CERGE-EI
search sitemap contact us
about
PhD program
MA program
Undergraduate Program in Central European Studies
research
library
GDN
people
publications
top journal publications
working papers
discussion papers
policy briefs
books
dissertations
lecture notes
newsletter
other
forecast
supporters
events
alumni
news
foundation
internal
home

 

©2000 CERGE-EI
webmaster

 

 


Who's Afraid of Reduced-Rank Parameterizations of Multivariate Models? Theory and Example

Scott Gilbert and Petr Zemcik

Reduced-rank restrictions can add useful parsimony to coefficient matrices of multivariate models, but their use is limited by the daunting complexity of the methods and their theory. The present work takes the easy road, focusing on unifying themes and simplified methods. For Gaussian and non-Gaussian (GLM, GAM, etc.) multivariate models, the present work gives a unified, explicit theory for the general asymptotic (normal) distribution of maximum likelihood estimators (MLE). MLE can be complex and computationally difficult, but we show a strong asymptotic equivalence between MLE and a relatively simple minimum (Mahalanobis) distance estimator. The latter method yields particularly simple tests of rank, and we describe its asymptotic behavior in detail. We also examine the method's performance in simulation and via analytical and empirical examples.

Omezeni hodnosti matice mohou podstatne zjednodusit matici koeficientu v modelech s vice promennymi, ale jejich pouziti limituje slozitost metod a jejich teorie. Nas clanek se vydava jednodussi cestou se zamerenim na metodologicke zobecneni a zaroven zjednoduseni. Pro gaussovske a negaussovske modely vice promennych (v anglicke literatu e oznacovane GLM, GAM, atd.) poskytujeme jednotnou, explicitni teorii pro obecne asymptoticke (normalni) rozdeleni estimatoru metody maximalni verohodnosti (EMMV). EMMV muze mit slozitou formu a nemusi byt snadne jej spocitat, nicmene tuto prekazku resime pomoci dukazu asymptoticke ekvivalence mezi EMMV a relativne jednoduchym (Mahalanobis) estimatorem nejmensi vzdalenosti. Tato metoda je vhodna obzvlast pro testy omezeni hodnosti matice a my popiseme detailne jeji asymptoticke vlastnosti v tomto kontextu. Navic zahrneme studii metody v simulacich a analytickych i empirickych prikladech.

 


print version