A lower bound on the size of resolution proofs of the Ramsey theorem

Pavel Pudlák*

December 7, 2011

Abstract

We prove an exponential lower bound on the lengths of resolution proofs of propositions expressing the finite Ramsey theorem for pairs.

Assuming that $n \geq R(k)$, where $R(k)$ denotes the Ramsey number, the Ramsey theorem for pairs and two colors, $n \rightarrow(k)_{2}^{2}$, is presented by the following unsatisfiable set of clauses. The variables are $x_{i j}$, for $1 \leq i<j \leq n$. The clauses are $\bigvee_{i, j \in K} x_{i j}$ and $\bigvee_{i, j \in K} \neg x_{i j}$, for all sets $K \subseteq\{1, \ldots, n\},|K|=k$. The corresponding tautology will be denoted by $R A M(n, k)$.

The Ramsey theorem was proposed as a hard tautology by Krishnamurthy in [6]. He studied the tautology $R A M(R(k), k)$ and proved a lower bound $R(k) / 2$ on the width of resolution proofs (see also [5]). This implies an exponential lower bound on the tree-like resolution proofs. Krajíček proved an exponential lower bound on this tautology by reducing the proofs of the pigeonhole principle to it, [4]. The problem with this tautology is that we do not know what is $R(k)$. This prevent us from proving an upper bound on the proof complexity of this tautology. Therefore researchers focused on the tautology $R A M(n, k)$ for $k=\left\lfloor\frac{1}{2} \log n\right\rfloor$ (all logarithms are to the base 2 in this paper). This tautology is provable in a bounded depth Frege system, see [7, 4]. For this tautology, Krajíček proved an exponential lower bound on tree-like resolution proofs with conjunctions of logarithmic size, [3]. The complexity of unrestricted resolution proofs with conjunctions of logarithmic size proofs of $R A M\left(n,\left\lfloor\frac{1}{2} \log n\right\rfloor\right)$ is still an open problem. An exponential lower bound on such proofs would have interesting consequences in proof complexity and bounded arithmetic. In particular it would give a separation of the relativized theories T_{2}^{2} and T_{2}^{3} by a $\forall \Sigma_{1}^{b}$ sentence (see $[2,1])$. In this paper we prove an exponential lower bound on unrestricted resolution proofs.

Theorem 1 Resolution proofs of $R A M\left(n,\left\lfloor\frac{1}{2} \log n\right\rfloor\right)$ have size at least $2^{n^{\frac{1}{4}-o(1)}}$.

[^0]Proof. We will use the following bound for the sum of Bernoulli variables $X=\sum_{i=1}^{r} X_{i}$ with $\operatorname{Pr}\left(X_{i}=1\right)=q$.

$$
\operatorname{Pr}(X \geq c r) \leq q^{c r} 2^{H(c) r},
$$

where H is the entropy function, which follows from $\binom{r}{c r} \leq 2^{H(c) r}$.
Let $\delta>0$. We will prove a lower bound $2^{\Omega\left(n^{\frac{1}{4}-\delta}\right)}$. Let $k=\left\lfloor\frac{1}{2} \log n\right\rfloor$ and $m=\left\lfloor n^{\frac{1}{4}-\delta}\right\rfloor$. In the rest of the proof we will ignore rounding. ε and p will be sufficiently small constant whose values will be determined later.

Let ρ be the random restriction that sets $x_{i j}$ to 0 with probability $\frac{p}{2}, x_{i j}$ to 1 with probability $\frac{p}{2}$ and leaves $x_{i j}$ free with probability $1-p$. Let a proof P be given and let S be its size. After hitting P by ρ, some clauses become true and we delete them. The others may have reduced length, because some literals become false. We will denote by P_{ρ} the reduced proof. The probability that P_{ρ} contains a clause of length $>\frac{m}{2}$ is less than

$$
S\left(1-\frac{p}{2}\right)^{\frac{m}{2}}=S \cdot 2^{\log \left(1-\frac{p}{2}\right) \frac{1}{2} n^{\frac{1}{4}-\delta}}
$$

Hence, if $S<2^{-\log \left(1-\frac{p}{2}\right) \frac{1}{2} n^{\frac{1}{4}-\delta}-1}$, the probability is $<\frac{1}{2}$. We will assume this and show a contradiction.

Consider an initial clause. The probability that ρ sets at least $\varepsilon\binom{k}{2}$ literals of the clause is at most

$$
\left(\frac{p}{2}\right)^{\varepsilon\binom{k}{2}} 2^{H(\varepsilon)\binom{k}{2}}=2^{\left(\log \frac{p}{2} \cdot \varepsilon+H(\varepsilon)\right)\binom{k}{2}} \leq 2^{\frac{1}{8}\left(\log \frac{p}{2} \cdot \varepsilon+H(\varepsilon)+o(1)\right)(\log n)^{2}} .
$$

Hence the probability that this happens for at least one initial clause is at most

$$
\begin{array}{r}
2^{\frac{1}{8}\left(\log \frac{p}{2} \cdot \varepsilon+H(\varepsilon)+o(1)\right)(\log n)^{2}} \cdot 2\binom{n}{k} \leq \\
2^{\frac{1}{8}\left(\log \frac{p}{2} \cdot \varepsilon+H(\varepsilon)+o(1)\right)(\log n)^{2}} n^{\frac{1}{2} \log n}= \\
2^{\frac{1}{8}\left(\log \frac{p}{2} \cdot \varepsilon+H(\varepsilon)+\frac{1}{2}+o(1)\right)(\log n)^{2}} .
\end{array}
$$

If p is sufficiently small w.r.t. ε, then the term $\log \frac{p}{2} \cdot \varepsilon+H(\varepsilon)+\frac{1}{2}+o(1)$ is negative for large n. Hence, for such a p and large n the probability is $<\frac{1}{2}$.

Thus there exists ρ such that in the proof P_{ρ}

1. every clause has length at most $m / 2$;
2. every initial clause has at least $(1-\varepsilon)\binom{k}{2}$ variables.

Following an idea of Krajíček [3], we will use a random graph G on m vertices to show that such a proof does not exist. While Krajíček only needed that G does not have a homogeneous set of size k, we will need more: the number of edges on every subset of size k is strictly between $\varepsilon\binom{k}{2}$ and $(1-\varepsilon)\binom{k}{2}$. (This is why we need m larger than $n^{\frac{1}{4}}$.) The probability that this condition fails for one fixed set of size k is at most

$$
2 \cdot 2^{-(1-\varepsilon)\binom{k}{2}}\left(\begin{array}{c}
k \\
2 \\
2
\end{array}\right) .\binom{k}{2} .2^{(-1+\varepsilon+H(\varepsilon))\binom{k}{2}}=2^{(-1+\varepsilon+H(\varepsilon)+o(1)) \frac{(\log n)^{2}}{8}} .
$$

The probability that there exists a set of size k for which it fails is at most

$$
\begin{aligned}
& 2^{(-1+\varepsilon+H(\varepsilon)+o(1)) \frac{(\log n)^{2}}{8}} \cdot\binom{m}{k} \leq \\
& 2^{(-1+\varepsilon+H(\varepsilon)+o(1))) \frac{(\log n)^{2}}{8}} \cdot m^{k} \leq \\
& 2^{\frac{-1+\varepsilon+H(\varepsilon)+o(1)}{8}(\log n)^{2}+\frac{1}{2} \log n \cdot\left(\frac{1}{4}-\delta\right) \log n}= \\
& 2^{\frac{\varepsilon+H(\varepsilon)-4 \delta+o(1)}{8}(\log n)^{2}} .
\end{aligned}
$$

Hence if we choose $\varepsilon>0$ so that $\varepsilon+H(\varepsilon)<4 \delta$, the exponent will be negative for sufficiently large n. Thus we obtain the auxiliary graphs.

Now, as in Krajíček's proof, construct a path in P_{ρ} from the empty clause to an initial clause such that for every clause C on the path the following condition is satisfied. There exists a bijection between the indices of the variables of C and vertices of the graph G such that if $x_{i j}$ (or $\neg x_{i j}$) is a literal in C and u, v are vertices corresponding to i, j, then (u, v) is not an edge (respectively is an edge in G). We can construct this path, because every clause has at most $m / 2$ literals. However the latter condition cannot be satisfied by the initial clauses, because each initial clause has at least $(1-\varepsilon)\binom{k}{2}$ literals of the same kind, but in G there are less than $(1-\varepsilon)\binom{k}{2}$ pairs (u, v) of the same kind (edges or non-edges) on every k-element subset. This contradiction finishes the proof.

References

[1] K. Aehlig, A. Beckmann, A remark on the induction needed to prove the Ramsey principle. 2006, unpublished.
[2] M. Chiari and J. Krajíček, Lifting independence results in bounded arithmetic, Archive for Mathematical Logic, 38(2), (1999), pp. 123-138.
[3] J. Krajíček, On the weak pigeonhole principle, Fundamenta Mathematicae, 170(1-3), (2001), pp. 123-140.
[4] J. Krajíček, A note on propositional proof complexity of some Ramsey-type statements, Archive for Mathematical Logic, 50(1-2), (2011), pp. 245-255.
[5] B. Krishnamurthy and R.N. Moll, Examples of hard tautologies in the propositional calculus. In: Proc. 13th ACM Symposium on Theory of Computing (1981), pp. 28-37.
[6] B. Krishnamurthy, Examples of hard tautologies and worst-case complexity results. Ph.D. Thesis, Univ. of Massachusetts, 1981.
[7] P. Pudlák: Ramsey's Theorem in Bounded Arithmetic. In: Proc. Computer Science Logic'90, eds. E. Borger, H. Kleine Buning, M.M. Richter, W. Schonfeld, LNCS 533, Springer-Verlag, 1991, pp. 308-317.

[^0]: *Institute of Mathematics, Academy of Sciences, Prague, and Institute of Theoretical Computer Science, Prague, e-mail: pudlak@math.cas.cz. Partially supported by Institutional Research Plan No. AV0Z10190503, project No. 1M0021620808 of MŠMT ČR and grant IAA100190902 of GA AV ČR.

