgamation structure
on K is a class A of commuting squares of K (formally: functors from the 4-element
Boolean algebra into K) satisfying the following conditions:

(A1) Every square with two parallel identities is in A .

(A2) Given squares

b
g′ // d

c

g

OO

f
// a

f ′

OO d
f ′′ // v

a

f ′

OO

h
// u

h′

OO

in A , the composition square

b
f ′′◦g′ // v

c

g

OO

h◦f
// u

h′

OO

is again in A .

(A3) Given K-arrows f : c → a, g : c → b, there exist K-arrows f ′ : a → v and
g′ : b→ v such that the square

b
g′ // v

c
f

//

g

OO

a

f ′

OO

is in A .
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Clearly, the class A of all commuting squares in K is an amalgamation structure
as long as K has the amalgamation property. In Section 6 we shall consider an
important type of amalgamation structures in categories of embedding-projection
pairs.

Now assume L is a quasi-limiting operator on Seq<κ(K). We say that an amal-
gamation structure A is L -continuous if for every limit ordinal % < κ, for every
L -continuous sequences ~x : % + 1 → K and ~y : % + 1 → K, for every sequence of
K-arrows {fξ : xξ → yξ}ξ<% such that for each ξ < η < % the square

yξ
yηξ // yη

xξ

fξ

OO

xηξ

// xη

fη

OO

is in A , there exists f% : x% → y% such that for each ξ < % the square

yξ
y%ξ // y%

xξ

fξ

OO

x%ξ

// x%

f%

OO

is in A .
The existence of an L -continuous amalgamation structure is sufficient for prov-

ing cofinality, as we shall see in a moment.
We now introduce the main notion of this section. For defining one of the condi-

tions, we need to consider posets [λ]62 of at most two-element subsets of an ordinal
λ. This poset can be regarded as the set of all ordered pairs 〈ξ, η〉 in λ×λ with ξ 6 η.
The ordering is coordinate-wise. Given a functor X : [λ]62 → K, we shall denote by
X∆ its diagonal sequence X ◦δ, where δ : λ→ K is defined by δ(ξ) = {ξ, ξ}. Further-
more, we shall denote by Xα the αth vertical sequence X ◦ vα, where vα : λ→ [λ]62

is defined by vα(ξ) = {α, α + ξ}.
A Fräıssé-Jónsson category is a triple of the form 〈K,L ,A 〉, where L is a

quasi-limiting operator on Seq<κ(K) for some infinite regular cardinal κ, A is an
L -continuous amalgamation structure on K and the following condition is satisfied.

(∆) Given an infinite cardinal λ < κ, given a functor X : [λ]62 → K such that for
every α0 < α1 6 β0 < β1 the square

X{α0,β1}
X
{α1,β1}
{α0,β1} // X{α1,β1}

X{α0,β0}

X
{α0,β1}
{α0,β0}

OO

X
{α1,β0}
{α0,β0}

// X{α1,β0}

X
{α1,β1}
{α1,β0}

OO
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is in A , it holds that
L (X∆) = L (LX),

where LX is the sequence obtained from the L -continuity of A :

LX0 // LX1 // . . . // LXα // . . .

and the corresponding arrows and co-cones are natural.

We shall call condition (∆) the diagonalization property.
Note that the diagonalization property is obvious when one deals with co-limits,

even after moving by a faithful functor to a different category. Namely:

Proposition 4.8. Let F : K → L be a faithful functor satisfying conditions (~1),
(~2) of Proposition 4.1 for some κ = cf κ > ℵ0 and let L be the quasi-limiting
operator such that F (L ~x) = limF (~x) for every ~x ∈ Seq<κ(K). Then for every L -
continuous amalgamation structure A , 〈K,L ,A 〉 has the diagonalization property,
i.e., 〈K,L ,A 〉 is a Fräıssé-Jónsson category.

Proof. Assume A is an L -continuous amalgamation structure on K. Fix a suitable
functor X : [λ]2 → K in which all squares are in A . Note that the usual co-limit
has the diagonalization property, therefore we have limF (X∆) = lim(limF (X)),
with the notation above. Since F is faithful and satisfies (~2), we conclude that
L (X∆) = L (LX).

We now give a simple example showing that (∆) does not follow from the other
assumptions.

Example 4.9. Let P0 = {〈m,n〉 ∈ ω× (ω+ 1): m 6 n} treated as a poset category
with the coordinate-wise ordering. Let P = P0 ∪ {a, b} where a, b are incomparable
and 〈m,n〉 < a precisely for m 6 n < ω, while 〈m,n〉 < b for every m 6 n 6 ω.
We define a quasi-limiting operator L on P as follows. Given a strictly increasing
sequence ~x we define L ~x = supP0

~x provided that ~x ⊆ k × (ω + 1) for some k.
Otherwise, we have two possibilities: either ~x ⊆ ω × ω and then we set L ~x = a, or
else ~x = {xn}n∈ω, where xn ∈ ω × {ω} for all but finitely many n ∈ ω. In this case
we set L ~x = b. It is clear that this defines a quasi-limiting operator and P0 ⊆ P
witnesses the failure of (∆).

4.4 Cofinality revisited

Theorem 4.10. Let 〈K,L ,A 〉 be a κ-Fräıssé-Jónsson category, where κ is an infi-
nite regular cardinal. Assume ~u is an L -continuous κ-Fräıssé sequence in K. Then
for every L -continuous sequence ~x ∈ Seq6κ(K) there exists an arrow of sequences

~ı : ~x→ ~u.
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Proof. Fix an L -continuous sequence ~x : λ→ K, where λ 6 κ. If λ < κ then we may
use L extending the sequence to λ + 1 and we use condition (U) of the definition
of a Fräıssé sequence for obtaining~ı. Thus, we may assume that λ = κ.

We shall define inductively a functor I : [κ]62 → K such that I0 = ~x and I∆ is
a cofinal subsequence ~u ◦ ϕ of ~u (so ϕ : κ → κ will be an increasing map). Using
property (U) of the Fräıssé sequence, we may assume that x0 = I{0,0} = u0 and we
set ϕ(0) = 0. Suppose I has been constructed for all pairs {ξ, η} with ξ 6 η < β.

Assume first that β = α+1. Using A -amalgamations, we construct I{ξ,β} and the
corresponding arrows by induction on ξ < α. We start by using an A -amalgamation,
knowing that I{0,β} must be equal to xβ. At limit steps we use the fact that A is
L -continuous. We finish this procedure at step α. Finally, using condition (A) of
the Fräıssé sequence, we find ϕ(β) > ϕ(α) and an arrow g : I{α,β} → uϕ(β) such that

g ◦ I{α,β}{α,α} = u
ϕ(β)
ϕ(α).

Note that, by the inductive hypothesis, I{α,α} = uϕ(α). We set

I{β,β} = uϕ(β) and I
{β,β}
{α,β} = g.

Assume now that β is a limit ordinal. We set ϕ(β) = supξ<β ϕ(ξ). For each ξ < β
let I{ξ,β} be the L -limit of the sequence that looks as follows.

(]) I{ξ,ξ} // I{ξ,ξ+1} // . . . // I{ξ,α} // I{ξ,α+1} // . . .

Since A is L -continuous, for each α < β there is an arrow from I{α,β} to I{α+1,β}
compatible with all arrows below. Applying the diagonalization property, we obtain
I{β,β} = uϕ(β) as the L -limit of the sequence (]).

This finishes the inductive construction. Finally, since I{α,α} = uϕ(α), the collec-

tion of arrows~ı = {I{α,α}{0,α} }α<κ is the required arrow from ~x to ~u.

We shall now discuss a class of amalgamation structures for which the proof
above can be simplified, avoiding the diagonalization.

An amalgamation structure A will be called stable if it contains all squares of
the form

b
g // c

a
ida

//

f

OO

a

h

OO

It turns out that amalgamation structures considered in Section 6 have this property.

Lemma 4.11. Let L be a quasi-limiting operator on Seq<κ(K). Then every stable
L -continuous amalgamation structure in K has the diagonalization property.
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Proof. Fix a functor X : [λ]62 → K as in condition (∆). Given β0 < β < λ, the
natural composition of the following two diagrams is in A :

X{0,β1}
X
{β0,β1}
{0,β1} // X{β0,β1}

X{0,β0}
X
{β0,β0}
{β0,β0}

//

X
{0,β1}
{0,β0}

OO

X{β0,β0}

X
{β0,β1}
{β0,β0}

OO
X{β0,β1}

X
{β1,β1}
{β0,β1} // X{β1,β1}

X{β0,β0}

X
{β0,β1}
{β0,β0}

OO

X
{β1,β1}
{β0,β0}

;;vvvvvvvvvvvvvvvvvvv

This is because A is stable and the triangle above can be replaced by a square
with an identity arrow at the bottom. Now the functor X can be reduces to a
sequence of squares in A which, by L -continuity, converges to an arrow from
F : →0LX0L (X∆). The same holds when replacing 0 by a fixed positive ordi-
nal < λ, obtaining a co-cone of arrows {Fξ}ξ<λ for the sequence {LXξ}ξ<λ. In
particular, L (LX) = L (X∆).

It is usually much easier to check that a given amalgamation structures is stable,
rather than checking the diagonalization property directly (unless L = lim).

Notice that, in the case of stable amalgamation structures, the proof of Theo-
rem 4.10 can be simplified by constructing an arrow of sequences directly. More im-
portant here is the property of this arrow. Namely, given an amalgamation structure
A , an arrow of sequences F : ~x→ ~y will be called A -admissible if it is equivalent to
a natural transformation from ~x to ~y ◦ ϕ (where, as usual, ϕ is an order preserving
map between the corresponding ordinals) in which all squares belong to A . More
precisely, all squares of the form

xα

fα
��

xβα // xβ

fβ
��

yϕ(α)
y
ϕ(β)
ϕ(α)

// yϕ(β)

are required to be in A . Summarizing, an easy adaptation of the proof of Theorem 6
gives:

Theorem 4.12. Assume 〈K,L ,A 〉 is a κ-Fräıssé-Jónsson category, where κ =
cf κ > ℵ0 and A is a stable amalgamation structure. Assume ~u is an L -continuous
κ-Fräıssé sequence in K. Then for every L -continuous sequence ~x of length 6 κ
there exists an A -admissible arrow ~ı : ~x→ ~u.

Clearly, all A -admissible arrows provide a subcategory of the category of se-
quences and the statement above brings more information than Theorem 6, even
in the case of countable sequences. We shall use it in Section 6, aiming at specific
applications.
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5 Some examples

This section contains the first series of examples concerning Fräıssé sequences, illus-
trating our ideas and results.

Perhaps one of the simplest is the category of sets Set. If we allow all possible
functions as morphisms, then the singleton is trivially a Fräıssé object. If we deal with
monics only, at the same time restricting to sets of cardinality < κ, we see that any
κ-chain whose union has cardinality κ is Fräıssé. This, however, is trivial and fits into
the classical Fräıssé-Jónsson theory. On the other hand, starting from the category
of finite sets, one can get non-trivial Fräıssé sequences. This will be demonstrated
in Section 6. Below we present some examples that do not fit completely into the
model-theoretic framework.

5.1 Reversed Fräıssé limits

Here we describe briefly the theory of inverse limits of models, the so-called projective
Fräıssé theory, developed by Irwin & Solecki [14]. Fix a first-order language L and
consider some class M of L-models. The classical Fräıssé-Jónsson theory deals with
the category Me of all embeddings of L-models. Recall that f : M → N is an
embedding if it is a one-to-one homomorphism such that for every n-ary relation
symbol R ∈ L, the following equivalence

RM(f(x1), . . . , f(xn))⇐⇒ RN(x1, . . . , xn)

holds for every x1, . . . , xn ∈ M . In the reversed Fräıssé-Jónsson theory one deals
with quotient maps f : M → N that are, by definition, surjective homomorphisms
satisfying the following formula

RN(y0, . . . , yn−1) =⇒ (∃ x0, . . . , xn−1 ∈M) RM(x0, . . . , xn−1)∧(∀ i < n) f(xi) = yi

for each n-ary relation symbol R ∈ L and for each y0, . . . , yn−1 ∈ N . The two notions
are dual in some sense, due to the following easy fact.

Proposition 5.1. Let f : A→ B and g : B → C be homomorphisms of models of a
fixed first-order language. Then

(a) g ◦ f is an embedding =⇒ f is an embedding.

(b) g ◦ f is a quotient map =⇒ g is a quotient map.

The following result from [14] is a direct application of the results from Section 3.
It can also be derived from the results of [11], however our approach is more direct
and explains why the topology is needed.

Theorem 5.2. Let M be a countable class of finite models of a fixed first-order
language L. Suppose M satisfies the following conditions:
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(J) For every a, b ∈ M there exist c ∈ M and quotient maps f : c → a and
g : c→ b.

(A) Given quotient maps f : c → a and g : c → b with a, b, c ∈ M, there exist
w ∈M and quotient maps f ′, g′ for which the diagram

b

g

��

w
g′oo

f ′

��
c a

f
oo

commutes.

Then there exists a unique (up to a topological isomorphism) topological L-model M
satisfying the following conditions:

(1) M is the inverse limit of a sequence of models from M with quotient maps.

(2) Every model from M is a continuous quotient of M.

(3) Given continuous quotients p : M → a and q : M → b with a, b ∈ M, given a
quotient map f : b→ a, there exists a topological isomorphism h : M→M for
which the diagram

M
p

��

Mhoo

q

��
a b

f
oo

is commutative.

Furthermore, every L-model which is the inverse limit of a sequence of models from
M with quotient maps is a continuous quotient of M.

Proof. Let K be the category whose objects are elements of M and an arrow from
a ∈ M into b ∈ M is a quotient map f : b → a. It is obvious that conditions
(J) and (A) translate to directedness and the amalgamation property. Since M is
countable, the category K is countable. Now observe that the category σK can be
naturally identified with the category of compact L-models that are inverse limits
of sequences of models from M. In fact, the topology becomes natural here, because
given two sequences ~x and ~y in K and taking X and Y to be their inverse limits
in the category of sets, one can easily check that precisely the continuous quotient
maps f : Y → X correspond to σK-arrows from ~x to ~y. Summarizing: the existence
and properties of M follow directly from Theorems 3.7, 3.11 and 3.15.

The main problem to get the reversed Fräıssé limit is, as usual, showing that the
class of models in question has the reversed amalgamation property, i.e., satisfies
condition (A) above. In fact, in [14] this property for the class of linear graphs is
crucial and non-trivial. It turns out however, that for many classes of models the
reversed amalgamation can be proved easily.
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Lemma 5.3. Let M be a class of models of a first-order language L. Assume M is
closed under finite products and substructures. Then for every quotient maps f : c→
a and g : c → b such that a, b, c ∈ M there exist quotient maps f ′ : a → w and
g′ : b→ w for which the diagram

b

g

��

w
g′oo

f ′

��
c a

f
oo

is commutative.

Proof. Define
w = {〈x, y〉 ∈ a× b : f(x) = g(y)}.

It is straight to check that w is a submodel of the product a× b ∈M. We let f ′ and
g′ to be the canonical projections. It is obvious that they are homomorphisms. It
remains to check that f ′, g′ are quotient maps. Fix an n-ary relation symbol R in L
and fix x0, . . . , xn−1 ∈ a such that R(x0, . . . , xn−1) holds. Since R(f(x0), . . . , f(x0))
holds and g is a quotient map, there exist b0, . . . , bn−1 ∈ b such that R(b0, . . . , bn−1)
holds and g(bi) = f(xi) for i < n. Let pi = 〈xi, bi〉 for i < n. Note that {pi}i<n ⊆ w
and f ′(pi) = xi for i < n. Finally. R(p0, . . . , pn−1) holds. This shows that f ′ is a
quotient map. The same argument shows that g′ is a quotient map.

The statement above is particularly useful for some classes of algebras, like
groups, semilattices, rings, etc. Recall that a topological algebra is pro-finite if it is
the inverse limit of a system of finite algebras with epimorphisms. Lemma 5.3 and
the results above give the following:

Corollary 5.4. Let M be a class of pro-finite algebras, stable under subalgebras
and finite products. Assume that M contains countably many isomorphic types of
finite algebras. Then there exists a unique, up to a topological isomorphism, second
countable pro-finite algebra A satisfying conditions (2) and (3) from Theorem 5.2.
Furthermore, every second countable pro-finite algebra from M is a continuous quo-
tient of A.

5.2 Monoids

Recall that a semigroup is a structure of the form 〈S, ◦, 1〉, where ◦ is an associative
binary operation on S, and 1 ∈ S is such that 1 ◦ s = s = s ◦ 1 holds for every
s ∈ S. A semigroup S = 〈S, ◦, 1〉 can be viewed as a category with a single object
S, whose arrows are all elements of S and 1 is the identity arrow. Such a category
is called a monoid. A sequence in a monoid S is naturally represented as {an}n∈ω,
where an ∈ S for every n ∈ ω. This corresponds to the formal sequence

S
a0 // S

a1 // S // . . . // S
an // S // . . .
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In particular, the bonding arrow from the nth to the mth element of the sequence
is the composition am−1 ◦ . . . ◦ an.

Note that every monoid is automatically directed. The amalgamation property
can be rephrased as

(∀ f, g)(∃ f ′, g′) f ′ ◦ f = g′ ◦ g.

This is automatically fulfilled when S is commutative. In particular, every countable
commutative monoid has a Fräıssé sequence of length ω.

It turns out that, even the set of natural numbers provides a monoid with many
non-isomorphic ω-sequences. Namely, consider N+, the set of all positive integers, as
a multiplicative monoid. Formally, a sequence in N+ is a function ϕ : ∆→ N+, where
∆ = {〈m,n〉 ∈ ω×ω : m 6 n}, satisfying ϕ(n, n) = 1 and ϕ(n, k)·ϕ(m,n) = ϕ(m, k)
for every m < n < k. Clearly, the relevant values are ϕ(n, n + 1), therefore σN+

can be naturally identified with sequences of positive integers. Now, it is an easy
exercise that a sequence {un}n∈ω is Fräıssé if and only if for every prime p ∈ N+,
for every n ∈ ω, there is m > n such that p divides unun+1 · · · · · um. Since there
are infinitely many prime numbers, it is easy to see that σN+ has continuum many
pairwise incomparable sequences. This is not the case for the additive monoid N,
where there are only two isomorphic types in σN, namely, the equivalence class of
the constant 0 sequence and the equivalence class of the constant 1 sequence. The
latter one is Fräıssé in N.

Another class of monoids are semilattices. Namely, fix a join semilattice 〈L,∨, 0〉
and let 6 be the partial order induced by ∨, i.e. x 6 y iff x ∨ y = y. Since this
is a commutative monoid, it has the amalgamation property. Let ~u : κ → L be a
sequence in L. Given α < β < κ we have that uβ0 = uβα ∨ uα0 , therefore uα0 6 uβ0 .
Assuming that ~u is Fräıssé and using condition (A), we see that for every x ∈ L
there are α < κ and y ∈ L such that uα0 = y ∨ x. In other words, if ~u is Fräıssé,
then {uα0}α<κ is an increasing cofinal well ordered chain in 〈L,6〉. Conversely, given
an increasing cofinal sequence {aα}α<κ in 〈L,6〉, the functor ~u : κ→ L, defined by
uαα = 0 and uβα = aβ for α < β < κ, is a Fräıssé sequence in L.

An important class of monoids are transformation semigroups. We briefly discuss
the particular case of such monoids induced by Fräıssé sequences. Fix a category K
such that σK has the amalgamation property and assume ~u is a countable Fräıssé
sequence in K. Consider M~u = σK(~u, ~u). By Theorem 3.6, M~u is a σ-complete
monoid. It turns out that M~u “encodes” all information about the category σK
relevant for the existence of an ω1-Fräıssé sequence:

Theorem 5.5. Let K be a category with an ω-Fräıssé sequence ~u and such that
σK has the amalgamation property. Then M~u has the amalgamation property and is
cofinal in σK. Furthermore, σK has an ω1-Fräıssé sequence if and only if the monoid
M~u has an ω1-Fräıssé sequence.

Note that, by the first part, a Fräıssé sequence in M~u is Fräıssé in σK.
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Proof. The fact that M~u has the amalgamation property and is cofinal in σK follows
directly from Theorem 3.11. It remains to prove that if σK has an ω1-Fräıssé sequence
then so does M~u. For this aim, it suffices to show that M~u is dominated by 6 ℵ1

many arrows. Fix a Fräıssé sequence ω1 : ~~v → σK. Cutting the sequence if necessary,
we may assume that there is a σK-arrow H : ~u→ ~v0. Using Theorem 3.11, for each
α < ω1 choose an arrow Fα : ~vα → ~u. Let Gα denote the bonding arrow from ~v0 to
~vα. Define

F = {Fα ◦Gα ◦H : α < ω1}.

We claim that F is dominating in M~u. Fix a σK-arrow f : ~u→ ~u. Using the amalga-
mation property, we find σK-arrows H ′, f ′ such that f ′ ◦ f = H ′ ◦H. Using the fact
that ~~v is Fräıssé, we find α > 0 and a σK-arrow g such that g ◦ H ′ = Gα. Finally,
(Fα ◦ g ◦ f ′) ◦ f = Fα ◦Gα ◦H ∈ F .

It is clear that the result above can be generalized to uncountable sequences,
adding suitable assumptions concerning completeness.

5.3 Diagrams: the role of pushouts

We shall describe a quite general procedure of building a category with the amal-
gamation property. First of all, let us note that typical categories with monics do
not admit pushouts. For instance, this is the case with the category of finite sets
with one-to-one maps. In order to capture these situations, we define the following
natural notion.

Let K ⊆ L be two categories. We say that K has pushouts in L (or, that 〈K,L〉 has
pushouts) if for every K-arrows f : c → a, g : c → b there exist K-arrows f ′ : a → w
and g′ : b→ w such that

b
g′ // w

c
f

//

g

OO

a

f ′

OO

is a pushout in L.
Now, fix a small category S and let f (S,K,L) be the category whose objects are

covariant functors from S to L taking objects from K and the arrows are natural
transformations into K. More precisely, x is an object of iff x is a functor from S into
L such that x(s) is an object of K for every object s of S. Furthermore, f : x→ y is an
f (S,K,L)-arrow iff it is a natural transformation from x to y whose all components
(arrows) are in K. In other words, for every object s of S, the arrow f(s) belongs to
K.

Lemma 5.6. Let K ⊆ L be a pair of categories such that K has pushouts in L and
let S be a small category. Then f (S,K,L) has pushouts in f (S,L,L).
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Proof. Fix a, b, c ∈ f (S,K,L) and fix natural transformations f : c → a, g : c → b.
We are going to define w ∈ f (S,K,L). Fix p ∈ S. Let 〈f ′(p), g′(p)〉 be the pushout
of 〈f(p), g(p)〉 in L, and let w(p) be the common co-domain of f ′(p) and g′(p). Now
fix an arrow j : p→ q in S. Using the property of a pushout, there is a unique arrow
w(j) making the following diagram commutative.

c(q)
g(q) //

f(q) ""DD
DD

DD
DD

b(q)
g′(q)

""EE
EE

EE
EE

a(q)
f ′(q) // w(q)

c(p)

c(j)

OO

f(p) ""DD
DD

DD
DD

g(p) // b(p)

b(j)

OO

g′(p)

""EE
EE

EE
EE

a(p)

a(j)

OO

f ′(p) // w(p)

w(j)

OO

Indeed, 〈f ′(q) ◦ a(j), g′(q) ◦ b(j)〉 is an amalgamation of 〈f(p), g(p)〉. By uniqueness,
we have that w(j ◦ k) = w(j) ◦ w(k), whenever j, k are compatible arrows in S.

Thus we have defined a functor w : S→ K. Further, p 7→ f ′(p) and p 7→ g′(p) are
natural transformations from a to w and from b to w respectively.

It is clear that f ′ ◦ f = g′ ◦ g.
It remains to check that 〈f ′, g′〉 is a pushout of 〈f, g〉 in f (S,L,L). For this aim,

fix v ∈ f (S,L,L) and natural transformations f ′′ : a → v, g′′ : b → v such that
f ′′ ◦ f = g′′ ◦ g. By the fact that 〈f ′, g′〉 is a pushout of 〈f, g〉 in L, for each p ∈ S
there is a unique L-arrow h(p) : w(p) → v(p) satisfying h(p) ◦ f ′(p) = f ′′(p) and
h(p)◦g′(p) = g′′(p). This defines uniquely a map h : S→ ArrL that satisfies h◦f ′ =
f ′′ and h ◦ g′ = g′′. It remains to check that h is indeed a natural transformation.

Fix an arrow j : p→ q in S and let k = h(q) ◦ w(j), ` = v(j) ◦ h(p). We need to
show that k = `. Notice that k ◦ f ′(p) = f ′′(q) ◦ a(j) and k ◦ g′(p) = g′′(q) ◦ b(j).
Also, `◦f ′(p) = f ′′(q)◦a(j) and `◦g′(p) = g′′(q)◦b(j). It follows that k = `, because
〈f ′(p), g′(p)〉 is a pushout of 〈f(p), g(p)〉 in L.

The interesting part of the lemma above is that f (S,K,L) has the amalgamation
property, whenever K has pushouts in L.

We now demonstrate a possible use of Lemma 5.6 in the context of Fräıssé
model-theoretic structures.

Given categories K ⊆ L, we say that 〈K,L〉 has the mixed pushout property if for
every K-arrow i : c → a, for every L-arrow f : c → b, there exist j ∈ K and g ∈ L
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such that

b
j // w

c
i

//

f

OO

a

g

OO

is a pushout in L. In case M is a class of models of some first-order language, it is
natural to consider K(M) to be the category of all embeddings between models of M
and L(M) to be the category of all homomorphisms between these models. We then
say that M has the mixed pushout property if so does 〈K(M),L(M)〉. We denote by
M the class of all (countable) models that are unions of ω-chains of models from M.

Theorem 5.7. Let M be a countable Fräıssé class of finitely generated models, with
the mixed pushout property. Let W denote the Fräıssé limit of M. Then there exists
a unique (up to isomorphism) homomorphism L : W → W satisfying the following
conditions.

(a) For every X, Y ∈M, for every homomorphism F : X → Y there exist embed-
dings IX : X → W and IY : Y → W such that the square

W
L // W

X

IX

OO

F
// Y

IY

OO

is commutative.

(b) Given finitely generated substructures x0, x1, y0, y1 of W such that L[xi] ⊆ yi
for i < 2, given isomorphisms hi : xi → yi for i < 2 such that L ◦ h0 = h1 ◦ L,
there exist automorphisms Hi : W → W extending hi for i < 2, and such that
L ◦H0 = H1 ◦ L.

Proof. Consider the category C = f (2,K(M),L(M)), where 2 denotes the two-
element poset category. The assumptions above, combined with Lemma 5.6, give
a Fräıssé sequence {`n}n∈ω which translated back to L(M) looks as follows.

u0

`0
��

// u1

`1
��

// . . . // un

`n
��

// . . .

v0 // v1 // . . . // vn // . . .

The horizontal arrows are embeddings and the vertical arrows are homomorphisms
of models. Without loss of generality, we may assume that the horizontal arrows are
inclusions. Now let U =

⋃
n∈ω un, V =

⋃
n∈ω vn and define L =

⋃
n∈ω `n. It is clear

that L satisfies conditions (a) and (b) above. It remains to check that both U and
V are isomorphic to the M-Fräıssé limit W . For this aim, it suffices to show that
both {un}n∈ω and {vn}n∈ω are Fräıssé sequences in K(M).
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It is clear that both sequences satisfy (U), because identity arrows can be viewed
as objects of C.

Fix n ∈ ω and fix an embedding j : un → x, where x ∈ M. Using the mixed
pushout property, we can find an embedding k : vn → y and a homomorphism
f : x → y such that k ◦ `n = f ◦ j. Now f can be regarded as an object of C and
the pair 〈j, k〉 is an arrow of C. Using the Fräıssé property of the sequence {`n}n∈ω,
we find m > n and embeddings j′ : x → um, k′ : y → vm such that `m ◦ j′ = k′ ◦ f
and j′ ◦ j, k′ ◦ k are inclusions. In particular, this shows that {un}n∈ω is Fräıssé and
therefore U = W .

Now fix an embedding i : vn → z. Let g = i ◦ `n. The pair 〈idun , i〉 can be viewed
as a C-arrow into g, therefore by the Fräıssé property of {`n}n∈ω we again find m > n
and embeddings e : un → um, i′ : z → um such that, among other conditions, the
composition i′ ◦ i is the inclusion vn ⊆ vm. This shows that {vn}n∈ω is Fräıssé and
consequently V = W .

Note that the mixed pushout property is needed for concluding that the domain
of the universal homogeneous homomorphism is the Fräıssé limit of the class in
question. Relaxing this by assuming only that embeddings have pushouts among all
homomorphisms, one still gets a homomorphism with properties (a) and (b) above,
whose co-domain is the Fräıssé limit of the considered class of models. It is clear
how to formulate a similar statement for reversed Fräıssé limits, where pushouts are
replaced by pullbacks.

It might be interesting to compare Theorem 5.7 with the recent work of Pech
& Pech [34], where the authors consider comma categories, in particular obtaining
universal homomorphisms as Fräıssé limits, constructed from categories with mixed
pushouts.

5.4 Universal homogeneous categories

It is tempting to ask for the existence of a Fräıssé sequence in “categories of all
categories”. Of course, one needs to be consistent with the axioms of set theory,
therefore we should only talk about classes of small categories. Actually, a small
category is nothing but a directed graph endowed with an additional “composition”
operation, satisfying the obvious axioms. Arrows between small categories are just
covariant functors. In order to avoid trivialities, we should consider injective functors
(possibly onto full subcategories). Summarizing, we can ask for a Fräıssé sequence
in a directed class of categories that has the amalgamation property with respect to
injective functors. Recall that a functor is injective if it is one-to-one on the class of
arrows (in particular, such a functor must be one-to-one on the class of objects).

Actually, this question had already been addressed by Trnková [39] in 1966. Her
work was set up within the Bernays-Gödel axiom system for set theory. In this
framework, every category is the union of a chain of small categories and the amal-
gamation property (which appears to be quite non-trivial—proved by Trnková in her
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earlier work [38]) allows concluding the existence of a “Fräıssé chain” of categories.
We can add more information to the results of [39] by adding homogeneity. Namely,
every injective functor between small subcategories extends to a bijective functor of
the big universal category under consideration. Since we work in the usual Zermelo-
Fraenkel set theory (with the axiom of choice), we discuss briefly one obvious class
of categories. Other examples (like additive, concrete categories, and so on) can be
easily adapted from Trnková’s work [39], restricting the size of categories and adding
some cardinal-arithmetic assumptions.

A natural example is the class K of all finite categories. A category K is finite if it
has finitely many isomorphic types and each hom-set of K is finite. It is rather clear
that this class has the amalgamation property. It also has the initial object (the
empty category), therefore it is directed. Obviously, K is dominated by a countable
family of injective functors, say, between finite categories whose objects are natural
numbers and arrows are taken from a prescribed countable set. By Theorem 3.7, K
has a unique countable Fräıssé sequence.

Let U be the category obtained as the “co-limit” of the Fräıssé sequence in K.
Then U is a category with countably many isomorphic types of objects and each
hom-set of U is countable. It is an easy exercise to see that every other category
with these properties is equivalent to a subcategory of U. Finally, U has the fol-
lowing homogeneity property: Given an injective functor F : S→ T, between finite
subcategories of U, there exists a bijective functor H : U→ U extending F .

One can consider a similar construction using injective functors F : S → T
such that F [S] is a full subcategory of T. The Fräıssé limit would be a countable
category Uf whose all hom-sets are finite, all other countable categories with this
property would be equivalent to full subcategories of Uf and the obvious variant of
homogeneity would hold. We leave the details to interested readers.

5.5 Binary trees: failure of the back-and-forth principle

We describe below the announced example of a category of trees which has many
pairwise non-equivalent ω1-Fräıssé sequences.

Recall that a tree T is bounded if for every x ∈ T there is t ∈ maxT such
that x 6 t. A subset A of T is closed if supC ∈ A for every chain C ⊆ A. This
is equivalent to saying that A is closed with respect to the interval topology on T
generated by intervals of the form [0, t] and (s, t], where s < t.

We define the category T2 as follows. The objects of T2 are nonempty countable
bounded binary trees. An arrow from T ∈ T2 into S ∈ T2 is a tree (i.e. strictly order
preserving) embedding f : T → S such that f [T ] is a closed initial segment of S.

A tree T is healthy if every element of T \max(T ) has at least two immediate
successors and for every t ∈ T and α < ht(T ) there exists s > t such that LevT (s) >
α. An example of a healthy tree of height ω1 is

T = {x ∈ 2<ω1 : |{α : x(α) = 1}| < ℵ0}.
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Note that all levels of T are countable. Setting Tα = {x ∈ T : dom(x) ⊆ α+ 1}, we
obtain an inductive sequence {Tα}α<ω1 in the category T2. More generally, if S is
any binary tree of height ω1 whose all levels are countable then, setting

Sα = {x ∈ S : the order type of [0, x) is 6 α}

we obtain an inductive sequence ~S in T2, where each Sβα is the inclusion, which is

an arrow in T2. We shall say that ~S is the natural decomposition of S.

Lemma 5.8. Let V ∈ T2 be a healthy tree of height α+ 1. Then every T ∈ T2 with
ht(T ) 6 α + 1 is isomorphic to a closed initial segment of V .

Proof. Denote by M the class of all nonempty bounded binary trees T of height 6
α+1 such that max(T ) is finite. Given such a tree T , write max(T ) = {w0, . . . , wm−1}
and define inductively T0 := [0, w0] and Tk := [0, wk] \ (T0 ∪ · · · ∪ Tk−1). Then
D = {T0, . . . , Tm−1} is a natural decomposition of T into connected chains, induced
by the enumeration of max(T ).

Let L be a category whose objects are pairs 〈T,D〉, where T ∈ M and D is a
natural decomposition into connected chains induced by an enumeration of max(T ),
as described above. Given 〈T,D〉, 〈S,F 〉 ∈ L, an arrow in L is a tree embedding
f : T → S with the following properties:

(a) For each D ∈ D there is F ∈ F such that f [D] is an initial segment of F .

(b) For each F ∈ F there exists at most one D such that f [D] ⊆ F .

It is clear that these properties are preserved under the usual composition, so L is
indeed a category. Now consider the given healthy tree V with max(V ) = {en}n∈ω
and define V n =

⋃
i6n[0, ei]. Let Dn be the decomposition of V n induced by the

enumeration {e0, . . . , en} of max(V n). Then 〈V n,Dn〉 ∈ L and ~V = {〈V n,Dn〉}n∈ω
is an inductive sequence in L. We claim that:

(1) ~V is a Fräıssé sequence in L which has property (E).

(2) If ~T is an inductive sequence in L and ~f = {fn}n∈ω is an embedding of ~T into
~V then the embedding f : T → V induced by ~f has the property that f [T ] is
a closed initial segment of V .

We first show (2): Fix y ∈ V \f [T ]. Find m and D ∈ Dm such that y ∈ D. Let Sn be
the natural decomposition of Tn, S =

⋃
n∈ω Sn. Then there is at most one S ∈ S

such that f [S] ⊆ D. Moreover f [S] is closed in D, so D \ f [S] is a neighborhood of
y disjoint from f [T ].

For the proof of (1), fix 〈T,F 〉 ∈ L and assume f : T → Vn is an arrow in L. Let
T ⊆ T ′ and let F ′ ⊇ F so that the inclusion T ⊆ T ′ is an arrow between 〈T,F 〉
and 〈T ′,F ′〉. Without loss of generality, we may assume that F ′ = F ∪ {A}, i.e.
T ′ differs from T by only one new branch. Let a = minA. Then, by the definition of
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the natural decomposition, a has an immediate predecessor c ∈ T (note that 0 ∈ T
so a > 0). Find F ∈ F such that c ∈ F . Then f(c) has exactly two immediate
successors in V and at most one belongs to f [T ], since c has only two immediate
successors in T . Let d ∈ V \f [T ] be an immediate of f(c). Find a big enough m > n
so that there exists D ∈ Dm with d ∈ D. Since each maximal element of V has
height α, D is a cofinal branch in V and hence A can be (uniquely) embedded into
D as an initial segment. This embedding defines an extension f : T ′ → Vm of f .
Since L has a minimal object, this shows that ~V is Fräıssé and satisfies (E).

Finally, fix T ∈ T2 with ht(T ) 6 α + 1. Decompose T into an inductive ω-
sequence, according to a fixed enumeration of max(T ). Claims (1) and (2) say that
T can be embedded into V as a closed initial subtree. This completes the proof.

Theorem 5.9. Assume U is a healthy binary tree of height ω1, whose all levels
are countable. Let ~U be the natural T2-decomposition of U . Then ~U is a Fräıssé
sequence in T2 which has the extension property. In particular, T2 is directed and
has the amalgamation property.

Proof. Note that T2 has a minimal object, namely the one-element tree. Clearly,
such a tree embeds into U0. It suffices to show that ~U satisfies (E), it will then

follow that ~U is a Fräıssé sequence. Since there exists a healthy binary tree of height
ω1 with countable levels, we shall be able to conclude that T2 has a Fräıssé sequence
satisfying (E) and consequently T2 is directed and has the amalgamation property.

Thus, it remains to show that ~U has the extension property.
Fix α < ω1 and fix an arrow f : T → Uα in T2 and assume that T is a closed

initial subtree of S, i.e. the inclusion T ⊆ S is an arrow of T2. Fix α < ω1 so
that ht(S) < α. Let {sn : n ∈ ω} enumerate all minimal elements of S \ T . Let tn
be the immediate predecessor of sn. Then tn ∈ T . Recall that f(tn) has exactly
two immediate successors in Uα and at least one of them does not belong to f [T ],
since otherwise tn would already have two immediate successors in T . Let yn be an
immediate successor of f(tn) which does not belong to f [T ]. Let Vn = {y ∈ Uα : y >
yn}. Then Vn is a healthy binary tree of countable height. By Lemma 5.8 we can
embed Gn = {s ∈ S : s > sn} onto a closed initial segment of Vn. Combining all
these embeddings, we obtain an extension f : S → Uα of f . We claim that f [S] is
closed in Uα. Indeed, if C ⊆ S is a chain and C 6⊆ T then c > sn for some c ∈ C and
for some n. Thus supC exists in S and hence sup f [C] exists in f [Gn] ⊆ f [S].

Theorem 5.10. Assume ~U and ~V are ω1-Fräıssé sequences in T2 inducing healthy
trees U and V respectively. Assume further that F : ~U → ~V is an arrow of sequences.
Then the trees U , V are isomorphic.

Proof. Let f : U → V be the embedding induced by F , i.e. assuming both ~U , ~V are
chains of trees, f is the union of arrows fα : Uα → Vϕ(α) in T2, where ϕ : ω1 → ω1 is
an increasing function. We claim that f [U ] is closed in Vϕ(α). Suppose otherwise and
fix a sequence x0 < x1 < . . . in U such that y = supn∈ω f(xn) /∈ f [U ]. Find β < ω1
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such that {xn : n ∈ ω} ⊆ Uβ and y ∈ Vϕ(β). Then f(xn) = fβ(xn) and y /∈ fβ[Uβ],
which shows that fβ is not an arrow in T2, a contradiction.

We finally claim that V = f [U ], which of course shows that f is an isomorphism.
Suppose V 6= f [U ] and fix a minimal element y ∈ V \ f [U ]. Find α < ω1 such
that y ∈ Vϕ(α). Since f [U ] is closed in Vϕ(α), y has an immediate predecessor, say
v = f(u). Let a, b be the two immediate successors of u in U (which exist, because
U is healthy). Then either y = f(a) or y = f(b), because V is binary and f [U ] is an
initial segment of U . This is a contradiction.

It can be easily shown that every tree induced by an ω1-Fräıssé sequence in T2

is healthy, therefore this assumption can be removed from the statement above.
Recall that sequences ~a and ~b of the same length are comparable if there exists

an arrow of sequences ~f such that either ~f : ~a → ~b or ~f : ~b → ~a. Otherwise, we say
that ~a and ~b are incomparable.

Corollary 5.11. There exist two incomparable ω1-Fräıssé sequences in T2.

Proof. Let U = {x ∈ 2<ω1 : |x−1(1)| < ℵ0} and let V be a healthy binary Aronszajn
tree. Clearly, U and V are not isomorphic. Both trees can be naturally decomposed
into ω1-sequences ~U and ~V respectively. By Theorem 5.9, ~U and ~V are Fräıssé
sequences. By Theorem 5.10, these sequences are incomparable.

It is not hard to see that there are uncountably many pairwise non-isomorphic
healthy binary trees of height ω1. Actually, it was proved by Abraham & Shelah [1]
that consistently there are 2ℵ1 isomorphic types of Aronszajn trees. In particular, the
category T2 has (at least consistently) 2ℵ1 many pairwise incomparable ω1-Fräıssé
sequences.

5.6 Universal trees

We now discuss certain classes of trees and associated categories, showing how
Fräıssé functors can help in finding universal trees. We fix two cardinals λ > 0,
κ > ℵ0 and we assume that κ is regular. We also fix a linearly ordered set L with
0 = minL and such that

(0) 0 = minL exists and L is unbounded from above.

(1) Every bounded increasing sequence of length < κ has the supremum in L.

(2) L contains isomorphic copies of all ordinals < κ.

Our aim is to find an L-embeddable λ-branching tree of height κ, universal for this
class of trees.

Recall that a tree T is L-embeddable if it admits a <-preserving function ϕ : T →
L. A standard inductive argument using condition (1) shows that such a function
can be “corrected” to a continuous one. More precisely, there exists a continuous

39



<-preserving function ψ : T → L such that ψ 6 ϕ. Furthermore, we may require
that ψ(0) = 0. Recall that ψ is continuous if ψ(supC) = supψ[C] whenever C is a
bounded chain in T . Given a pair 〈T, ψ〉, where ψ is as above, we will say that T is
ψ-closed if for every unbounded chain C ⊆ T the set ψ[C] is unbounded in L.

Define the category TL,κ,λ as follows. The objects are pairs 〈T, ψ〉 such that T
is a λ-branching tree of height < κ, ϕ is a continuous strictly increasing function
from T to L such that ψ(0) = 0 and T is ϕ-closed. Recall that T is λ-branching if
|t+| 6 λ for every t ∈ T .

A TL,κ,λ-arrow from 〈T, ψ〉 to 〈S, ϕ〉 is a tree embedding f : T → S such that
ϕ(f(t)) = ψ(t) for every t ∈ T , f [T ] is closed in S and S is an end-extension of
f [T ]. This means, by definition, that for every t ∈ T and s ∈ S \ f [T ] it holds
that LevS(f(t)) < LevS(s). It is clear that TL,κ,λ fails the amalgamation property.
Indeed, let T = {0} be the trivial tree and let f : T → S, and g : T → S be such
that S is the 2-element tree {0, 1} endowed with functions ϕ0, ϕ1 : S → L such
that ϕ0(1) 6= ϕ1(1). Then it is not possible to find a pair 〈R,ψ〉 such that R is the
end-extension of both 〈S, ϕ0〉 and 〈S, ϕ1〉 and ψ : R→ L extends both ϕ0 and ϕ1.

We shall now embed TL,κ,λ in a bigger category, as follows. Namely, let SL,κ,λ be
the category whose objects are the same as the objects of TL,κ,λ, while an SL,κ,λ-
arrow from 〈T, ψ〉 to 〈S, ϕ〉 is a tree embedding f : T → S satisfying

(3) ϕ(f(t)) 6 ψ(t) for every t ∈ T .

(4) f [T ] is an initial segment of S.

Note that the trivial tree {0} provides an initial object for both TL,κ,λ and SL,κ,λ.
The following fact is straightforward.

Lemma 5.12. The pair 〈TL,κ,λ,SL,κ,λ〉 has the mixed amalgamation property.

We now specify an additional property of the linearly ordered set L, needed for
the existence of a κ-Fräıssé sequence over the inclusion TL,κ,λ ⊆ SL,κ,λ. Namely,
assume L satisfies the following condition:

(?) For every x ∈ L there exists Cx ⊆ L such that inf Cx = inf(x,→) and |Cx| 6 λ.

Let us fix the sets Cx as above and let p : L × λ → L be the canonical projection.
Define U to be the set of all functions t : α + 1→ L× λ such that

(i) α < κ and p ◦ t is continuous.

(ii) p(t(ξ + 1)) ∈ Cp(t(ξ)) for every ξ < α.

The order of U is extension, that is, t 6 s iff s extends t. Note that U has no
maximal elements, because the domain of each t ∈ U is a successor ordinal and L is
unbounded from above. By condition (2), the height of U is κ. We shall see that the
canonical decomposition of U provides a Fräıssé sequence over TL,κ,λ ⊆ SL,κ,λ. More
precisely, let θ : U → L be defined by θ(t) = max dom(t). Then θ is a continuous
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strictly increasing function. Let Uα = {t ∈ U : θ(t) 6 α} and let θα = θ � Uα. Clearly,
〈Uα, θα〉 is a TL,κ,λ-object and ~u = {〈Uα, θα〉}α<κ with the obvious embeddings is a
continuous sequence in TL,κ,λ.

Lemma 5.13. The sequence ~u is Fräıssé over the inclusion TL,κ,λ ⊆ SL,κ,λ.

Proof. Fix α < κ and fix a TL,κ,λ-arrow f : 〈Uα, θα〉 → 〈S, ψ〉. We may assume that
f is “simple” in the sense that S \ f [Uα] consists of a single level, since arbitrary
TL,κ,λ-arrows are compositions of “simple” arrows and we can later use induction.

We shall find an SL,κ,λ-arrow g : 〈S, ψ〉 → 〈Uα+1, θα+1〉 so that g ◦ f is the
inclusion Uα ⊆ Uα+1. Namely, let T = f [Uα] and start with g0 = f−1. Let K
be the highest level of T and let Ts = T ∪ s+ for s ∈ K. We extend g0 to each
Ts independently. Namely, fix s ∈ K and enumerate s+ as {sξ}ξ<λ (possibly with
repetitions). Let t = g0(s). Then t : α + 1 → L × λ satisfies conditions (i), (ii)
above. Fix ξ < λ. Using (?), we can extend t to a function tξ ∈ U whose domain
is α + 2 and p(tξ(α + 1)) 6 ϕ(sξ). Define gs(sξ) = tξ and gs � T = g0. This defines
gs : Ts → Uα+1 extending g0. The union of all these maps defines the required SL,κ,λ-
arrow g, showing that ~u is Fräıssé over TL,κ,λ ⊆ SL,κ,λ.

Using Lemmata 5.12, 5.13 and Theorem 3.18, we obtain

Theorem 5.14. Under the assumptions above, there exists a λ-branching tree U of
height κ together with a continuous strictly increasing function θ : U → L, such that
for every λ-branching tree T of height 6 κ, for every strictly increasing function
ϕ : T → L, there exists a tree embedding f : T → U such that f [T ] is an initial
segment of U and θ(f(t)) 6 ϕ(t) for every t ∈ T .

Of course, the above result can be proved directly, without referring to Fräıssé
sequences. The key inductive argument is contained in the proof of Lemma 5.13. Our
aim was rather showing how the existence and universal properties of certain trees
can be explained by means of Fräıssé sequences over a natural inclusion functor.

One of the special cases is L = κ; then λ could be even finite and “being L-
embeddable” is the same as “being of height 6 κ”. When L has the property
that |(x,→)| = λ for every x ∈ L, a natural example of a universal λ-branching
L-embeddable tree is the tree of all bounded closed well ordered subsets of L en-
dowed with the “end-extension” ordering. It is worth mentioning that the well-known
tree σQ of bounded well ordered subsets of the rational numbers (again with the
“end-extension” ordering) is another example of a universal countably branching R-
embeddable tree (see [36] for a direct argument and more information). It is a folklore
fact that σQ is not Q-embeddable, however its subtree consisting of all closed sets
is, by the arguments above, a universal countably branching Q-embeddable tree.

Finally, one can consider the category K of finite trees with end-extensions and
the category L of finite trees with arbitrary embeddings. In this case, sequences in
K lead to finitely-branching trees of height 6 ω and a sequence is Fräıssé over the
inclusion K ⊆ L if and only if it leads to a perfect tree. Recall that a tree T is
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perfect if for every t ∈ T there are incomparable elements s0, s1 such that s0 > t
and s1 > t. As before, the category K obviously fails the amalgamation property.
On the other hand, L has the amalgamation property and since it is countable and
directed, it has a unique Fräıssé sequence. This sequence, however, does not lead to
a tree: Its natural co-limit is a certain tree-like partially ordered set, in the sense
that all intervals (a, b) with a < b are linearly ordered (in fact, isomorphic to Q)
and for every a < b there is c > a not comparable with b.

6 Embedding-projection pairs

In this section we describe a general construction on a given category, which is
suitable for applications to the theory of Valdivia compacta and Banach spaces with
Markushevich bases. This construction had been first used by Dana Scott in order
to get faithful models of untyped λ-calculus. It also appears in Droste & Göbel [11]
in the context of Scott domains.

6.1 Definitions and basic properties

We fix a category K. Define ‡K to be the category whose objects are the objects of
K and a morphism f : X → Y is a pair 〈e, r〉 of arrows in K such that e : X → Y ,
r : Y → X and r ◦ e = idX . We set e(f) := e and r(f) := r, so f = 〈e(f), r(f)〉.
Given morphisms f : X → Y and g : Y → Z in ‡K, we define their composition in
the obvious way:

g ◦ f := 〈e(g) ◦ e(f), r(f) ◦ r(g)〉.

It is clear that this defines an associative operation on compatible arrows. Further,
given an object a ∈ K, pair of the form 〈ida, ida〉 is the identity morphism in ‡K. Thus,
‡K is indeed a category. Note that f 7→ e(f) defines a covariant functor e : ‡K→ K
and f 7→ r(f) defines a contravariant functor r : ‡K → K. Following [11], we shall
call ‡K the category of embedding-projection pairs or briefly EP-pairs. The idea of
considering EP-pairs is to obtain more special Fräıssé sequences, namely we would
like to obtain a unique cofinal object u in the category of sequences such that every
other x can be both “embedded” into u and “projected” from u. In other words,
we would like to have arrows j : x → u and r : u → x satisfying r ◦ j = idx. We
shall demonstrate this in Subsection 7.3 below, dealing with the category of finite
nonempty sets.

We shall later need the following general facts about sequences of left-invertible
arrows.

Lemma 6.1. Let K be a category, let δ > 0 be a limit ordinal and let a : δ → ‡K be
a sequence such that 〈v, {iα}α<δ〉 is the co-limit of e[a]. Then there exists a sequence
b : (δ + 1)→ ‡K such that b � δ = a, bδ = v and e(bδα) = iα for every α < δ.
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Proof. Fix α < δ. Given α < ξ < η < δ, we have

r(aηα) ◦ e(aηξ) = r(aξα) ◦ r(aηξ) ◦ e(a
η
ξ) = r(aξα).

Using the equation above and the fact that v together with {iξ}α6ξ<δ is the co-limit
of a � [α, δ), we find a unique arrow fα : v → aα satisfying

fα ◦ iξ = r(aξα)

for every α 6 ξ < δ. Setting ξ := α in the equation above, we see that fα ◦ iα = idaα .
By uniqueness, fξ = r(aηξ) ◦ fη for every ξ < η < δ. Finally, define bδ := v, bδα :=
〈iα, fα〉 and b � δ := a.

Lemma 6.2. Let ~x be a continuous sequence in a category K and assume that each
bonding arrow xβα is left-invertible in K. Then there exists a sequence ~y in ‡K such
that

~x = e[~y].

Proof. Let ~x : δ → K. Using induction, we shall construct arrows fβα : xβ → xα in K
so that

(*) fβα ◦ xβα = idxα and fγα = fγβ ◦ f
β
α

holds for every α < β < γ. Fix 0 < β < δ and suppose f ηξ have been constructed for
every ξ < η < β. Assume first that β is a successor ordinal, say β = α + 1. Using
the assumption, find f : xα+1 → xα such that f ◦ xα+1

α = idxα . Given ξ < β, define
fα+1
ξ = fαξ ◦ f . It is clear that (*) holds.

Assume now that β is a limit ordinal. Define a : β → ‡K by setting aα = xα and
aηξ = 〈xηξ , f

η
ξ 〉 for ξ < η < β. By (*), a is indeed a sequence in ‡K. By Lemma 6.1,

this sequence has an extension b : β + 1→ ‡K such that e(bβα) = xβα for every α < β.
Setting fβα := r(bβα) for α < β, it is clear that (*) holds.

Finally, setting yα := xα and yβα := 〈xβα, fβα 〉, we obtain the desired sequence ~y in
the category ‡K.

6.2 Semi-continuity and the back-and-forth principle

It turns out that usually ‡K is not continuous, however one can consider the following
weakening of continuity, which is good enough for applications.

We say that a sequence ~x in ‡K is semi-continuous if e[~x] is continuous in K.
The dual notion of semi-continuity with respect to the functor r is obtained by
considering ‡Kop instead of ‡K.

Theorem 6.3. Let κ be an infinite regular cardinal and let K be a κ-complete cat-
egory such that ‡K is directed and has the amalgamation property. Assume further
that ‡K has a dominating family consisting of at most κ arrows. Then there exists a
semi-continuous Fräıssé sequence of length κ in ‡K.

43



Proof. By Lemma 6.1, ‡K is κ-bounded. Thus, we may use Proposition 3.9 applied
to Φ := e.

We shall prove that semi-continuous Fräıssé sequences satisfy the back-and-forth
principle. In order to do it, we need to show that the left-forgetful functor e induces
a quasi-limiting operator, as it is suggested by Lemma 6.1. It turns out that this is
not completely trivial. Note that we cannot use Proposition 4.1, because the functor
e is not faithful.

Lemma 6.4. Let K be a category. Given a sequence ~x in ‡K such that e[~x] has
the co-limit in K, let L ~x be the co-cone in ‡K, existing by Lemma 6.1, such that
e(L ~x) = lim e[~x]. Then L is a partial quasi-limiting operator on Seq<κ(K).

Proof. Let ~f : ~x → ~y be an isomorphism of sequences in ‡K and let ~g : ~y → ~x be
its inverse. We may assume that ~f = {fξ}ξ<λ, ~g = {gξ}ξ<λ so that fξ : xξ → yξ and
gξ : yξ → xξ+1 for ξ < λ. Let the K-objects x, y be the co-limits of e[~x] and e[~y],
respectively. The co-limiting co-cones will be denoted by {x∞ξ }ξ<λ and {y∞ξ }ξ<λ,
respectively. Let f∞ : x → y be the unique arrow satisfying e(y∞ξ ) ◦ e(fξ) = f∞ ◦
e(x∞ξ ) for every ξ < λ. Similarly, let g∞ : y → x be the unique arrow satisfying
e(x∞ξ+1) ◦ e(gξ) = g∞ ◦ e(y∞ξ ) for every ξ < λ. By the universality of the co-limit,
f∞ ◦ g∞ = idy and g∞ ◦ f∞ = idx. In particular, 〈f∞, g∞〉 is an isomorphism in ‡K. It

remains to check that it commutes with ~f and ~g. By symmetry, it suffices to check
that

(1) r(fα) ◦ r(y∞α ) = r(x∞α ) ◦ g∞

holds for all α < λ.
Fix α < λ. Given ξ > α, define qξ = r(fα) ◦ r(yξα). If ξ < η then

qη ◦ e(yηξ ) = r(fα) ◦ r(yξα) ◦ r(yηξ ) ◦ e(yηξ ) = qξ.

It follows that {qξ}α6ξ<λ commutes with the sequence {e(yξ)}α6ξ<λ. As g∞ is the
co-limit of this sequence, there is a unique K-arrow k : y → xα satisfying

(2) k ◦ e(y∞ξ ) = qξ = r(fα) ◦ r(yξα)

for every ξ > α. Let

k0 = r(fα) ◦ r(y∞α ) and k1 = r(x∞α ) ◦ g∞.

In order to show (1), we check that both k0 and k1 satisfy (2) in place of k. Given
ξ > α, we have

k0 ◦ e(y∞ξ ) = r(fα) ◦ r(yξα) ◦ r(y∞ξ ) ◦ e(y∞ξ ) = r(fα) ◦ r(yξα).
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Hence k0 = k. Recalling that g∞ is the unique K-arrow satisfying e(x∞ξ+1) ◦ e(gξ) =
g∞ ◦ e(y∞ξ ) for every ξ < λ, we obtain

k1 ◦ e(y∞ξ ) = r(x∞α ) ◦ g∞ ◦ e(y∞ξ ) = r(x∞α ) ◦ e(x∞ξ+1) ◦ e(gξ)
= r(xξ+1

α ) ◦ r(x∞ξ+1) ◦ e(x∞ξ+1) ◦ e(gξ) = r(xξ+1
α ) ◦ e(gξ)

= r(gξ ◦ yξα ◦ fα) ◦ e(gξ) = r(fα) ◦ r(yξα) ◦ r(gξ) ◦ e(gξ)
= r(fα) ◦ r(yξα).

Hence k1 = k, which completes the proof.

Combining the lemma above with Theorem 4.4, we obtain:

Theorem 6.5. Let K be a category. Every two semi-continuous Fräıssé sequences
of the same regular length in ‡K satisfy the back-and-forth principle.

6.3 Proper amalgamations and proper arrows

We still have not proved that a semi-continuous Fräıssé sequence in a category of
EP-pairs is cofinal for uncountable sequences. In fact, even for the countable case,
one can consider a better class of arrows between sequences, obtaining stronger
cofinality results (see Subsection 7.3 for a simple application in the category of
sets). This leads to the following concept.

Let f : Z → X and g : Z → Y be arrows in ‡K. We say that arrows h : X → W ,
k : Y → W provide a proper amalgamation of f, g if h ◦ f = k ◦ g and moreover
e(g) ◦ r(f) = r(k) ◦ e(h), e(f) ◦ r(g) = r(h) ◦ e(k) hold. Translating it back to the
original category K, this means that the following four diagrams commute:

W Yooe(k)oo

X

OO
e(h)

OO

Zooe(f)oo
OO
e(g)

OO W
r(k) // //

r(h)
����

Y

r(g)
����

X
r(f) // // Z

W
r(k) // // Y

X

OO
e(h)

OO

r(f) // // Z

OO
e(g)

OO W

r(h)
����

Y

r(g)
����

ooe(k)oo

X Zooe(f)oo

We draw arrows // // and // // in order to indicate mono- and epimorphisms
respectively. We shall say that ‡K has proper amalgamations if every pair of arrows
in ‡K with common domain can be properly amalgamated in ‡K.

Below is a useful criterion for the existence of proper amalgamations.

Lemma 6.6. Let K be a category and let f, g be arrows in ‡K with the same domain.
If e(f), e(g) have a pushout in K then f, g can be properly amalgamated in ‡K.

Proof. Let h : X → W and k : Y → W form a pushout of e(f), e(g). Consider the
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following diagram:

Z // e(f) // X
r(f) // // Z

Y

r(g)

OOOO

Y

r(g)

OOOO

k
//

idY

11

W

`

FF

j

66

Z

OO
e(g)

OO

//e(f) // X

h

OO

r(f) // //

idX

LL

Z

OO

e(g)

OO

The dotted arrows indicate unique morphisms completing appropriate diagrams, i.e.
j is the unique arrow satisfying equations j ◦ h = e(g) ◦ r(f), j ◦ k = idY and ` is
the unique arrow satisfying equations ` ◦ k = e(f) ◦ r(g), ` ◦ h = idX . Consequently,
〈k, j〉 and 〈h, `〉 are morphisms in ‡K. Set s = r(f) ◦ `. Then

(1) s◦k = r(f)◦`◦k = r(f)◦e(f)◦r(g) = r(g) and s◦h = r(f)◦`◦h = r(f).

Recall that r(f) ◦ e(f) = idZ = r(g) ◦ e(g). Since k, h is a pushout of e(f), e(g), we
deduce that s must be the unique arrow satisfying (1). Now let t = r(g) ◦ j. Similar
computations show that t ◦ k = r(g) and t ◦ h = r(f), therefore by uniqueness we
deduce that s = t or, in other words, r(f) ◦ ` = r(g) ◦ j. This shows that the full
diagram is commutative and hence 〈k, j〉 and 〈h, `〉 provide a proper amalgamation
of f, g in the category ‡K.

As an example, if K is the category of nonempty sets, then Lemma 6.6 says that
category ‡K has proper amalgamations. We show below that not all amalgamations
in ‡K are proper.

Example 6.7. Consider the category of nonempty finite sets Set+. Let a, b, c, d
be pairwise distinct elements and set Z = {a}, X = {a, b}, Y = {a, c} and W =
{a, b, c}. We are going to define arrows f : Z → X, g : Z → Y , h : X → W and
k : Y → W in the category ‡Set+. Let e(f), e(g), e(h) and e(k) be the inclusion
maps and let r(f) and r(g) be the obvious constant maps. Finally, let r(h)(c) = a
and r(k)(b) = c. This already defines r(h) and r(k), since these maps must be
identity on the ranges of e(h) and e(k) respectively. It is clear that h ◦ f = k ◦ g, i.e.
h, k amalgamate f, g in the category ‡Set+. On the other hand, e(g) ◦ r(f)(b) = a
and r(k) ◦ e(h)(b) = c, therefore e(g) ◦ r(f) 6= r(k) ◦ e(h). Note that actually
e(f) ◦ r(g) = r(h) ◦ e(k) holds, although redefining r(h)(c) to b we can even get
e(f) ◦ r(g) 6= r(h) ◦ e(k).

Lemma 6.8. Let K be a category such that sequences of length < κ consisting of
left-invertible arrows have co-limits, and assume that ‡K has proper amalgamations.
Let L be the quasi-limiting operator on Seq<κ(‡K) associated with the left-forgetful
functor e. Let A denote the class of all proper amalgamations. Then A is a stable
amalgamation structure in ‡K and 〈‡K,L ,A 〉 is a Fräıssé-Jónsson category.
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Proof. The fact that A is an L -continuous amalgamation structure is obvious (as-
suming of course that ‡K admits proper amalgamations). We only need to check
that A is stable.

Fix a commutative diagram of the form

b
g // c

a
ida

//

f

OO

a

h

OO

where f, g, h are ‡K-arrows. However, using the fact that r(h) = r(f) ◦ r(g), we get
r(h) ◦ e(g) = r(f) ◦ r(g) ◦ e(g) = r(f) and, using the fact that e(h) = e(g) ◦ e(f), we
obtain r(g) ◦ e(h) = r(g) ◦ (g) ◦ e(f) = e(f).

An arrow of sequences ~f : ~x→ ~y that is admissible for the class of proper amal-
gamations will be called proper. In other words, ~f is proper if (up to equivalence)
all squares of the form

xα
xβα //

fα
��

xβ

fβ
��

yϕ(α)

y
ϕ(β)
ϕ(α) // yϕ(β)

are proper amalgamations, where ϕ is the increasing ordinal function associated to
~f . As we shall see in Example 7.16, proper arrows are rather restrictive even in the
category of countable sequences of nonempty finite sets.

Using Lemma 6.8 and Theorem 4.12, we obtain:

Theorem 6.9. Assume K is a category and ~u is a semi-continuous Fräıssé sequence
in ‡K of regular length κ > ℵ0. If ‡K has proper amalgamations then for every
semi-continuous sequence ~x ∈ Seq6κ(‡K) there exists a proper arrow of sequences
~f : ~x→ ~u.

In Subsection 7.3 we shall present a simple application of the result above (with
κ = ℵ0) in the category of nonempty finite sets, leading to a classical homogeneity
property of the Cantor set.

7 Applications

In this section we collect several applications of our results—mainly those from
Section 6—to compact Hausdorff spaces, Banach spaces, the Cantor set, and linearly
ordered sets.
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7.1 Compact spaces

Let Comp be the category of all nonempty compact Hausdorff spaces. It is well-
known that quotient maps have pullbacks in Comp. More precisely, given quotient
maps f : X → Z, g : Y → Z, the two projections from the set

P = {〈x, y〉 ∈ X × Y : f(x) = g(y)}

from the pullback of f, g. It is obvious that P is compact, as a closed subset of X×Y
and both projections restricted to P are onto. Notice that, assuming the Continuum
Hypothesis, the category of nonempty compact metric spaces with quotient maps has
ℵ1 many types of arrows, there it has an inverse Fräıssé sequence of length ω1. The
limit of this sequence is the well-known space N∗ = βN\N, i.e., the remainder of the
Čech-Stone compactification of the set of natural numbers. All these things clearly
generalize to higher cardinals and were studied by Negrepontis [31], using Jónsson’s
work [17]. In fact, when restricted to totally disconnected compact spaces, Stone
duality allows moving to the category of Boolean algebras, where model-theoretic
Fräıssé-Jónsson theory can be applied. The fact that every compact Hausdorff space
of weight6 ℵ1 is a continuous image of N∗ was previously proved by Parovičenko [33].

We now turn to a more special class of spaces, called Valdivia compacta. A
topological space K is called Valdivia compact if it is homeomorphic to a closed
subspace K ′ of some Tikhonov cube Iκ, such that K ′ ∩ Σ(κ) is dense in K ′, where

Σ(κ) = {x ∈ Iκ : | suppt(x)| 6 ℵ0}

is the Σ-product of κ copies of the unit interval, and suppt(x) = {α : x(α) 6= 0} is
the support of x. This class has been extensively studied by several authors; we refer
to Kalenda’s surveys [18, 19] for further references. Valdivia compacta are closely
related to Corson compacta which are defined by strengthening the requirement of
K ′ ∩ Σ(κ) being dense to K ′ ⊆ Σ(κ). It is well-known that Corson compacta are
precisely those Valdivia compacta that are countably tight. This actually follows
easily from the (not completely trivial) fact that Σ-products are countably tight.
Recall that a topological space is countably tight if the closure of any set is the
union of closures of its countable subsets. One has to mention yet another class of
compacta: Eberlein compact spaces. By definition, a space is Eberlein compact if it
is homeomorphic to a weakly compact subset of some Banach space. If this Banach
space is Hilbert, the compact is called uniformly Eberlein. Every Eberlein compact
is Corson and every Corson compact is Valdivia. None of these implications can be
reversed.

A result of Bell [4] says that, under the Continuum Hypothesis, there exists a
universal uniform Eberlein compact of weight c. Another positive result, due to Bell
& Marciszewski [5] shows, under the usual assumption 2<κ = κ, the existence of a
scattered Eberlein compact of weight κ and of Cantor-Bendixson height 3 that is
universal for this class in the sense of retractions. Both of the results on Eberlein
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compacta are in fact Fräıssé-Jónsson constructions, by putting relevant structures
on these spaces.

In contrast, Argyros & Benyamini [2] proved that universal Eberlein compacta
for weight κ do not exist whenever κ = ℵ1 or κℵ0 = κ. Later, Todorčević [37] proved
the same negative result for Corson compacta. Both results are negative even when
asking for a compact space K such that every other compact in the given class is
homeomorphic to a quotient of a closed subset of K.

The results of Section 6 allow us to get, under the Continuum Hypothesis, a Val-
divia compact of weight ℵ1 that is universal for this class in the sense of retractions.
More precisely:

Theorem 7.1. Assume 2ℵ0 = ℵ1. There exists a compact space V with the following
properties.

(1) w(V ) = ℵ1 and V is Valdivia compact.

(2) Every Valdivia compact of weight 6 ℵ1 is a retract of V .

(3) Given a compact metrizable space K, given retractions f, g : V → K, there
exists a homeomorphism h : V → V such that g = f ◦ h.

Furthermore, properties (1) and (3) describe the space V uniquely, up to a homeo-
morphism, and every compact space satisfying (3) has weight at least 2ℵ0.

Before starting the proof, we need one important property of Valdivia compacta,
explaining why we actually restrict attention to weight ℵ1:

Proposition 7.2 (Kubís & Michalewski [25]). A nonempty compact space of weight
6 ℵ1 is Valdivia compact if and only if it is homeomorphic to the limit of a contin-
uous inverse sequence of compact metrizable spaces in which all bonding maps are
retractions.

Proof of Theorem 7.1. As we have mentioned above, quotient maps admit pullbacks
in the category of nonempty compact spaces. The same of course holds when re-
stricted to the category K of compact metric spaces. It follows that ‡K has proper
amalgamations. The assumption 2ℵ0 = ℵ1 implies that ‡K has a semi-continuous
Fräıssé sequence ~u of length ω1, where semi-continuity is with respect to quotient
maps (obviously, every countable inverse sequence of quotient maps has a limit).
Thus, the sequence ~u leads to a continuous inverse sequence of compact metric
spaces Uα (α < ω1) in which all bonding maps are retractions. Denote by V the
limit of this sequence. By Proposition 7.2, V is a Valdivia compact of weight ℵ1,
that is, V satisfies (1). Fix another nonempty Valdivia compact K whose weight
is 6 ℵ1. Again by Proposition 7.2, K is the limit of a continuous sequence of re-
tractions between metrizable compacta. By Lemma 6.2, this sequence extends to a
semi-continuous sequence ~x in ‡K. Now Theorem 6.9 gives a proper arrow ~f : ~x→ ~u
which gives rise to a retraction r : V → K. This shows (2).

49



Property (3) is just a translation of the back-and-forth principle, satisfied by the
Fräıssé sequence ~u by Theorem 6.5. The relevant fact needed here is that every map
f : V → K onto a metrizable compact space factorizes through some Uα, that is, it
satisfies f = f ′ ◦pα, where pα : V → Uα is the retraction obtained from the ‡K-arrow
u∞α : ~u→ uα.

In order to show the uniqueness of V , let us consider the category L of all retrac-
tions between nonempty compact metrizable spaces. By Proposition 7.2, the space
V is the limit of a continuous inverse sequence ~v in L. Property (3) implies that the
sequence is Fräıssé in L. Even though countable inverse sequences of retractions may
have no limits in L, the limits “computed” in the bigger category of all continuous
maps provide a quasi-limiting operator. Thus, by Theorem 4.4, the sequence ~v is
unique, up to an isomorphism of sequences. This clearly translates to the fact that
V is unique up to a homeomorphism.

Let us finally see that w(V ) > 2ℵ0 , whenever V satisfies (3). Clearly, there is
a retraction f : V → I, where I is the unit interval. Fix a point ∞ /∈ I and let
K = I ∪ {∞}, where ∞ is an isolated point. Let g : V → K be a fixed retraction.
For each t ∈ I, let rt : K → I be such that rt � I = idI and rt(∞) = t. Let
ht : V → V be a homeomorphism such that f = rt ◦ g ◦ ht. Let Ut = f−1(t). Then
Ut = h−1

t (g−1(r−1
t (t))) ⊇ h−1

t (g−1
t (∞)) and, since∞ is isolated in K, we deduce that

Ut has nonempty interior. Obviously, Ut ∩Us = ∅ whenever t 6= s, which shows that
w(V ) > |I| = 2ℵ0 .

Using the full strength of categories of projection-embedding pairs, it is possible
to make the result above more precise, by considering a pair of the form 〈V,D〉, where
D = Σ(ω1)∩ V , with respect to the appropriate embedding of V into the Tikhonov
cube Iω1 . In particular, for every retractions f : V → K, f : V → L, where K,L are
metrizable compacta contained in D, every homeomorphism h : K → L extends to
an auto-homeomorphism of V . Another fact would be that every Valdivia compact
K ⊆ Iω1 with a dense set G = K ∩ Iω1 is homeomorphic to a retract K ′ ⊆ V of V so
that G = D ∩K ′. We have decided to present the simplified version which is more
transparent and less technical.

A result from [25] says that every retract of a Valdivia compact is again Valdivia
provided its weight does not exceed ℵ1. It is an open problem whether the same holds
for arbitrary weight. A category-theoretic description of the whole class of Valdivia
compacta is given in [25]. Unfortunately, it is not clear how to use it when the weight
exceeds ℵ1 and, in particular, it is not clear how to construct a retractively universal
Valdivia compact space for larger weights.

7.2 Banach spaces

It is well-known that there exist separable Banach spaces that are isometrically
universal for the class of all separable Banach spaces. Perhaps the first example is
C ([0, 1]), the space of continuous functions on the unit interval, endowed with the
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maximum norm. This space, however, does not have good homogeneity properties
(see Proposition 7.6 for the precise statement). There is another separable Banach
space G, constructed by Gurarĭı [13], that is also isometrically universal for separable
spaces and moreover has the following homogeneity property:

(H) Given an isometry f : X → Y between finite-dimensional linear subspaces
of G, given ε > 0, there exists a bijective isometry h : G → G such that
‖f − h � X‖ 6 ε.

Furthermore, G is the unique, up to isometry, separable Banach space containing iso-
metric copies of all finite-dimensional spaces and satisfying (G). For a direct and el-
ementary proof we refer to [26]. Typically, the condition specifying the Gurarĭı space
is different from (G), it involves almost isometric embeddings of finite-dimensional
spaces. The space G can be viewed as some sort of an “approximate Fräıssé limit”.
On the other hand, there seems to be no natural category whose Fräıssé sequence
would lead to G. In fact, Gurarĭı had already observed that G does not satisfy the
variant of condition (G) with X, Y being one-dimensional and ε = 0.

Below we show the existence, under the Continuum Hypothesis, of a natural
variant of Gurarĭı’s space that comes from a Fräıssé sequence in the category of
separable Banach spaces. Its existence was not known before3, although it actually
could be derived from the results of Droste & Göbel [11], since the Fräıssé sequence
in this category can always be made continuous.

Let Biso
ℵ0 denote the category whose objects are separable Banach spaces and

arrows are linear isometries. The following fact is well-known.

Lemma 7.3. Biso
ℵ0 has the amalgamation property.

Proof. Fix X, Y, Z ∈ Biso
ℵ0 and fix linear isometric embeddings f : Z → X and

g : Z → Y . Without loss of generality, we may assume that f and g are inclusions,
i.e. Z ⊆ X and Z ⊆ Y . We may also assume that X ∩ Y = Z. Now let W be the
formal algebraic sum of X and Y , i.e. W = {x+y : x ∈ X, y ∈ Y } and x+y = x′+y′

whenever x− x′ = y′ − y ∈ Z. The formula

‖w‖ = inf{‖x‖X + ‖y‖Y : w = x+ y}

defines a norm on W such that the canonical embeddings are isometric. Finally, W
is a separable Banach space: It can be seen as a suitable quotient of X⊕Y endowed
with the `1-norm.

Clearly, Biso
ℵ0 has an initial object, the zero space. Thus, directedness follows from

amalgamation.

Lemma 7.4. Biso
ℵ0 is σ-complete.

3See footnote 1 in the last paragraph of Introduction.
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Proof. The completion of a countable chain of separable Banach spaces is a separable
Banach space.

Theorem 7.5. Assume 2ℵ0 = ℵ1. There exists a Banach space V of density ℵ1 such
that every Banach space of density 6 ℵ1 is linearly isometric to a subspace of V and
every linear isometry T : X → Y between separable subspaces of V can be extended
to a linear isometry of V . Moreover, the space V is unique, up to a linear isometry.

Proof. Assuming the Continuum Hypothesis, there are only ℵ1 many isometric types
of separable Banach spaces and there are only ℵ1 many types of linear isometries.
Thus, by Lemmata 7.3 and 7.4 and by Theorem 3.7, Biso

ℵ0 has a Fräıssé sequence ~u
of length ω1. We may further assume that this sequence is continuous. Let V be the
co-limit of ~u in the category of all Banach spaces.

Fix a Banach space X of density 6 ℵ1. We can write X =
⋃
α<ω1

Xα, where
{Xα}α<ω1 is an increasing chain of closed separable subspaces of X such that Xδ =
cl(
⋃
ξ<δXξ) for every limit ordinal ξ < ω1. Translating it to the language of category

theory, we obtain a continuous ω1-sequence in Biso
ℵ0 whose co-limit, in the category of

all Banach spaces, is X. By Theorem 3.12, there is an arrow of sequences F : ~x→ ~u.
This arrow has a co-limit in the category of all Banach spaces, which is just a linear
isometric embedding of X into V .

The second statement is obtained by the back-and-forth principle, using the
continuity of ~u.

It has been shown (using non-trivial arguments) in [3] that the space V from the
theorem above is not isomorphic to any C (K) space. The next simple statement
provides a short and elementary argument that V cannot be linearly isometric to
any C (K) space.

Proposition 7.6. Let K be a compact space which contains at least two points.
Then there exists a linear isometry T : X → Y between 1-dimensional subspaces of
C (K), which cannot be extended to a linear isometry of C (K).

Proof. Fix a 6= b in K. Let X consist of all constant functions on K. Let

R : C ({a, b})→ C (K)

be a regular extension operator for the inclusion {a, b} ⊆ K. That is, R is a linear
operator which assigns to each f ∈ C ({a, b}) its extension Rf ∈ C (K) so that R1 =
1 and Rf > 0 whenever f > 0. For example, let (Rf)(t) = ϕ(t)f(a)+(1−ϕ(t))f(b),
where ϕ : K → [0, 1] is a continuous function such that ϕ(a) = 1 and ϕ(b) = 0 (which
exists by Urysohn’s Lemma). Note that R is an isometric embedding of C ({a, b})
into C (K).

Now define T : X → C (K) by T1 = R1{a}, where 1{a} is the function which
takes value 1 at a and value 0 at b. Let Y = T [X] = {λR1{a} : λ ∈ R}. Then T is
an isometry.
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Suppose T : C (K)→ C (K) is a linear isometry extending T . Let

v = (T )
−1

[R1{b}].

Then ‖v‖ = 1. By compactness, there exists t ∈ K such that |v(t)| = 1. Let α = v(t)
and consider u = R(α1{a} + 1{b}) = αR1{a} + R1{b}. Notice that ‖u‖ = 1, while
‖(T )−1(u)‖ = ‖α1K + v‖ > |α + v(t)| = 2. Hence ‖(T )−1‖ > 2, a contradiction.

As we have mentioned above, under the Continuum Hypothesis, the Čech-Stone
remainder of the natural numbers N∗ is the inverse limit of the ω1-Fräıssé sequence
in the category of nonempty compact metric spaces with quotient maps. Thus it is
natural to expect that our space V is isometric (or at least isomorphic) to `∞/c0 =
C (N∗). This is not the case, because of Proposition 7.6 (and its isomorphic version
in [3]).

hhhaggg

We now turn to a more special class, namely Banach spaces with projectional
resolutions. From this point on, we consider the category Bℵ0 whose objects are
again all separable Banach spaces and arrows are linear operators of norm 6 1. We
shall apply the results of Section 6.

A projectional resolution of the identity (briefly: PRI ) on a Banach space X is a
sequence of norm-one projections {Pα}α<κ of X, satisfying the following conditions:

(P1) Pα ◦ Pβ = Pα = Pβ ◦ Pα for every α, β < κ.

(P2) Pδ[X] = cl
⋃
ξ<δ Pξ[X] for every limit ordinal δ < κ.

(P3) dens(Pα[X]) 6 α + ℵ0.

(P4) X = cl
⋃
α<κ Pα[X].

We are interested in the case of κ = ℵ1, where the existence of a PRI is equivalent
to the existence of the so-called countably 1-norming Markushevich basis, a natu-
ral generalization of a Schauder basis. Banach spaces with norming Markushevich
bases are often called Plichko spaces. We refer to [19] or [21] for details. In view
of Lemma 6.2, it is clear that a PRI in a space X of density ℵ1 is induced by a
semi-continuous sequence in ‡Bℵ0 .

Our aim is to obtain a complementably universal Banach space with a projec-
tional resolution of the identity, that is, we want that every other Banach space with
a PRI is linearly isometric to its 1-complemented subspace. Recall that a Banach
space X is 1-complemented in Y if there exists a projection P : Y → Y such that
‖P‖ 6 1 and P [Y ] = X.

Lemma 7.7. Let f : Z → X, g : Z → Y be left-invertible arrows in Bℵ0. Then f, g
have a pushout in Bℵ0.
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Proof. It is well-known and standard to check that the amalgamation described in
the proof of Lemma 7.3 is actually the pushout of f, g in the category of Banach
spaces with linear operators of norm 6 1.

We now have all ingredients needed to show the existence of a universal Banach
space with a PRI.

Theorem 7.8. Assume the Continuum Hypothesis. There exists a Banach space
U with a projectional resolution of the identity and of density ℵ1, which has the
following properties:

(1) The family {X ⊆ U : X is 1-complemented in U} is, modulo linear isometries,
the class of all Banach spaces of density 6 ℵ1 that admit a PRI.

(2) Given separable 1-complemented subspaces X, Y ⊆ U , given a bijective linear
isometry T : X → Y , there exists a bijective linear isometry H : U → U such
that H � X = T .

Moreover, properties (1) and (2) together with the existence of a PRI describe the
space U uniquely, up to a linear isometry.

Proof. The proof is completely analogous to that of Theorem 7.1, using the category
Bℵ0 instead of the category of compact metric spaces, and inductive sequences
instead of inverse sequences. Regarding part of property (1), we need to invoke a
result from [23] saying that the existence of a PRI in Banach spaces of density ℵ1 is
preserved under 1-complemented subspaces.

One has to admit that Theorem 7.8 (except for the uniqueness part) is already
contained in the last chapter of the monograph [21], however the construction and
arguments were entirely based on the early draft of this work, which existed in a
preprint form before the aforementioned monograph appeared.

It is well-known that the Gurarĭı space has a monotone Schauder basis. On the
contrary, the space V from Theorem 7.5 cannot have any kind of bases (of length
ω1), because this would imply the existence of an isomorphic variant of a PRI which
in turn would imply some isomorphic properties that are not shared by all Banach
spaces of density 6 2ℵ0 = ℵ1. An example of such a property is the existence of a
strictly convex renorming. It is well-known that the space `∞/c0 fails this property,
yet it is obviously isometric to a subspace of V . In particular, the space V is not
isomorphic to the space U from Theorem 7.8, since the latter one admits a strictly
convex renorming (implied by the PRI). We refer to the book [7] for details on
renorming theory of Banach spaces.

hhhaggg
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One can argue that Markushevich bases in non-separable Banach spaces are not
the proper generalization of Schauder bases. In fact, especially when viewed from
category-theoretic perspective, the notion of a PRI is the natural generalization of
monote finite-dimensional Schauder decompositions, not Schauder bases. A mono-
tone finite-dimensional Schauder decomposition in a Banach space X is a sequence
of norm one projections {Pn}n∈ω satisfying conditions (P1) and (P4) with κ = ω
and such that Pn[X] is finite-dimensional for each n ∈ ω. On the other hand, the
existence of a monotone Schauder basis is equivalent to the existence of a mono-
tone finite-dimensional decomposition {Pn}n∈ω such that dim(Pn+1−Pn)[X] = 1 for
every n ∈ ω. The last property obviously generalizes to higher cardinals. In fact, a
Banach space X of density ℵ1 has a monotone Schauder basis (of length ω1) if and
only if it has a PRI {Pα}α<ω1 such that the image of Pα+1 − Pα is 1-dimensional
for every α < ω1. Formally, a Schauder basis of type δ (where δ is an ordinal) is a
sequence {eξ}ξ<δ of vectors in a Banach space X such that for every x ∈ X there
are uniquely determined scalars {tξ}ξ<δ such that

x =
∑
ξ<δ

tξeξ,

where the convergence of the series is taken with respect to the norm. Once this
happens, for each α < δ there is a canonical projection Pα defined by

Pα

(∑
ξ<δ

tξeξ

)
=
∑
ξ<α

tξeξ.

The basis is monotone if ‖Pα‖ 6 1 for every α < δ. It is clear that {Pα}α<δ satisfies
conditions (P1), (P2), (P4) and

(P5) For each α < δ the image of Pα+1 − Pα is 1-dimensional.

On the other hand, given a sequence {Pα}α<δ satisfying (P1), (P2), (P4) and (P5),
we can choose for each α a vector eα from the image of Pα+1 − Pα, obtaining a
Schauder basis of type δ.

In order to formulate the result on universal Schauder bases, we need the fol-
lowing notion. Given Banach spaces Y ⊆ X, we say that Y is an initial subspace of
X if there is a sequence of norm one projections {Pα}α<δ, where δ 6 ω1, satisfying
conditions (P1), (P2), (P4), (P5) and such that Y = P0[X]. Typical examples of
initial subspaces are linear spans of initial parts of a Schauder basis. Note that an
initial subspace is 1-complemented and the trivial space is initial in X if and only
if X has a monotone Schauder basis of type 6 ω1. Given a Schauder basis {eξ}ξ<δ
in X, given a subset S ⊆ δ, we say that {eξ}ξ∈S is a canonically 1-complemented
subbasis if the linear operator PS : X → X, defined by conditions PSeξ = eξ for
ξ ∈ S and Peξ = 0 for ξ /∈ S, has norm 6 1. Finally, we say that a basis {vξ}ξ<δ
is isometric to a subbasis of {eα}α<η if there is an increasing function ϕ : δ → η
such that the linear operator f defined by equations f(vξ) = eϕ(ξ) (ξ < δ) is a linear
isometric embedding.
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Theorem 7.9. Assume the Continuum Hypothesis. Then there exists a Banach
space P with a monotone Schauder basis {eα}α<ω1 and with the following properties:

(i) Every monotone Schauder basis of type 6 ω1 is isometric to a canonically
1-complemented subbasis of {eα}α<ω1.

(ii) Given separable initial subspaces X, Y ⊆ P, each with a monotone Schauder
basis, given a bijective linear isometry h : X → Y , there exists a bijective linear
isometry H : P→ P such that H � X = h.

Furthermore, conditions (i) and (ii) determine the space P uniquely, up to a linear
isometry.

Proof. We shall first consider a pair of categories B ⊆ B′ which has the mixed
amalgamation property. Namely, the objects of B′ are pairs of the form 〈X, {xξ}ξ<δ〉,
where δ < ω1 and {xξ}ξ<δ is a monotone Schauder basis in X. A B′-arrow from
〈X, {xξ}ξ<δ〉 into 〈Y, {yξ}ξ<η〉 is an isometric embedding of the basis {xξ}ξ<δ onto
a canonically 1-complemented subbasis of {yξ}ξ<η. The category B has the same
objects as B′, the arrows are more restrictive. Namely, a B-arrow from 〈X, {xξ}ξ<δ〉
into 〈Y, {yξ}ξ<η〉 is an isometric embedding f : X → Y such that f(xξ) = yξ for
ξ < δ (note that {yξ}ξ<δ is canonically 1-complemented in {yξ}ξ<η because the basis
is monotone).

Claim 7.10. The inclusion B ⊆ B′ has the mixed amalgamation property.

Proof. It suffices to prove the mixed amalgamation involving a B-arrow f : Z → X
such that f is the inclusion Z ⊆ X and X/f [Z] is 1-dimensional. For general B-
arrows, the mixed amalgamation can later be proved by an easy induction, using
continuity at limit steps.

So fix Banach spaces Z,X, Y such that Z ⊆ X, {xξ}ξ6δ is a monotone Schauder
basis in X such that {xξ}ξ<δ is a Schauder basis for Z. Fix also a B′-arrow i : Z →
Y , where {yξ}ξ<% is a monotone Schauder basis and {i(xξ)}ξ<δ is a canonically 1-
complemented subbasis of {yξ}ξ<%. Let i(xξ) = yϕ(ξ), where ϕ : δ → % is strictly
increasing. Let P : Y → Z and T : X → Z be the canonical projections.

Forgetting the structure induced by Schauder bases, we move into the category
of separable Banach spaces Bℵ0 , where by Lemmata 7.7 and 6.6 we conclude that
the pair 〈i, P 〉, 〈⊆, T 〉 of ‡Bℵ0-arrows has a proper amalgamation. In other words,
there exist a Banach space W ⊇ Y and an isometric embedding j : X → W , together
with norm one projections S : W → Y and R : W → X, satisfying

j � Z = i, T ◦R = P ◦ S, S ◦ j = i ◦ T and R � Z = P.

Replacing W by Y + j[X], we may assume that W/Y is 1-dimensional (in fact, the
pushout of the embeddings already has this property). Define wξ = yξ for ξ < % and
define w% = j(xδ). Observe that Sj(xδ) = iT (xδ) = 0, that is, xδ ∈ kerS. It follows
that {wξ}ξ6% is a monotone Schauder basis of W and S is the canonical projection,
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that is, the inclusion Y ⊆ W becomes a B′-arrow. Finally, j is a B-arrow, which is
witnessed by the projection R.

Now, since 2ℵ0 = ℵ1, by Theorem 3.17 we conclude that there exists a continuous
ω1-sequence ~U in B that is Fräıssé over the inclusion B ⊆ B′. It is clear that every
monotone Schauder basis of length ω1 is the result of a continuous chain in B. Thus,
(i) follows from Theorem 3.18.

In order to show (ii), we shall move to another category. Namely, let K be the
subcategory of Bℵ0 consisting of all isometric embeddings f : X → Y such that
f [X] is an initial subspace of Y and {0} is an initial subspace of X (i.e., X has a
monotone Schauder basis of a countable type).

Adapting the arguments from Claim 7.10, it is clear that K has the amalgamation
property. Furthermore, co-limits in the category of Banach spaces provide a quasi-
limiting operator on K, therefore by Theorem 4.4 there is at most one continuous ω1-
Fräıssé sequence ~u in K and it satisfies the back-and-forth principle. This translates
to the fact that the Banach space obtained as the co-limit of ~u in the category of
Banach spaces satisfies (ii) and is unique up to a linear isometry.

In order to complete the proof, it suffices to show that ~u is isomorphic to the
image of ~U under the forgetful functor from B′ into K. Represent ~U as a suitable
continuous chain {Uα}α<ω1 of separable spaces. Fix α < ω1 and fix an isometric
embedding f : Uα → Y such that f [Uα] is an initial subspace of Y . We need to
find an isometric embedding g : Y → Uβ with β > α, such that g[Y ] is an initial
subspace of Uβ and g ◦f is the inclusion Uα ⊆ Uβ. Notice that, just by the definition
of an initial subspace, Y has a monotone Schauder basis extending the image of the
fixed basis of Uα. In other words, f is actually a B-arrow. Using the fact that ~U is
Fräıssé over the inclusion B ⊆ B′, we find β > α and a B′-arrow g : Y → Uβ such
that g ◦ f is the inclusion Uα ⊆ Uβ. Finally, note that a Banach space E is initial
in F whenever E ⊆ F and a fixed monotone Schauder basis of E is canonically
1-complemented in a fixed monotone Schauder basis of F . In particular, g[Y ] is an
initial subspace of Uβ, which says that g ∈ K. This shows that ~u is a Fräıssé sequence
in K.

Let us mention that in the separable case, Pe lczyński [35] constructed a com-
plementably universal (in the sense of isomorphic embeddings) Banach space for
Schauder bases of type ω. In the same paper, he also constructed a complementably
universal unconditional basis of type ω. Its uncountable counterpart can be obtained
by a suitable modification of the proof above. We skip the details.

hhhaggg

We finally recall a rather standard argument, going back to Ostrovkĭı [32], show-
ing that the Continuum Hypothesis is really needed for the existence of the Banach
spaces from Theorems 7.5, 7.8 and 7.9. The fact that a space satisfying Theorem 7.5
cannot have density less than the continuum has been already noted in [3, Prop.
4.1].
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Proposition 7.11. Let V be a Banach space containing a fixed isometric copy of
c0 and satisfying the following condition:

(×) For every Banach space E ⊇ c0 such that dim(E/c0) = 1 and c0 is 1-comple-
mented in E, there exists an isometric embedding f : E → V such that f �
c0 = idc0.

Then the density of V is at least the continuum.

Proof. We assume that c0 ⊆ V . Given an infinite set A ⊆ ω, denote by χA its
characteristic function, treated as an element of `∞. Let EA = c0 + RχA ⊆ `∞
endowed with the norm ‖x + λχA‖ = max{‖x + λχA‖∞, |λ|}. By this way, the
canonical projection onto c0 that maps χA to 0 has norm one and we may use
condition (×). Let fA : EA → V be an embedding such that fA � c0 = idc0 and let
vA = fA(χA). Now fix another infinite set B ⊆ ω such that A 6⊆ B and fix m ∈ A\B.
Then ‖vA − vB‖ > ‖vB − 2χ{m}‖ − ‖2χ{m} − vA‖ = 3 − 2 = 1. Finally, taking an
independent family of cardinality 2ℵ0 we obtain a 1-discrete subset of V of the same
cardinality.

Corollary 7.12. A Banach space satisfying the assertion either of Theorem 7.5 or
7.8 or 7.9 must have density at least 2ℵ0.

7.3 The Cantor set

Let Set+ denote the category of nonempty finite sets. It is clear that one-to-one
mappings have pushouts in Set+, therefore it has proper amalgamations. We claim
that σ(‡Set+) is isomorphic to the following category L. The objects of L are pairs
of the form 〈K,D〉, where K is a totally disconnected compact metric space and
D ⊆ K is a countable dense set. An arrow from 〈K,D〉 to 〈L,E〉 is a pair of functions
〈j, f〉, where j : D → E, f : L→ K, f ◦ j = idD and f is continuous.

Given a sequence ~x in ‡Set+, we take D to be the co-limit of e[~x] in the category
of sets. Clearly, D is a countable set. Now take K to be the inverse limit of r[~x] in
the category of topological spaces. Why do we mention topology here? As we shall
see in a moment, arrows correspond to continuous quotients. Clearly, K is compact
metrizable and totally disconnected. In view of Lemma 6.1, there is a canonical
embedding of D into K. Thus, we may think of D as a subset of K. Notice that
every projection from K to an element of the sequence r[~x] is a continuous quotient;
in other words, it corresponds to a partition into clopen sets.

Fix two sequences ~x, ~y in ‡Set+ and fix an arrow ~f : ~x → ~y. Let 〈K,D〉 and
〈L,E〉 be the L-objects corresponding to ~x and ~y, respectively. Notice that the
sequence e(fn) “converges” to a one-to-one map j : D → E, and the sequence r(fn)
“converges” to a continuous quotient f : L → K. Clearly, f ◦ j = idD. By this way
we have described a functor from σ(‡Set+) into L.

Now fix an L-object 〈K,D〉 and write D = {dn}n∈ω. Assume D is infinite and
its enumeration is one-to-one. Construct inductively partitions Un of K into clopen
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sets, in such a way that for each U ∈ Un there is a unique index i 6 n such that
di ∈ U . Let Dn = {d0, . . . , dn} and define rn : K → Dn so that r−1

n (di) ∈ Un and
rn(di) = di for i 6 n. Let en : Dn → D be the inclusion. Set x∞n = 〈en, rn〉. Then x∞n
is a ‡Set+-arrow and for each n < m there is a unique ‡Set+-arrow xmn satisfying
x∞n = x∞m ◦ xmn . It is clear that this defines a sequence ~x in ‡Set+ which induces
the L-object 〈K,D〉. Call an L-arrow proper if it corresponds to a proper arrow of
sequences in ‡Set+.

Lemma 7.13. An L-arrow f : 〈K,D〉 → 〈L,E〉 is proper if and only if f = 〈j, r〉,
where j : K → L, r : L → K are continuous maps such that j[D] ⊆ E, r[E] ⊆ D,
and r ◦ j = idK.

The last three conditions actually imply that r[E] = D.

Proof. It is clear that a proper arrow of sequences induces a pair 〈j, r〉 satisfying the
conditions above. Fix continuous maps j : K → L, r : L→ K satisfying r ◦ j = idK
and j[D] ⊆ E, r[E] = D. Without loss of generality, we may assume that L ⊆ K,
j is the inclusion, and D = E ∩ L. Choose a chain {Dn}n∈ω of finite subsets of D
such that

⋃
n∈ωDn = D. Choose inductively finite sets En ⊆ E so that Dn ⊆ En,

r[En] = Dn, and En ⊆ En+1 for n ∈ ω. We can do it in such a way that
⋃
n∈ω En = E,

because r−1[D] ⊇ E. Now observe that fn := 〈en, rn〉 is a ‡Set+-arrow, where en is
the inclusion Dn ⊆ En and rn = r � En. Finally, {fn}n∈ω is a proper arrow from the
sequence {Dn}n∈ω to the sequence {En}n∈ω.

The category ‡Set+ is certainly countable, therefore it has a Fräıssé sequence. It
is easy to check that a sequence ~u is Fräıssé in ‡Set+ if and only if the inverse limit
of r[~u] is the Cantor set 2ω, together with the canonical projections. Moreover, for
every countable dense set D of 2ω there exists a sequence ~u in ‡Set+ such that 2ω

is the limit of r[~u] and D is the co-limit of e[~u] in the category of sets. In particular,
we obtain the following properties of the Cantor set which belong to the folklore:

Theorem 7.14. Let Q denote the set of rational numbers in the standard represen-
tation of the Cantor set. Then

(1) Given a countable dense set D ⊆ 2ω, there exists a homeomorphism h : 2ω → 2ω

such that h[D] = Q.

(2) Given a compact totally disconnected metric space K together with a countable
dense set D ⊆ K, there exist a continuous surjection f : 2ω → K and a
topological embedding i : K → 2ω such that f ◦i = idK, i[D] ⊆ Q and f [Q] = D.

Homogeneity translates to the following statement, again belonging to the folk-
lore:

Theorem 7.15. Let Q be a countable dense subset of 2ω. Given a nonempty finite
set s, given continuous mappings pi : 2ω → s and embeddings ei : s→ Q for i = 0, 1,
such that p0 ◦ e0 = ids = p1 ◦ e1, there exists a homeomorphism h : 2ω → 2ω such that
h[Q] = Q, p1 ◦ h = p0 and h ◦ e0 = e1.
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Below we give two examples of improper arrows in σ(‡Set+).

Example 7.16. (a) Let xn = {0, . . . , n}, yn = {0, . . . , n,∞}. Then x0 ⊆ x1 ⊆ . . .
and y0 ⊆ y1 ⊆ . . . . Let K = L = ω ∪ {∞}, where ω is discrete and ∞ = limn→∞ n.
Given n < m, let xmn ∈ (‡Set+) be such that e(xnm) is inclusion and r(xmn ) is the
retraction mapping all elements of the set {n+ 1, . . . ,m} to n. Let ymn ∈ (‡Set+) be
such that e(ymn ) is again inclusion, while r(ymn ) maps the set {n + 1, . . . ,m,∞} to
∞. This defines ω-sequences ~x and ~y in ‡Set+. Now let fn : xn → yn be defined by
fn = 〈en, rn〉, where en is inclusion and rn maps ∞ to n. Notice that, given n < m,
the equation ymn ◦ fn = fm ◦ xmn holds in ‡Set+, although this amalgamation is not
proper.

The sequences ~x and ~y correspond to pairs 〈K,ω〉 and 〈L,L〉 in L, respectively.

The sequence ~f = {fn}n∈ω induces maps e : ω → L and r : L → K, where e is the
inclusion of ω into L and r is the identity. Note that r[L] 6⊆ ω, therefore 〈e, r〉 is not
proper.

Another example of an improper arrow can be obtained as follows. Consider the
compact space L = Z∪ {−∞,∞}, where Z is the (discrete!) set of the integers and
limn→∞∞ and limn→∞−n = −∞. Let K = Z ∪ {∞} be a quotient of L obtained
by identifying −∞ with ∞. Let r : L → K be the quotient map. Furthermore, let
D = K, E = L, and let e : D → E be the inclusion. We claim that 〈e, r〉 is an
arrow from 〈K,D〉 into 〈L,E〉. Of course, it cannot be proper, because e is even not
continuous.

Let xn = {i ∈ Z : |i| 6 n} ∪ {∞}, yn = {i ∈ Z : |i| 6 n} ∪ {−∞,∞}. Let
xmn be such that e(xmn ) is the inclusion xn ⊆ xm and r(xmn ) is identity on xn and
maps all j ∈ xm \ xn to ∞. Define ymn in a similar manner, with the difference that
r(ymn )(j) = −∞ whenever j < −n and r(ymn )(j) = ∞ whenever j > n. We have
defined sequences ~x and ~y corresponding to 〈K,K〉 and 〈L,L〉, respectively. Finally,
let fn = 〈en, rn〉, where en is the inclusion xn ⊆ yn and rn is a quotient map of yn
onto xn that maps −∞ onto ∞ and satisfies rn ◦ en = idxn . Then ~f = {fn}n∈ω is an
improper arrow of sequences inducing 〈e, r〉.

hhhaggg

We have just seen above that the Cantor set 2ω together with its fixed countable
dense subset Q can be seen as the co-limit of a Fräıssé sequence in ‡Set+. Using
the concepts from Section 6, we shall now find a universal family of continuous
self-functions on 2ω that preserve Q.

Namely, we define the following category K. The objects of K are triples of the
form 〈a, b, {fi}i∈s〉, where a, b, s are nonempty finite sets, and fi : a→ b is a mapping
for each i ∈ s. Given K-objects p = 〈a, b, {fi}i∈s〉, q = 〈c, d, {gi}i∈t〉, a K-arrow from
p to q is a triple 〈k, `, ϕ〉 such that k : a→ c, ` : b→ d are ‡Set+-arrows and ϕ : s→ t
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is a one-to-one function such that for each i ∈ s the following diagrams commute:

c
gϕ(i) // d

a
OO

e(k)

OO

fi
// b

OO
e(`)

OO c

r(k)
����

gϕ(i) // d

r(`)
����

a
fi

// b

Recall that also r(k)◦e(k) = ida and r(`)◦e(`) = idb. It is obvious that K is countable
and has a weakly initial object (a single function between one-element sets). The
key point is to show that K has the amalgamation property. For this aim, we need
the following extension property, whose proof is rather trivial.

Lemma 7.17. Let f : a → b be a Set+-arrow. Let i : a → a′, j : b → b′ be ‡Set+-
arrows. Then there exists a Set+-arrow f ′ : a′ → b′ for which the diagrams

a′
f ′ // b′

a
OO

e(i)

OO

f
// b

OO
e(j)

OO a′

r(i)
����

f ′ // b′

r(j)
����

a
f

// b

commute.

An amalgamation of two K-arrows will be called proper if the two squares in-
volving ‡Set+ are proper amalgamations.

Lemma 7.18. K has the proper amalgamation property.

Proof. Fix K-objects p = 〈a, b, {fi}i∈s〉, qj = 〈cj, dj, {gji }i∈tj〉, where j = 0, 1, and
let 〈kj, `j, ϕj〉 be K-arrows from p to qj. By (the proof of) Lemma 6.6, there exist
‡Set+-arrows k′j : cj → c and `′j : dj → d, where j = 0, 1, such that

c0 //
e(k′0)

// c

a
OO

e(k0)

OO

//
e(k1)

// c1

OO
e(k′1)

OO d0 //
e(`′0)

// d

b

OO
e(`0)

OO

//
e(`1)

// d1

OO
e(`′1)

OO

are pushout squares in Set. In particular, 〈k′0, k′1〉 is a proper amalgamation of 〈k0, k1〉
and 〈`′0, `′1〉 is a proper amalgamation of 〈`0, `1〉. Without loss of generality, we may
assume that s = t0 ∩ t1 and ϕ0, ϕ1 are inclusions. Let t = t0 ∪ t1 and let ϕ′j : tj → t
be the inclusion for j = 0, 1.

Given i ∈ t0 \ s, using Lemma 7.17, choose gi : c→ d satisfying

gi ◦ e(k′0) = e(`′0) ◦ g0
i and r(`′0) ◦ gi = g0

i ◦ r(k′0).

Similarly, given i ∈ t1 \ s, find gi satisfying analogous conditions. In order to com-
plete the proof, we still need to define gi for i ∈ s, so that w = 〈c, d, {gi}i∈t〉 will
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become a K-object which together with k′0, k
′
1, `
′
0`
′
1 witnesses the proper amalgama-

tion property.
Fix i ∈ s and define

α = g0
i ◦ r(k′0), β = g1

i ◦ r(k′1).

Notice that

r(`0) ◦ α = r(`0) ◦ g0
i ◦ r(k′0) = fi ◦ r(k0) ◦ r(k′0)

= fi ◦ r(k1) ◦ r(k′1) = r(`1) ◦ g1
i ◦ r(k′1) = r(`1) ◦ β.

By the property of a pushout, there exists a unique map gi : c→ d satisfying

r(`′0) ◦ gi = α and r(`′1) ◦ gi = β.

We still need to check that g0
i ◦ r(k′0) = r(`′0) ◦ gi and g1

i ◦ r(k′1) = r(`′1) ◦ gi. By
symmetry, we shall prove the first equality only. Define

δ = r(`′0) ◦ gi ◦ e(k′1).

We have

δ ◦ e(k1) = r(`′0) ◦ gi ◦ e(k′1 ◦ k1) = r(`′0) ◦ e(`′1) ◦ g1
i ◦ e(k1)

= r(`′0) ◦ e(`′1) ◦ e(`1) ◦ fi = r(`′0) ◦ e(`′0) ◦ e(`0) ◦ fi
= e(`0) ◦ fi = g0

i ◦ e(k0).

This shows that 〈g0
i , δ〉 is an amalgamation of 〈e(k0), e(k1)〉. By the property of a

pushout, there is a unique mapping γ : c→ d0 satisfying

(∗) γ ◦ e(k′0) = g0
i and γ ◦ e(k′1) = δ.

Finally, it remains to check that both γ1 = g0
i ◦ r(k′0) and γ2 = r(`′0) ◦ gi satisfy (∗).

That γ2 satisfies (∗) is clear. It is also obvious that γ1 ◦ e(k′0) = g0
i . Finally,

γ1 ◦ e(k′1) = g0
i ◦ r(k′0) ◦ e(k′1) = g0

i ◦ e(k0) ◦ r(k1)

= e(`0) ◦ fi ◦ r(k1) = e(`0) ◦ r(`1) ◦ g1
i

= r(`′0) ◦ e(`′1) ◦ g1
i = r(`′0) ◦ gi ◦ e(k′1) = δ,

which completes the proof.

The proof above could be made simpler and shorter, using the point-structure of
sets and the explicit form of pushouts of sets. On the other hand, purely category
theoretic arguments have the advantage of possible applicability to other categories.

Once we have proper amalgamations, it is natural to consider the category σK
with proper arrows, where the meaning of being proper is rather obvious.

Let ~u be a Fräıssé sequence in K, where un = 〈vn, wn, {zni }i∈sn〉. We may assume
that s0 ⊆ s1 ⊆ . . . and that the bonding maps unm are of the form 〈vnm, wnm, ψnm〉,
where ψnm is the inclusion of sm into sn.
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Lemma 7.19. ~v and ~w are Fräıssé sequences in ‡Set+.

Proof. This is an immediate consequence of Lemma 7.17.

It follows that both ~v and ~w determine the Cantor set together with a fixed
countable dense (as we know, it can be chosen arbitrarily). Finally, in order to show
that ~u provides a sequence of continuous self-mappings of the Cantor set that is
universal both in the sense of quotients and in the sense of embeddings, we need to
decode the information contained in the category σK.

Namely, let Lp be the subcategory of L consisting of all proper arrows (see
Lemma 7.13). Recall that the objects of Lp (as well as of L) are pairs 〈K,D〉, where
K is a 0-dimensional compact metrizable space and D is a countable dense subset
of K. Let B be the category whose objects are the same as the objects of L, while a
B-arrow from 〈K,D〉 to 〈L,E〉 is a continuous map f : K → L satisfying f [D] ⊆ E.

We now define the following category F, in the same spirit as the category K
defined above. The objects of F are triples of the form 〈A,B, {fn}n∈S〉, where A, B
are L-objects, S is a nonempty countable set and fn : A→ B is a B-arrow.

An F-arrow from X = 〈A,B, {fn}n∈S〉 to X ′ = 〈A′, B′, {f ′n}n∈S′〉 is a triple
f = 〈k, `, ϕ〉, where k : A→ A′, ` : B → B′ are Lp-arrows, ϕ : S → S ′ is a one-to-one
mapping such that

f ′ϕ(n) ◦ e(k) = e(`) ◦ fn and r(`) ◦ f ′ϕ(n) = fn ◦ r(k)

holds for every n ∈ S.

Lemma 7.20. The canonical functor from σK to F, identifying the objects of K with
constant sequences, is surjective on the class of objects.

Proof. As usual, we identify K with constant sequences. It is obvious how to define
a suitable functor F : σK → F which is the identity on K. It remains to check that
every F-arrow is induced by a proper arrow of the corresponding sequences in K.

Fix an F-object X = 〈A,B, {fn}n∈S〉, where A = 〈K,D〉, B = 〈L,E〉. For
convenience, we shall assume that S = ω (if S is finite, the argument becomes

simpler). Let ~a, ~b be two sequences in ‡Set+ such that K = lim←− r[~a], L = lim←− r[
~b],

D =
⋃
n∈ω an, E =

⋃
n∈ω bn, assuming {an}n∈ω and {bn}n∈ω are chains of finite

sets such that e(anm) and e(bnm) are inclusions. For each n ∈ ω we can find a strictly
increasing function ϕn : ω → ω such that fn is the limit of {fkn}k∈ω, or more precisely,
for each k, n ∈ ω the squares

D
fn // E

ak
OO

OO

fkn

// bϕn(k)

OO

OO K

����

fn // L

����
ak

fkn

// bϕn(k)
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are commutative, where the vertical arrows are induced by the sequences ~a,~b. Define

ψ(n) = max{ϕ0(n), ϕ1(n), . . . , ϕn(n)}

and sn = {0, 1, . . . , n}. Given n 6 k, replace fkn by b
ψ(n)
ϕ(n) ◦ fkn . Now

xk = 〈ak, bk, {fkn}k∈sn〉

is a K-object and the bonding maps of ~a and ~b can be used to compose a sequence
~x converging to X in the sense that each fn is the co-limit of {fkn}k>n.

It is not hard to check that the functor mentioned in Lemma 7.20 witnesses the
equivalence of F to the category of sequences in K with proper arrows.

Summarizing, we obtain the following result concerning continuous functions on
the Cantor set.

Theorem 7.21. Let Q be a fixed countable dense set in the Cantor set 2ω. Then
there exists a sequence {un}n∈ω of continuous self-maps of the Cantor set such that
un[Q] ⊆ Q for every n ∈ ω and the following condition is satisfied.

(‡) Given a sequence {fn : K → L}n∈ω of continuous functions between 0-dimen-
sional compact metric spaces, given countable dense sets D ⊆ K, E ⊆ L such
that fn[D] ⊆ E for every n ∈ ω, there exist topological embeddings i : K → 2ω,
j : L → 2ω together with continuous surjections p : 2ω → K, q : 2ω → L,
satisfying p ◦ i = idK, q ◦ j = idL, i[D] ⊆ Q, p[Q] = D, j[E] ⊆ Q, p[Q] = E,
and there exists a one-to-one function θ : ω → ω such that for every n ∈ ω the
following diagrams commute.

2ω
uθ(n) // 2ω

K

OOi

OO

fn
// L

OO
j

OO 2ω

p
����

uθ(n) // 2ω

q
����

K
fn

// L

On could also formulate the homogeneity part, describing the sequence {un}n∈ω
uniquely up to isomorphism. The precise statement seems to be too technical, there-
fore we have decided to omit it.

7.4 Linear orders

Historically, the set Q of rational numbers was the first universal homogeneous ob-
ject, discovered in this context by Cantor at the end of 19th century. In the realm of
Fräıssé theory, its properties are rather obvious and easily explained. Since the cate-
gory of linear orders with embeddings has the amalgamation property, uncountable
versions of the set of rational numbers may exist, as usual, subject to a “proper”
cardinal arithmetic. For example, the Continuum Hypothesis is equivalent to the
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statement “there exists a linearly ordered set Qω1 of cardinality ℵ1 that contains
isomorphic copies of all linearly ordered sets of cardinality 6 ℵ1 and is homoge-
neous with respect to its countable subsets”. Indeed, assuming CH, this is just the
consequence of the Fräıssé-Jónsson theory. On the other hand, if such a set Qω1

exists then, assuming Q ⊆ Qω1 , every extension Q ⊆ Q ∪ {t} with t ∈ R must be
realized in Qω1 , showing that |Qω1 | > 2ℵ0 .

Notice that every embedding between finite linearly ordered sets is left-invertible.
This may serve as a motivation for studying uncountable versions of the set of
rational numbers, where homogeneity is considered with respect to left-invertible
embeddings. It turns out that no cardinal arithmetic assumptions are needed for
the existence of such a set of size ℵ1. In particular, we shall see a natural example of
a directed σ-complete category with amalgamations that is dominated by a single
arrow.

Namely, consider the category LO of nonempty countable linearly ordered sets
with increasing maps. By “increasing” we mean “preserving the non-strict ordering”.
In particular, constant maps are increasing.

Let f : 1 → 2 be the inclusion map, where, as usual, 1 = {∅} and 2 = {∅, 1}. It
is easy to see that the pair 〈f, f〉 has no pushout in LO. However, we shall see that
the category ‡LO has proper amalgamations.

Given linearly ordered sets A,B we denote by A ·B the set A×B endowed with
the lexicographic ordering. Note that, fixing p ∈ B, the pair 〈e, r〉 is a ‡LO-arrow
from A to A ·B, where e(a) = 〈a, p〉 and r(a, b) = a for a ∈ A, b ∈ B.

In particular, when B = Q and p = 0, the ‡LO-arrow `A : A → A · Q just
described above will be called canonical.

Lemma 7.22. The category ‡LO has proper amalgamations.

Proof. Let f : Z → X, g : Z → Y be ‡LO-arrows. Without loss of generality, we
may assume that X ∪ Y ⊆ Q and X ∩ Y = Z. Let us identify X and Y with
suitable subsets of Z ·Q. Since Q is homogeneous, we may actually assume that the
embedding of Z into Z ·Q is of given by the formula z 7→ 〈z, 0〉. Now, consider the
‡LO-arrows p : Z ·Q→ Z ·Q·Q and q : Z ·Q→ Z ·Q·Q defined by e(p)(z, s) = 〈z, s, 0〉,
r(p)(z, s, t) = 〈z, s〉 and e(q)(z, s) = 〈z, 0, s〉, r(q)(z, t, u) = 〈z, u〉. We shall actually
consider p restricted to X and q restricted to Y . We claim that

Y
q // Z ·Q ·Q

Z
f

//

g

OO

X

p

OO

is a proper amalgamation. Fix x = 〈t, s〉 ∈ X. Then r(f)(x) = t and e(g)(r(f)(x)) =
〈t, 0〉. On the other hand, e(p)(x) = 〈t, s, 0〉 and r(q)(e(p)(x)) = 〈t, 0〉.

Now fix y = 〈t, s〉 ∈ Y . Then r(g)(y) = t and e(f)(r(g)(y)) = 〈t, 0〉. On the
other hand, e(q)(y) = 〈t, 0, s〉 and r(p)(e(q)(y)) = 〈t, 0〉. This shows that the amal-
gamation provided by p and q is proper.
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Recall that `Q is the canonical ‡LO-arrow from Q to Q · Q. Note that, up to
isomorphism, `Q is a unique ‡LO-arrow h with domain Q and such that all fibers of
r(h) are isomorphic to Q.

Lemma 7.23. The arrow `Q is dominating in ‡LO.

Proof. Condition (D1) in the definition of a dominating family of arrows is obvi-
ous, because given a countable linear order X, the lexicographic product X · Q is
isomorphic to Q. Fix a ‡LO-arrow f : Q→ Y . Let `Y : Y → Y ·Q be the canonical
‡LO-arrow and let h = `Y ◦ f . Notice that all fibers of r(h) are isomorphic to Q,
therefore h is isomorphic to `Q.

Now we know that the category ‡LO has an ω-Fräıssé sequence, which we do not
find of any particular interest. Since LO is σ-complete, we can also talk about ω1-
Fräıssé sequences. By the results of Section 6, there exists a unique semi-continuous
ω1-sequence in ‡LO. Its natural co-limit Qω1 can be regarded as a natural uncount-
able variant of the set of rational numbers, existing without any extra set-theoretic
assumptions. Note that the ω1-Fräıssé sequence has the property that each bonding
arrow is isomorphic to `Q. With this information at hand, it is straightforward to
see that

Qω1 = {x ∈ Qω1 : | suppt(x)| < ℵ0},

endowed with the lexicographic ordering (recall that suppt(x) = {α : x(α) 6= 0}).
We now come back to the theory of Valdivia compact spaces, in the context of

linearly ordered spaces. Namely, every linearly ordered set induces a natural interval
topology. This topology is compact if and only if every subset has the least upper
bound (the supremum of the empty set is the minimal element). There is a natural
duality (formally: dual equivalence) between the category of linearly ordered sets
with increasing maps and the category of compact 0-dimensional linearly ordered
spaces with continuous increasing maps preserving the minimum and the maximum.
To be more precise, by a compact line we mean a compact linearly ordered space
K with distinguished elements 0K = minK and 1K = maxK. The arrows of our
category are continuous increasing maps preserving the distinguished elements. In
particular, compact lines are supposed to be nonempty. The duality can be described
briefly as follows. Given a linearly ordered set X, we let K(X) to be the set of all
increasing maps from X into 2 = {0, 1}. This is clearly a compact 0-dimensional
line. Conversely, given a compact 0-dimensional line K, we define L(K) to be the set
of all arrows into 2 = {0, 1} treated as a compact line. Specifically, L(K) consists of
all continuous increasing maps f : K → 2 satisfying f(0) = 0 and f(1) = 1. Again,
this is a linearly ordered set and we consider it without topology. Both operations
canonically extend to contravariant functors, providing the dual equivalence of the
two categories. The dual equivalence described above is actually a special case of
Priestley duality [6] between partially ordered sets and distributive lattices.

It turns out that Valdivia compact lines cannot be too big. For this aim, we
quote the following result from [24]:
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Proposition 7.24 ([24, Props. 5.5, 5.7]). Valdivia compact lines are precisely those
compact spaces that can be represented as limits of continuous inverse sequences of
compact metrizable lines whose bonding maps are increasing and right-invertible (in
the category of continuous maps). In particular, Valdivia compact lines have weight
6 ℵ1.

It has been furthermore proved in [24] that the class of (nonempty!) Valdivia
compact lines has a universal pre-image Vω1 which is 0-dimensional. More precisely,
every Valdivia compact is a continuous increasing quotient of Vω1 . As a byproduct,
we get the fact that every Valdivia compact line is a continuous increasing quotient
of a 0-dimensional one (this can be also proved more directly).

For a moment, let us consider the class of 0-dimensional Valdivia compact lines.
In view of Proposition 7.24, this class can be analyzed by looking at continuous
inverse sequences in the category L of topologically right-invertible increasing quo-
tient maps between 0-dimensional compact metric lines. It has been proved in [24],
without referring to Fräıssé sequences, that there is a single increasing quotient that
dominates this category. Namely, consider the Cantor set 2ω endowed with the usual
linear order. Actually, all linear orderings of 2ω compatible with its topology are iso-
morphic, so by the “usual one” we may consider the lexicographic ordering. Call a
point t ∈ 2ω rational if it is eventually constant when viewed as a function from
ω to 2. In the language of orderings, rational points are precisely those that are
isolated from one side (including 0 and 1). Let the map π : 2ω → 2ω be defined by
the following conditions: π−1(t) is the Cantor set, if t is rational and |π−1(t)| = 1,
otherwise. One can easily “extract” from the proof of [24, Thm. 5.8] that this map
dominates the category L. The Valdivia compact line Vω1 is the inverse limit of an
ω1-sequence ~v consisting of such maps. Thus, ~v is a Fräıssé sequence in L and by
this way we obtain the following fact, not discovered in [24]:

Theorem 7.25. Given an increasing isomorphism h : A→ B, where A,B are closed
metrizable subsets of Vω1, there exists an increasing isomorphism H : Vω1 → Vω1 such
that H � A = h.

Proof. Note that every increasing isomorphism is a homeomorphism and every closed
subset of a 0-dimensional compact line is its increasing retract. Thus, after moving
to a suitable category of embedding-projection pairs, the statement follows from
Theorem 6.5.

One has to admit that in the proof of [24, Thm. 5.8] it had been shown that
the canonical functor from L into the category of all compact metric lines has the
mixed amalgamation property and the sequence ~v mentioned above is Fräıssé over
this functor. Thus, the argument leading to the fact that every Valdivia compact
line is an increasing continuous image of Vω1 can be explained by Theorem 3.18.

Coming back to linearly ordered sets and to the Fräıssé limit Qω1 of the category
LO, let us mention a result from [20], characterizing linearly ordered sets X for
which K(X) is Valdivia compact:
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Proposition 7.26 ([20, Thm. 3.1]). Given a linearly ordered set X, the compact
line K(X) is Valdivia if and only if X has the following properties:

(1) |X| 6 ℵ1.

(2) Every bounded monotone ω1-sequence in X is convergent.

(3) Given a stationary set S ⊆ ω1, given a function f : S → X, there exists a
stationary set T ⊆ S such that f � T is monotone.

Condition (3) perhaps looks somewhat artificial and not natural, however it
appears to be one of the proper uncountable versions of the Bolzano-Weierstrass
principle, saying that every sequence in a linearly ordered set contains a monotone
subsequence.

It is important to note that for a continuous increasing map the property of
being right-invertible in the category of topological spaces does not imply being
right-invertible in the category of compact lines, because a right inverse may not
preserve 0 and 1, although it is always increasing. In fact, it is well-known that
every closed set (not necessarily containing 0, 1) of a 0-dimensional compact line is
its topological (even increasing) retract. It is easy to check that if f : K(Y )→ K(X)
is a topologically right-invertible increasing quotient map, then L(f) corresponds to
an increasing embedding e : X → Y such that e[X] is an increasing retract of its
convex hull

conv(e[X]) = {y ∈ Y : (∃ x0, x1 ∈ X) e(x0) 6 y 6 e(x1)}.

On the other hand, if f : X → Y is left-invertible in the category of linearly ordered
sets then K(f) is right-invertible in the category of compact lines with continu-
ous increasing maps. One can easily adapt the arguments of [20] for obtaining the
following characterization:

Theorem 7.27. Let V be a linearly ordered set of cardinality ℵ1. Then V is order
isomorphic to Qω1 if and only if it satisfies the following conditions:

(1) Every monotone ω1-sequence in V is convergent.

(2) Given countable sets A,B ⊆ V such that a < b for every a ∈ A, b ∈ B, there
exists p ∈ V such that a < p for a ∈ A and p < b for b ∈ B (we allow the
possibility that one of the sets A,B is empty).

(3) Given a stationary set S ⊆ ω1, given a function f : S → X, there exists a
stationary set T ⊆ S such that f � T is monotone.

We refer to [20] for details, where one can find all arguments showing that (1)
and (3) are necessary and sufficient for the fact that V is the co-limit of a sequence
in LO. Finally, condition (2) says that any ω1-sequence with co-limit V is Fräıssé in
LO.
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– Fräıssé-Jónsson, 24
– Bℵ0 , 53
– Biso

ℵ0 , 51
– T2, 36
– amalgamation structure, 23
– cofinal, 6
– directed, 6
– ordered, 6

cofinal subcategory, 6

cofinality for ω-sequences, 13
complemented space, 53
Corson compact, 48
countably tight space, 48

diagonalization property, 25
dominating family, 7
dominating family of arrows, 11

embedding of models, 28
embedding-projection pairs, 42
EP-pairs, 42
Existence Theorem, 11

family
– cofinal, 9
– dominating, 7

functor, 6
– injective, 35

healthy tree, 36

inductive sequence, 6
initial segment, 8
initial subspace, 55
initial subtree, 8

joint embedding property, 6

mixed amalgamation property, 17
mixed pushout property, 33
monoid, 30
morphism of sequences, 7

PRI, 53
projectional resolution of the identity, 53
proper amalgamation, 45
proper arrow, 47
pullback, 6
pushout, 6

quasi-limiting operator, 19
– partial, 19

72



quotient map of models, 28

reversed amalgamation, 6

Schauder basis, 55
semi-continuous sequence, 43
semigroup, 30
sequence, 6

– K-cofinal, 9
– L -continuous, 21
– (in)comparability, 39
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