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Žitná 25, CZ-11567 Praha 1, Czech Republic

Elisabetta Rocca

Dipartimento di Matematica, Università di Milano

Via Saldini 50, 20133 Milano, Italy

Abstract. We propose an improved model explaining the occurrence of high

stresses due to the difference in specific volumes during phase transitions be-

tween water and ice. The unknowns of the resulting evolution problem are
the absolute temperature, the volume increment, and the liquid fraction. The

main novelty here consists in including the dependence of the specific heat and

of the speed of sound upon the phase. These additional nonlinearities bring
new mathematical difficulties which require new estimation techniques based

on Moser iteration. We establish the existence of a global solution to the cor-

responding initial-boundary value problem, as well as lower and upper bounds
for the absolute temperature. Assuming constant heat conductivity, we also

prove uniqueness and continuous data dependence of the solution.

1. Introduction. In the present contribution we prove the well-posedness of an
initial-boundary value problem associated with the following system coupling a
quasi-linear parabolic internal energy balance (for the absolute temperature θ) with
an integro-differential equation for the relative volume increment U , and a differen-
tial inclusion ruling the evolution of the phase variable χ as follows:

c(χ)e1(θ)t − div (κ(χ)∇θ) = c′(χ)χt(f1(θ)− e1(θ))

+ νU2
t − βθUt + γ(θ)χ2

t − L
θ

θc
χt , (1.1)

νUt + λ(χ)(U − α(1− χ))− β(θ − θc) = %0g(x3 − ζΓ)

−KΓ(P0(t) + UΩ(t)) (1.2)
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− γ(θ)χt −
λ′(χ)

2
(U − α(1− χ))2 ∈ ∂I(χ) + αλ(χ)(U − α(1− χ))

+c′(χ) (f1(θ)− f1(θc)) + L

(
1− θ

θc

)
(1.3)

with UΩ(t) =
∫

Ω
U(x, t) dx. In the previous paper [12] we have already given a

motivation and a complete study of equilibria for this system, which models the
water freezing in an elastic container, taking into account differences in the spe-
cific volume, specific heat and speed of sound in the solid and liquid phases. The
derivation of the system from physical principles and the meaning of the symbols
will be explained below in the next Section 2. Here, we describe the mathematical
difficulties and comment on previous results related to this type of systems.

There is an abundant classical literature on phase transition processes, see e.g.
the monographs [2], [5], [14] and the references therein. It seems, however, that
only few publications take into account different mass densities/specific volumes of
the phases. In [6], the authors proposed to interpret a phase transition process in
terms of a balance equation for macroscopic motions, and to include the possibility
of voids. Well-posedness of an initial-boundary value problem associated with the
resulting PDE system is proved there and the case of two different densities %1 and
%2 for the two substances undergoing phase transitions has been pursued in [7].

Here, we deal exclusively with physically measurable quantities. All parameters
have a clear physical meaning and the derivation is carried out under the assumption
that the displacements are small. This enables us to state the system in Lagrangian
coordinates (cf. [7] for a different approach to the subject).

The present model has been previously studied in [10] and [11] under the assump-
tion that the speed of sound and the specific heat are the same in solid and in liquid.
In terms of the system (1.1)–(1.3), this corresponds to choose constant functions
λ(χ) ≡ λ and c(χ) ≡ c. For this particular case, we have proved in [10] and [11] the
existence and uniqueness of global solutions, as well as the convergence of the solu-
tions to equilibria. In reality, the specific heat in water is about the double, while
the speed of sound in water is less than one half of the one in ice. The main goal
of this contribution is to give a well–posedness result for a boundary value problem
associated with (1.1)–(1.3) including these dependences into the model. The main
result is stated in Section 4. The dependence of speed of sound and of the specific
heat on the phase is expressed in terms of additional nonlinearities in the equations
which have to be suitably handled. Moreover, here we also generalize the results of
[10] and [11] allowing for non constant external pressure and temperature. Finally,
we proceed here with a different technique for the proof of existence of solutions
with respect to [10] and [11]. Since the contraction argument does not work in our
situation, we discretize in time our problem (cf. Subsection 5.1), preparing thus
necessary tools for future numerical investigations on this model, and prove the
convergence of the scheme. The uniqueness and continuous dependence of solution
on the data is proved in Section 6 following the idea already exploited in [4] where
we deal with a quasi-linear internal energy balance equation coupled with a vectorial
and nonlocal phase dynamic. The main estimates are obtained here by means of
the energy inequality which still holds true at the discrete level (cf. Subsection 5.3).
Finally, it is worth noting that a time dependent positive lower bound for the θ-
component of the solution independent of the time step is established on the time
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discrete approximation in Subsection 5.2, while we obtain a uniform in time upper
bound on the solution θ by means of a proper Moser estimate (cf. Subsection 5.4).

2. Balance equations. Referring to [12] for the complete deduction of the model,
we consider a liquid substance contained in a bounded connected container Ω ⊂ R3

with boundary of class C1,1. The state variables are the absolute temperature θ > 0,
the displacement u ∈ R3, and the phase variable χ ∈ [0, 1]. The value χ = 0 means
solid, χ = 1 means liquid, χ ∈ (0, 1) is a mixture of the two.

We make the following modeling hypotheses.

(A1) The displacements are small. Therefore, we state the problem in Lagrangian
coordinates, in which mass conservation is equivalent to the condition of a
constant mass density %0 > 0.

(A2) The substance is isotropic and compressible; the speed of sound and the spe-
cific heat may depend on the phase χ.

(A3) The evolution is slow, and we neglect shear viscosity and inertia effects.
(A4) We neglect shear stresses.
(A5) The liquid phase is the reference state, and the specific volume Vi of the solid

phase is larger than the specific volume Vw of the liquid phase.

We thus consider the evolution system

− divσ = fvol , (2.1)

%0et + divq = σ : εt , (2.2)

−γ0(θ)χt ∈ ∂χf , (2.3)

consisting of a the mechanical equilibrium equation (2.1), energy conservation law
(2.2), and a phase dynamic equation (2.3), where the coefficient γ0 determines the
speed of the phase transition. By (A4), the stress has the form σ = −p δ and the
scalar quantity

p := −νεt : δ − λ(χ)(ε : δ − α(1− χ)) + β(θ − θc) (2.4)

is the pressure. Here ν > 0 is a volume viscosity coefficient, λ(χ) is the Lamé
constant, which may depend on χ by virtue of (A2), α = (Vi−Vw)/Vw is a positive
phase expansion coefficient by (A5), while β is the thermal expansion coefficient,
which is assumed to be constant, and fvol is a given volume force density (the gravity
force)

fvol = −%0g δ3 , (2.5)

with standard gravity g and vector δ3 = (0, 0, 1).
We denote by e the specific internal energy, s is the specific entropy, and q is the

heat flux vector that we assume for simplicity in the form

q = −κ(χ)∇θ (2.6)

with heat conductivity κ(χ) > 0 depending possibly on χ.
We assume the specific heat cV (χ, θ) in the form

cV (χ, θ) = c0(χ)c1(θ) . (2.7)

This is still a rough simplification, and further generalizations are desirable. Ac-
cording to [9, Chapter VI] or [13, Section 5], the purely caloric parts ecal and
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scal of the specific internal energy and specific entropy are given by the formulas
ecal(χ, θ) = c0(χ)e1(θ), scal(χ, θ) = c0(χ)s1(θ), with

e1(θ) =

∫ θ

0

c1(r) dr , s1(θ) =

∫ θ

0

c1(r)

r
dr . (2.8)

Then, the specific free energy f = e − θs satisfies the conditions σe = %0∂εf ,
s = −∂θf . With a prescribed constant latent heat L0 and freezing point θc > 0 at
standard atmospheric pressure Pstand, the specific free energy f necessarily has the
form

f = c0(χ)f1(θ) +
λ(χ)

2%0
(ε : δ − α(1− χ))2 (2.9)

− β

%0
(θ − θc)ε : δ + L0χ

(
1− θ

θc

)
+ f̃(χ) ,

where

f1(θ) = e1(θ)− θs1(θ) =

∫ θ

0

c1(r)

(
1− θ

r

)
dr , (2.10)

and f̃ is a arbitrary function of χ (integration “constant” with respect to θ and ε).

We choose f̃ so as to ensure that the values of χ remain in the interval [0, 1], and
that the phase transition under standard pressure takes place at temperature θc.
More specifically, we set

f̃(χ) = L0I(χ)− c0(χ)f1(θc) .

where I is the indicator function of the interval [0, 1].
For specific entropy s and specific internal energy e we obtain

s = −∂θf = c0(χ)s1(θ) +
β

%0
ε : δ +

L0

θc
χ , (2.11)

e = c0(χ)(e1(θ)− f1(θc)) +
λ(χ)

2%0
(ε : δ − α(1− χ))2

+
β

%0
θcε : δ + L0(χ+ I(χ)). (2.12)

The equation for the phase χ is obtained by assuming that −χt is proportional
to ∂χf with proportionality coefficient (relaxation time) γ0(θ) > 0, where ∂χ is the
partial Clarke subdifferential with respect to χ.

Then, the equilibrium equation (2.1) can be rewritten in the form ∇p = fvol,
hence, as Ω is connected,

p(x, t) = P (t)− %0g x3 , (2.13)

where P is a function of time only, which is to be determined. Recall that in the
reference state ε : δ = εt : δ = 0, χ = 1, and at standard pressure Pstand, the
freezing temperature is θc. We thus see from (2.4) that P (t) is in fact the deviation
from the standard pressure. We assume also the external pressure in the form
Pext = Pstand + p0 with a given deviation p0(x, t). The normal force acting on the
boundary is (P (t)−%0g x3−p0)n, where n denotes the unit outward normal vector.
We assume an elastic response of the boundary, and a heat transfer proportional
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to the inner and outer temperature difference. On ∂Ω, we thus prescribe boundary
conditions for u and θ in the form

(P (t)− %0g x3 − p0(x, t))n(x) = k(x)u(x, t) , (2.14)

q(x, t) · n(x) = h(x)(θ − θΓ(x, t)) (2.15)

with a given symmetric positive definite matrix k(x) (elasticity of the boundary),
positive functions h(x) (heat transfer coefficient), and θΓ(x, t) > 0 (external tem-
perature). This enables us to find an explicit relation between divu and P . Indeed,
on ∂Ω we have by (2.14) that u · n = (P (t) − %0g x3 − p0(x, t))k−1(x)n(x) · n(x).
Assuming that k−1n · n belongs to L1(∂Ω), we set

1

KΓ
=

∫
∂Ω

k−1(x)n(x) · n(x) dσ(x) , ζΓ = KΓ

∫
∂Ω

k−1(x)n(x) · n(x)x3 dσ(x) ,

(2.16)
and obtain by Gauss’ Theorem that

UΩ(t) :=

∫
Ω

divu(x, t) dx =
1

KΓ
(P (t)− %0g ζΓ)− P0(t) , (2.17)

where P0(t) =
∫
∂Ω
p0(x, t)k−1(x)n(x) · n(x) dσ(x). Under the small strain hy-

pothesis, the function divu describes the local relative volume increment. Hence,
Eq. (2.17) establishes a linear relation between the total relative volume increment
UΩ(t) and the relative pressure P (t)− p0(x, t). We have ε : δ = divu, and thus the
mechanical equilibrium equation (2.13), due to (2.4) and (2.17), reads

νdivut + λ(χ)(divu−α(1−χ))− β(θ− θc) + %0g(ζΓ− x3) = −KΓ(P0(t) +UΩ(t)) .
(2.18)

As a consequence of (2.6), (2.9), and (2.12), the energy balance and the phase
relaxation equation in (2.2)–(2.3) have the form

%0c0(χ)e1(θ)t − div (κ(χ)∇θ) + %0c
′
0(χ)χt(e1(θ)− f1(θ))

= ν(divut)
2 − βθdivut + %0γ0(θ)χ2

t − %0L0
θ

θc
χt , (2.19)

−%0γ0(θ)χt −
λ′(χ)

2
(divu− α(1− χ))2 − αλ(χ)(divu− α(1− χ))

∈ %0c
′
1(χ) (f1(θ)− f1(θc)) + %0L0

(
1− θ

θc

)
+ ∂I(χ) . (2.20)

For simplicity, we now set

U := divu , c(χ) := %0c0(χ) , γ(θ) := %0γ0(θ) , L := %0L0 . (2.21)

Note that mathematically, the subdifferential ∂I(χ) is the same as %0L0∂I(χ). The
system thus reduces to the system (1.1)–(1.3) of three scalar equations – one PDE
and two “ODEs” for three unknown functions θ, χ, and U , with boundary condition
(2.15), (2.6). Assuming that a solution to (1.1)–(1.3) is known with U ∈ L2(Ω ×
(0, T )), we find the vector function u by defining first Φ to be the solution (unique
up to an additive constant) to the Poisson equation ∆Φ = U with the Neumann
boundary condition ∇Φ · n = (KΓUΩ(t) + %0g(ζΓ − x3))k−1(x)n(x) · n(x). With
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this Φ, we find ũ as a solution to the problem

div ũ = 0 in Ω× (0, T ) , (2.22)

ũ · n = 0
(ũ +∇Φ− (KΓUΩ + %0g(ζΓ − x3))k−1n)× n = 0

}
on ∂Ω× (0, T ) , (2.23)

and set u = ũ +∇Φ. Then u satisfies a.e. in Ω the equation divu = U , together
with the boundary condition (2.14), that is, u = (KΓUΩ + %0g(ζΓ − x3))k−1n on
∂Ω.

For the solution to (2.22)–(2.23), we refer to [8, Lemma 2.2] which states that
for each g ∈ H1/2(∂Ω)3 satisfying

∫
∂Ω

g · n dσ(x) = 0 there exists a function ũ ∈
H1(Ω)3, unique up to an additive function v from the set V of divergence-free
H1(Ω) functions vanishing on ∂Ω, such that div ũ = 0 in Ω, ũ = g on ∂Ω. In
terms of the system (2.22)–(2.23), it suffices to set g = ((∇Φ− (KΓUΩ + %0g(ζΓ −
x3))k−1n)×n)×n and use the identity (b×n)×n = (b ·n)n−b for every vector
b. Moreover, the estimate

inf
v∈V
‖ũ + v‖H1(Ω) ≤ C ‖g‖H1/2(∂Ω) ≤ C̃‖Φ‖H2(Ω) (2.24)

holds with some constants C, C̃. The required regularity is available here by virtue
of the assumption that Ω is of class C1,1, provided k−1 belongs to H1/2(∂Ω). Note
that a weaker formulation of problem (2.22)–(2.23) can be found in [1, Section 4].

Due to our hypotheses (A3), (A4), we thus lose any control on possible volume
preserving turbulences v ∈ V . This, however, has no influence on the system (1.1)–
(1.3), which is the subject of our interest here. Inequality (2.24) shows that if U is
small in agreement with hypothesis (A1), then also v can be chosen in such a way
that hypothesis (A1), interpreted in terms of H1, is not violated.

3. Energy and entropy. In terms of the new variables θ, U, χ, the densities
%0e, %0s of energy and entropy can be written as

%0e = c(χ)(e1(θ)− f1(θc)) +
λ(χ)

2
(U − α(1− χ))2 + βθcU + L(χ+ I(χ)) , (3.1)

%0s = c(χ)s1(θ) +
L

θc
χ+ βU . (3.2)

The energy functional has to be supplemented with the boundary energy term

EΓ(t) =
KΓ

2

(
UΩ(t) + P0(t) +

%0gζΓ
KΓ

)2

, (3.3)
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as well as with the gravity potential −%0gx3U . The energy and entropy balance
equations now read

d

dt

(∫
Ω

%0(e(x, t)− gx3U) dx+ EΓ(t)

)
=

∫
∂Ω

h(x)(θΓ(x, t)− θ) dσ(x)

+ KΓ(P0)t(t)

(
UΩ(t) + P0(t) +

%0gζΓ
KΓ

)
, (3.4)

%0st + div
q

θ
=
κ(χ)|∇θ|2

θ2
+
γ(θ)

θ
χ2
t +

ν

θ
U2
t ≥ 0,

(3.5)

d

dt

∫
Ω

%0s(x, t) dx =

∫
∂Ω

h(x)

θ
(θΓ(x, t)− θ) dσ(x) (3.6)

+

∫
Ω

(
κ(χ)|∇θ|2

θ2
+
γ(θ)

θ
χ2
t +

ν

θ
U2
t

)
dx .

The entropy balance (3.5) says that the entropy production on the right hand side is
nonnegative in agreement with the second principle of thermodynamics. The system
is not closed, and the energy supply or the energy loss through the boundary is given
by the right hand side of (3.4).

We prescribe the initial conditions

θ(x, 0) = θ0(x) (3.7)

U(x, 0) = U0(x) (3.8)

χ(x, 0) = χ0(x) (3.9)

for x ∈ Ω, and compute from (3.1)–(3.2) the initial values e0, E0
Γ, and s0 for

specific energy, boundary energy, and entropy, respectively. Let E0 and S0 denote,
respectively, E0 =

∫
Ω
%0e

0(x) dx, S0 =
∫

Ω
%0s

0(x) dx. We multiply (3.6) by a

positive constant θ̄Γ, subtract the result from (3.4), and integrate over time from 0
to t. For the “extended” energy %0(e − θ̄Γs), we use (3.1)–(3.3) to obtain for each
admissible time t the following crucial (formal for the moment) balance equation:∫

Ω

(
c(χ)(e1(θ)− f1(θc)) +

λ(χ)

2
(U − α(1− χ))2

)
(x, t) dx

+

∫
Ω

(βθcU + Lχ− %0gx3U) (x, t) dx

+
KΓ

2

(
UΩ(t) + P0(t) +

%0g ζΓ
KΓ

)2

+ θ̄Γ

∫ t

0

∫
Ω

(
κ(χ)|∇θ|2

θ2
+
γ(θ)

θ
χ2
t +

ν

θ
U2
t

)
(x, ξ) dxdξ

+

∫ t

0

∫
∂Ω

h(x)

θ
(θ − θΓ(x, ξ))(θ − θ̄Γ) dσ(x) dξ

= E0 + E0
Γ − θ̄ΓS

0 + θ̄Γ

∫
Ω

(
c(χ)s1(θ) +

L

θc
χ+ βU

)
(x, t) dx

+

∫ t

0

KΓ(P0)t(ξ)

(
UΩ(ξ) + P0(ξ) +

%0gζΓ
KΓ

)
dξ . (3.10)
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We assume that both c(χ) and λ(χ) are bounded from above and from below by
positive constants. The growth of s1(θ) is dominated by e1(θ) as a consequence of
the inequality

s1(θ)− s1(θ∗)

e1(θ)− e1(θ∗)
≤ 1

θ∗
∀θ > θ∗ > 0 . (3.11)

Let (0, T ) for some 0 < T ≤ ∞ be a time interval in which a solution to (1.1)–(1.3)
satisfies (3.10). Assume that∫ T

0

∫
∂Ω

h(x)
(√

θΓ(x, t)−
√
θ̄Γ

)2

dσ(x) dt <∞ ,

∫ T

0

|(P0)t(t)|dt <∞ . (3.12)

Using (3.10), (3.11) with θ∗ = 2θ̄Γ, and the identity

1

θ
(θ − a)(θ − b) =

1

θ
(θ −

√
ab)2 − (

√
b−
√
a)2 for all θ, a, b > 0 (3.13)

with a = θΓ(x, t) and b = θ̄Γ, we find a constant C > 0 independent of t such that
for all t ∈ [0, T ) we have∫

Ω

(
e1(θ) + U2

)
(x, t) dx+

∫ t

0

∫
Ω

(
κ(χ)|∇θ|2

θ2
+
γ(θ)χ2

t

θ
+
νU2

t

θ

)
(x, ξ) dxdξ

+

∫ t

0

∫
∂Ω

h(x)

θ

(
θ −

√
θ̄ΓθΓ(x, ξ)

)2

dσ(x) dξ ≤ C . (3.14)

4. Main results. We construct the solution of (1.1)–(1.3) by a combined trunca-
tion and time discretization scheme. The method of proof is independent of the
actual values of the material constants, hence we choose for simplicity

L = 2, θc = α = β = ν = %0 = 1 . (4.1)

We consider the following assumptions on the data.

Hypothesis 4.1. Assume that there exist positive constants c∗, c
∗, c, c̄, λ, λ̄, κ∗,

λ∗, γ∗ such that

(i) c ∈ C1,1([0, 1]), c convex, 0 < c∗ ≤ c(z), 0 < c ≤ c′(z) ≤ c̄, for all z ∈ [0, 1];
(ii) c1 ∈ C0([0,∞)), c1(0) = 0, c1(θ) > 0 for θ > 0, c1(θ) ≥ c∗ for θ ≥ 1,

limθ→∞ c1(θ)/θ =∞,
∫ 1

0
c1(r)/r dr <∞,

∫ 1

0
c1(r)/r2 dr =∞;

(iii) λ convex, λ ∈ C1,1([0, 1]), 0 < λ ≤ λ(z) ≤ λ̄, 0 ≥ λ′(z) ≥ −λ∗ for all z ∈ [0, 1];
(iv) κ ∈ C1,1([0, 1]), 0 < κ∗ ≤ κ(z) for all z ∈ [0, 1];
(v) h ∈ L∞(∂Ω) is a non-negative function;

(vi) γ ∈ C0,1(R+), 0 < γ∗ ≤ γ(r) for all r ∈ R+.

The liquid phase does not persist for very large temperatures and the behavior
of c1(θ) as θ →∞ thus cannot be experimentally verified. We nevertheless believe
that the growth condition (ii) in Hypothesis 4.1 is not completely meaningless taking
into account the fact that in the interval between 273 and 373K (0–100◦C), the
function c1(θ) is convex with a minimum at 35◦C 1.

Keeping the notation introduced in (2.8), (2.10), we define the following symbols:

A(U, χ, x, t) := λ(χ)(U − 1 + χ) +KΓ(UΩ(t) + P0(t)) + g(ζΓ − x3) + 1 , (4.2)

B(χ, θ) := c′(χ)(f1(θ)− f1(1))− 2θ , (4.3)

C(U, χ) :=
λ′(χ)

2
(U − 1 + χ)2 + λ(χ)(U − 1 + χ) + 2 . (4.4)

1see http://www.engineeringtoolbox.com/water-thermal-properties-d_162.html

http://www.engineeringtoolbox.com/water-thermal-properties-d_162.html
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System (1.1)–(1.3) with boundary condition (2.15) then can be written in the
form∫

Ω

c(χ)e1(θ)tw(x) dx+

∫
Ω

κ(χ)∇θ · ∇w(x) dx =

∫
∂Ω

h(x)(θΓ(x, t)− θ)w(x) dσ(x)

−
∫

Ω

(
UtA(U, χ, x, t) + χt

(
C(U, χ) + c′(χ)(e1(θ)− f1(1))

))
w(x) dx , (4.5)

Ut − θ = −A(U, χ, x, t) , (4.6)

γ(θ)χt + B(χ, θ) + ∂I(χ) 3 −C(U, χ) , (4.7)

where (4.5) is obtained from (1.1) by using (4.6)–(4.7). Let us note that (4.5) is to
be satisfied for all test functions w ∈ W 1,2(Ω) and a.e. t > 0, while (4.6)–(4.7) are
supposed to hold a.e. in the space-time cylinder that we denote ΩT := Ω × (0, T )
for T > 0, Ω∞ := Ω× (0,∞).

In this section we prove the following existence and uniqueness result.

Theorem 4.2. Let Hypothesis 4.1 be satisfied, and let θΓ ∈ H1(0, T ;L2(∂Ω)) such
that 0 < θ∗ ≤ θΓ ≤ θ∗, and P0 ∈ W 1,1(0, T ) be given functions. Let the initial
conditions in (3.7)–(3.9) be such that

θ0 ∈W 1,2(Ω) ∩ L∞(Ω) , 0 < θ∗ ≤ θ0(x) ≤ θ∗ a.e. ,

U0, χ0 ∈W 1,2(Ω) ∩ L∞(Ω) , 0 ≤ χ0(x) ≤ 1 a.e.

Then there exists at least a solution (θ, U, χ) to (4.5)–(4.7), (3.7)–(3.9), and con-
stants θ](T ) ≥ θ[(T ) > 0 such that

θ[(T ) ≤ θ(x, t) ≤ θ](T ) for a.e. (x, t) ∈ ΩT , (4.8)

χ ∈ [0, 1] a.e., U,Ut, χt ∈ L∞(ΩT ), θt ∈ L2(ΩT ), ∇U,∇χ,∇θ ∈ L∞(0, T ;L2(Ω)).
Moreover, if the above assumptions hold for all T > 0 and condition (3.12) is
satisfied for T = ∞, then the solution exists globally, and θ](T ) can be chosen
independently of T . Finally, if κ(θ) ≡ κ̄ ∈ R+ is constant, then the solution is
unique, and its L2-norm depends continuously on the data.

Remark 4.3. Let us note that we could prove our existence result assuming that
κ = κ(θ, χ) = k1(θ)k2(χ) with the same techniques. Moreover, also uniqueness
would hold true in case κ = κ1(θ) with an appropriate modification of the boundary
condition by means of the standard Kirchhoff transformation technique.

5. Existence proof. We proceed as follows: we truncate from above the functions
depending on θ in (4.5)–(4.7), and discretize the system in time. For the discrete
system, we derive upper and lower bounds that enable us to let the time step tend to
0 and prove the existence of a solution to the truncated problem. Finally, we prove
a time dependent lower bound and a uniform (in time and w.r.t. the truncation
parameters) upper bound on θ, so that the truncation can be removed, and this
will conclude the proof of existence of solutions.
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5.1. Approximation and discrete energy estimate. We introduce, for θ ∈ R,
R > 0, the functions

QR(θ) = min{θ+, B(R)}, B(R) = R1/2(min{e1(R), |f1(R)|})1/4, (5.1)

cR1 (θ) = c1(QR(θ)), (5.2)

eR1 (θ) =

∫ θ

0

cR1 (r) dr, (5.3)

sR1 (θ) =

∫ θ

0

cR1 (r)

QR(r)
dr, (5.4)

fR1 (θ) = eR1 (θ)−QR(θ)sR1 (θ) =

∫ θ

0

cR1 (r)

(
1− QR(θ)

QR(r)

)
dr, (5.5)

with the convention fR1 (θ) = sR1 (θ) = 0 for θ ≤ 0. By Hypo. 4.1 (ii), we have
cR1 (0) = 0, and the functions cR1 , e

R
1 , s

R
1 , f

R
1 are continuous across θ = 0. In the rest

of the proof the following relations, which directly follow from the above definitions
and from Hypo. 4.1 (ii), play an important role:

• If 0 < θ ≤ B(R) then eR1 (θ) = e1(θ), sR1 (θ) = s1(θ), fR1 (θ) = f1(θ), (5.6)

• If θ > B(R) then eR1 (θ) = e1(B(R)) + c1(B(R))(θ −B(R)),

sR1 (θ) = s1(B(R)) +
1

B(R)
c1(B(R))(θ −B(R)), fR1 (θ) = f1(B(R)), (5.7)

• If θ > R then eR1 (θ) > e1(R) > 0, fR1 (θ) < f1(R) < 0, (5.8)

• lim
R→∞

e1(R)

R2
= lim
R→∞

c1(R)

2R
=∞, (5.9)

• lim
R→∞

f1(R)

R2
= − lim

R→∞

s1(R)

2R
= − lim

R→∞

c1(R)

2R
= −∞, (5.10)

• lim
R→∞

|f1(R)|
B2(R)

= lim
R→∞

e1(R)

B2(R)
=∞ , lim

R→∞

B(R)

R
=∞. (5.11)

We now introduce the time-discrete version of (4.5)–(4.7). For an arbitrary
n ∈ N, we define the time step τ = T/n. Choosing a constant cR ∈ R+ depending
on R, which we specify below, we look for a solution {(θk, Uk, χk)}nk=1 to the scheme

1

τ

∫
Ω

c(χk)
(
eR1 (θk)− eR1 (θk−1)

)
w(x) dx+

∫
Ω

κ(χk−1)∇θk · ∇w(x) dx

+

∫
Ω

cR(θkθ
+
k − θk−1θ

+
k−1)w(x) dx+

∫
∂Ω

h(x)(θk − θkΓ)w(x) dσ(x)

= −
∫

Ω

c′(χk)
•
χk(eR1 (θk−1)− f1(1))w(x) dx

−
∫

Ω

( •
UkAk(Uk, χk, χk−1, x)+

•
χkCk(Uk, χk, χk−1)

)
w(x) dx , (5.12)

•
Uk −QR(θk−1) = −Ak(Uk, χk, χk−1, x) , (5.13)

γ(θk−1)
•
χk + Bk(χk, θk−1) + ∂I(χk) 3 −Ck(Uk, χk, χk−1), (5.14)
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where

Ak(Uk, χk, χk−1, x) := λ(χk−1)(Uk − 1 + χk) +KΓ(UkΩ + pk) + g(ζΓ − x3) + 1 ,

(5.15)

Bk(χk, θk−1) := c′(χk)(fR1 (θk−1)− f1(1))− 2QR(θk−1) , (5.16)

Ck(Uk, χk, χk−1) :=
λ′(χk)

2
(Uk − 1 + χk)2 + λ(χk−1)(Uk − 1 + χk) + 2 , (5.17)

with θkΓ = θΓ(·, kτ), pk = P0(kτ), UkΩ = UΩ(kτ), and with initial condition

(θ0, U0, χ0) = (θ0, U0, χ0). The symbol
•
ϕ k denotes the discrete time derivative

(ϕk−ϕk−1)/τ for a generic sequence {ϕk}. Eq. (5.12) has to be satisfied for all test
functions w ∈W 1,2(Ω), while (5.13)–(5.14) are supposed to hold a.e. in Ω.

It is easy to see then that the latter semi-implicit scheme has a unique solution.
Indeed, at each time step, we assume that θk−1, Uk−1, χk−1 are known, and find
Uk, χk satisfying (5.13)–(5.14). For τ sufficiently small, (5.13)–(5.14) is an algebraic
system for (Uk, χk) of the form Φ(Uk, χk) = Yk with Φ : R2 → R2 strictly maximal
monotone, hence it admits a unique solution. Finally, we insert Uk and χk in (5.12)
and solve the resulting coercive elliptic equation, obtaining in that way the desired
solution (θk, Uk, χk).

Then, we note that the total energy balance still holds true for the discrete
system. Indeed, we take (5.12) with w = 1, and denote Ek = eR1 (θk) − f1(1). We
have

1

τ

∫
Ω

(
c(χk)(eR1 (θk)− eR1 (θk−1)) + (χk − χk−1)c′(χk)(eR1 (θk−1)− f1(1))

)
dx

=
1

τ

∫
Ω

(c(χk)(Ek − Ek−1) + (χk − χk−1)c′(χk)Ek−1) dx

=
1

τ

∫
Ω

(c(χk)Ek − (c(χk)− (χk − χk−1)c′(χk))Ek−1) dx ,

and using the fact that Ek ≥ 0 and that c is convex (cf. Hypo. 4.1 (i)), we get

1

τ

∫
Ω

(
c(χk)(eR1 (θk)− eR1 (θk−1)) + (χk − χk−1)c′(χk)(eR1 (θk−1)− f1(1))

)
dx

≥ 1

τ

∫
Ω

(c(χk)Ek − c(χk−1)Ek−1) dx . (5.18)

Set now Sk = Uk + χk − 1. Then, we obtain∫
Ω

(
(
•
χk+

•
Uk)λ(χk−1)(Uk + χk − 1)+

•
χk
λ′(χk)

2
(Uk + χk − 1)2

)
dx

=
1

τ

∫
Ω

(
Sk(Sk − Sk−1)λ(χk−1) +

1

2
S2
k(χk − χk−1)λ′(χk)

)
dx

≥ 1

2τ

∫
Ω

(
(S2
k − S2

k−1)λ(χk−1) + S2
k(χk − χk−1)λ′(χk)

)
dx

=
1

2τ

∫
Ω

(
S2
k (λ(χk−1) + λ′(χk)(χk − χk−1))− S2

k−1λ(χk−1)
)

dx .
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Using now the convexity of λ (cf. Hypo. 4.1 (iii)), we get

∫
Ω

(
(
•
χk+

•
Uk)λ(χk−1)(Uk + χk − 1)+

•
χk
λ′(χk)

2
(Uk + χk − 1)2

)
dx

≥ 1

2τ

∫
Ω

(S2
kλ(χk)− S2

k−1λ(χk−1)) dx . (5.19)

Hence, from (5.12), using (5.18) and (5.19), we obtain

1

τ

∫
Ω

(
c(χk)Ek − c(χk−1)Ek−1 +

1

2

(
S2
kλ(χk)− S2

k−1λ(χk−1)
))

dx

+
•
UkΩ (KΓ(UkΩ + pk) + gζΓ)−

∫
Ω

gx3

•
Uk dx

+

∫
Ω

( •
Uk + 2

•
χk + cR(θkθ

+
k − θk−1θ

+
k−1)

)
dx+

∫
∂Ω

h(x)(θk − θkΓ) dσ(x)

≤ 0 . (5.20)

Summing now (5.20) over k = 1, . . . ,m, 1 ≤ m ≤ n, we get

∫
Ω

(
c(χm)Em +

1

2
S2
mλ(χm)− gx3Um + Um + χm + cRτθmθ

+
m

)
dx

+
KΓ

2

(
UmΩ + pm +

gζΓ
KΓ

)2

+ τ

m∑
k=1

∫
∂Ω

h(x)(θk − θkΓ) dσ(x)

≤
∫

Ω

(
c(χ0)E0 +

1

2
S2

0λ(χ0)− gx3U0 + U0 + χ0 + cRθ0θ
+
0

)
dx

+
KΓ

2

(
U0Ω + p0 +

gζΓ
KΓ

)2

+KΓ

m∑
k=1

|pk − pk−1| max
0≤k≤m

∣∣∣∣UkΩ + pk +
gζΓ
KΓ

∣∣∣∣ .
(5.21)

Using the fact that τ
∑n
k=1

∫
∂Ω
h(x)θkΓ(x) dσ(x) ≤ C(T ),

∑n
k=1 |pk−pk−1| ≤ C(T ),

with a constant C(T ) independent of τ and R, we check that the left hand side of
(5.21) is bounded independently of τ and R. Consequently, all terms in Eq. (5.13)

are bounded by a multiple of (1 + B(R)). Similarly, multiplying (5.14) by
•
χk and

using the fact that
•
χkξk ≥ 0 for all ξk ∈ ∂I(χk), we obtain the estimates

|Uk|+ |
•
Uk| ≤ C(T )(1 +B(R))

|
•
χk| ≤ C(T )(1 +B(R) +B2(R) + |f1(B(R))|)

}
a.e. (5.22)

5.2. Lower bound for θk. Here we derive a lower bound for the approximated
absolute temperature θk. We first rewrite (5.12) for w ∈W 1,2(Ω), w ≥ 0 a.e., using
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(5.13)–(5.14), in the form

1

τ

∫
Ω

c(χk)
(
eR1 (θk)− eR1 (θk−1)

)
w(x) dx+

∫
Ω

κ(χk−1)∇θk · ∇w(x) dx

+

∫
Ω

(
cR(θkθ

+
k − θk−1θ

+
k−1)

)
w(x) dx+

∫
∂Ω

h(x)(θk − θkΓ)w(x) dσ(x)

≥
∫

Ω

•
Uk(

•
Uk −QR(θk−1))w(x) dx

+

∫
Ω

•
χk
(
γ(θk−1)

•
χk + c′(χk)(fR1 (θk−1)− eR1 (θk−1))− 2QR(θk−1)

)
w(x) dx ,

(5.23)

where we have used again the fact that

−
•
χkC(Uk, χk, χk−1) ≥

•
χk
(
γ(θk−1)

•
χk + B(χk, θk−1)

)
by definition of the subdifferential. The right hand side of (5.23) is bounded from
below by a negative multiple (depending on R) of θk−1θ

+
k−1. We can now choose

cR in (5.12) sufficiently large in order to get the following inequality for all w ∈
W 1,2(Ω), w ≥ 0 a.e.:

1

τ

∫
Ω

c(χk)
(
eR1 (θk)− eR1 (θk−1)

)
w(x) dx+

∫
Ω

κ(χk−1)∇θk · ∇w(x) dx

+

∫
∂Ω

h(x)(θk − θkΓ)w(x) dσ(x) ≥ −cR
∫

Ω

θkθ
+
k w(x) dx . (5.24)

We now compare this inequality with the constant decreasing sequence {vk} defined
recurrently as

1

τ
c∗
(
eR1 (vk)− eR1 (vk−1)

)
= −cRv2

k, v0 := θ∗ . (5.25)

We write (5.25), adding the zero term −div (k(χk−1)∇vk), in the form

1

τ

∫
Ω

c∗
(
eR1 (vk)− eR1 (vk−1)

)
w(x) dx+

∫
Ω

κ(χk−1)∇vk · ∇w(x) dx

= −cR
∫

Ω

v2
k w(x) dx . (5.26)

Subtracting (5.24) from (5.26) and testing the difference by w = Hε(vk−θk), where
Hε is the regularization of the Heaviside function H,

Hε(v) =


0 if v ≤ 0

v/ε if v ∈ (0, ε)

1 if v ≥ ε
, (5.27)

we obtain, since vk < vk−1, that∫
Ω

c(χk)
((
eR1 (vk)− eR1 (vk−1)

)
−
(
eR1 (θk)− eR1 (θk−1)

))
Hε(vk − θk) dx ≤ 0 .

(5.28)

Assume that θk−1 ≥ vk−1 (this is true for k = 1). For ε↘ 0, (5.28) yields θk ≥ vk,
and by induction we get θk ≥ vk > vn for all k = 1, . . . , n. By (5.25), we have

e1(vk)− e1(vk−1) = −Cτv2
k
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with C = cR/c∗. Under Hypo. 4.1 (ii), the function G(z) := −
∫ v0
z

c1(s)
s2 ds is

increasing in (0, v0], G(0+) = −∞, G(v0) = 0. Moreover, by the Mean Value
Theorem, there exists sk ∈ [vk, vk−1] such that

G(vk)−G(vk−1)

e1(vk)− e1(vk−1)
=
G′(sk)

c1(sk)
=

1

s2
k

≤ 1

v2
k

,

hence G(vk−1)−G(vk) ≤ Cτ , that is, G(vn) ≥ −Cnτ . We thus see that θk ≥ vn ≥
G−1(−Cnτ) = G−1(−CT ) =: θ[(T ). This concludes the proof of the lower bound
for θk.

5.3. Estimates. Now, we perform the estimates we need in order to pass to the
limit as τ ↘ 0 in (5.12)–(5.14). The right hand side of (5.12) is bounded from
above, by virtue of (5.22), by C(T,R)(θk−1 + 1), where C(T,R) is, here and in the
sequel, any sufficiently large constant depending only on T and R, and independent
of k and τ . Testing (5.12) by w = θk − θk−1, we obtain, using (5.22), that∫
Ω

(
1

τ
c(χk)

(
eR1 (θk)− eR1 (θk−1)

)
(θk − θk−1) + κ(χk−1)∇θk∇(θk − θk−1)

)
dx

+

∫
Ω

cR(θk − θk−1)2(θk + θk−1) dx+

∫
∂Ω

h(x)(θk − θkΓ)(θk − θk−1) dσ(x)

≤ C(T,R)

∫
Ω

|θk − θk−1|(θk−1 + 1) dx .

Using the lower bound for θk and (5.22) again, and choosing χ−1 = χ0, we get

1

τC1(T )

∫
Ω

|θk − θk−1|2 dx+

∫
Ω

(
κ(χk−1)|∇θk|2 − κ(χk−2)|∇θk−1|2

)
dx

+

∫
∂Ω

h(x)
(
(θk − θkΓ)2 − (θk−1 − θ(k−1)Γ)2

)
dσ(x)

≤
∫

Ω

(κ(χk−1)− κ(χk−2)) |∇θk−1|2 dx+

∫
∂Ω

h(x)|θkΓ − θ(k−1)Γ| |θk − θkΓ|dσ(x)

+ τC(T,R)

∫
Ω

(θk−1 + 1)2 dx

≤ τC(T,R)
(∫

Ω

(1 + |θk−1|+ |∇θk−1|)2 dx

+

∫
∂Ω

h(x)(|
•
θkΓ|2 + (θk − θkΓ)2) dσ(x)

)
,

where C1(T ) is a positive constant depending on T but not on τ . The elementary
inequality θ2

k − θ2
k−1 = (θk − θk−1)(θk + θk−1) ≤ 1

2τ (θk − θk−1)2 + τ
2 (θk + θk−1)2

yields that 1
τC1(T ) |θk− θk−1|2 ≥ 2

C1(T ) (θ2
k− θ2

k−1)− τ
C1(T ) (θk + θk−1)2. This enables

us to rewrite the above inequality in the form

qk − qk−1 ≤ τC(qk + qk−1 + bk−1) , (5.29)

with

qk =

∫
Ω

(
2

C1(T )
θ2
k + κ(χk−1)|∇θk|2

)
dx+

∫
∂Ω

h(x)(θk − θkΓ)2 dσ(x) ,

bk = 1 +

∫
∂Ω

h(x)|
•
θkΓ|2 dσ(x) ,
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and C := C(T,R). Inequality (5.29) is equivalent to

qk ≤
1 + τC

1− τC
qk−1 +

τC

1− τC
bk−1 , (5.30)

which yields

qk ≤
(

1 + τC

1− τC

)k
q0 + τ

C

1− τC

k−1∑
j=0

bj

(
1 + τC

1− τC

)k−1−j

≤ e3kτC

q0 + τ

k−1∑
j=0

bj


(5.31)

holding true for τ ≤ 1/(3C). We conclude for all m = 1, . . . , n that

1

τ

m∑
k=1

∫
Ω

|θk − θk−1|2 dx+

∫
Ω

|∇θm|2 dx+

∫
∂Ω

h(x)(θm − θmΓ)2 dσ(x) ≤ C(T,R).

(5.32)
Then, we introduce the piecewise constant and piecewise linear interpolants, for
t ∈ [(k − 1)τ, kτ), k = 1, . . . , n, by the formula

θ(τ)(x, t) = θk−1(x), θ̄(τ)(x, t) = θk(x), θ̂(τ)(x, t) = θk−1(x) + (t− (k−1)τ)
•
θk(x) ,
(5.33)

with a similar notation for U , χ, θΓ, and P0. In particular, we set

ê(τ)(x, t) = eR1 (θk−1(x)) +
1

τ
(t− (k − 1)τ)(eR1 (θk(x))− eR1 (θk−1(x))) .

The estimate (5.32) gives immediately that

θ̂
(τ)
t bounded in L2(0, T ;L2(Ω)) ,

∇θ̄(τ) bounded in L∞(0, T ;L2(Ω)) ,∫ T

0

∫
Ω

(
|θ(τ) − θ̂(τ)|2 + |θ̄(τ) − θ̂(τ)|2

)
(x, t) dx dt ≤ C(T,R)τ2 .

The inequality |∇θ̂(τ)(x, t)| ≤ max{|∇θk(x)|, |∇θk−1(x)|} ≤ |∇θk(x)| + |∇θk−1(x)|
for t ∈ [(k − 1)τ, kτ) entails that also ∇θ̂(τ) are bounded in L∞(0, T ;L2(Ω)). By
compact embedding of H1(0, T ;L2(Ω)) ∩ L∞(0, T ;H1(Ω)) into C0([0, T ];L2(Ω)),
letting τ tend to 0 and passing to subsequences if necessary, we get the convergences

θ̂(τ) → θ strongly in C0([0, T ];L2(Ω)) ,

θ(τ) → θ , θ̄(τ) → θ strongly in L2(0, T ;L2(Ω)) ,

θ̂
(τ)
t → θt weakly in L2(0, T ;L2(Ω)) ,

∇θ̄(τ) → ∇θ weakly* in L∞(0, T ;L2(Ω)) .

 (5.34)

Now we estimate ∇χk and ∇Uk as follows. From Eq. (5.13) it follows that

(
•
Uk(x)−

•
Uk(y))(Uk(x)− Uk(y)) ≤ C(T,R)

(
|Uk(x)− Uk(y)|2 + |χk(x)− χk(y)|2

+ |χk−1(x)− χk−1(y)|2 + |θk−1(x)− θk−1(y)|2 + |x− y|2
)

and, analogously, from (5.14), we obtain

(
•
χk(x)−

•
χk(y))(χk(x)− χk(y)) ≤ C(T,R)

(
|Uk(x)− Uk(y)|2 + |χk(x)− χk(y)|2

+ |χk−1(x)− χk−1(y)|2 + |θk−1(x)− θk−1(y)|2
)
.
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Summing up the two previous inequalities, we get

(Uk(x)− Uk(y))2 + (χk(x)− χk(y))2 ≤ (Uk−1(x)− Uk−1(y))2

+ (χk−1(x)− χk−1(y))2

+ τC(T,R)
(

(Uk(x)− Uk(y))2 + (χk(x)− χk(y))2 + (Uk−1(x)− Uk−1(y))2

+ (χk−1(x)− χk−1(y))2 + (θk−1(x)− θk−1(y))2 + (x− y)2
)
.

We are again in the situation of Eq. (5.29), with qk = (Uk(x)−Uk(y))2 + (χk(x)−
χk(y))2, bk = (θk−1(x)− θk−1(y))2 + (x− y)2. Hence, by (5.31), we obtain

(Uk(x)− Uk(y))2 + (χk(x)− χk(y))2

≤ C(T,R)
(

(U0(x)− U0(y))2 + (χ0(x)− χ0(y))2

+ τ

k−1∑
j=0

(θj(x)− θj(y))2 + (x− y)2
)
. (5.35)

We now claim that

∇Û (τ), ∇χ̂(τ) are bounded in L∞(0, T ;L2(Ω)) . (5.36)

In fact, (5.35) is an inequality of the form |w(x)−w(y)|2 ≤ 1
n

∑n−1
j=0 |vj(x)− vj(y)|2

for a.e. x, y ∈ Ω, for functions w ∈ L2(Ω), vj ∈ H1(Ω). We choose an arbitrary
C1-function ψ with compact support Ω̄0 ⊂ Ω, a unit vector ei in the direction of
the i-th coordinate, and any δ > 0 sufficiently small such that Ω̄0 + sei ⊂ Ω for all
s ∈ [−δ, δ]. An easy computation yields

1

δ

∫
Ω

w(x)(ψ(x)− ψ(x− δei)) dx = −1

δ

∫
Ω0

ψ(x)(w(x+ δei)− w(x)) dx

≤ 1

δ
‖ψ‖L2(Ω)

(∫
Ω0

|w(x+ δei)− w(x)|2 dx

)1/2

≤ 1

δ
‖ψ‖L2(Ω)

 1

n

n−1∑
j=0

∫
Ω0

|vj(x+ δei)− vj(x)|2 dx

1/2

=
1

δ
‖ψ‖L2(Ω)

 1

n

n−1∑
j=0

∫
Ω0

∣∣∣∣∣
∫ δ

0

∂vj
∂xi

(x+ sei) ds

∣∣∣∣∣
2

dx

1/2

≤ 1

δ1/2
‖ψ‖L2(Ω)

 1

n

n−1∑
j=0

∫ δ

0

∫
Ω0

∣∣∣∣∂vj∂xi
(x+ sei)

∣∣∣∣2 dxds

1/2

≤ ‖ψ‖L2(Ω)

 1

n

n−1∑
j=0

∥∥∥∥∂vj∂xi

∥∥∥∥2

L2(Ω)

1/2

. (5.37)

Letting δ tend to 0 in (5.37), we obtain

∫
Ω

w(x)
∂ψ

∂xi
(x) dx ≤ ‖ψ‖L2(Ω)

 1

n

n−1∑
j=0

∥∥∥∥∂vj∂xi

∥∥∥∥2

L2(Ω)

1/2
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for all smooth test functions with compact support in Ω, hence

∥∥∥∥ ∂w∂xi
∥∥∥∥
L2(Ω)

≤

 1

n

n−1∑
j=0

∥∥∥∥∂vj∂xi

∥∥∥∥2

L2(Ω)

1/2

.

Using now the previous estimate on ∇θ̄τ and the assumptions on the initial condi-
tions, we get (5.36) from (5.35).

By virtue of (5.22), Û
(τ)
t , χ̂

(τ)
t are bounded in L∞(ΩT ). Furthermore,

∫ T

0

∫
Ω

|Ū (τ) − Û (τ)|2(x, t) dxdt ≤ C(T,R)τ2 ,∫ T

0

∫
Ω

(
|χ(τ) − χ̂(τ)|2 + |χ̄(τ) − χ̂(τ)|2

)
(x, t) dxdt ≤ C(T,R)τ2,

so that the convergences (5.34) take place also for U and χ. We now rewrite (5.12)–

(5.14) in terms of the functions θ(τ), θ̄(τ), ê(τ), χ(τ), χ̄(τ), χ̂(τ), Ū (τ), Û (τ), θ̄
(τ)
Γ , P̄

(τ)
0 .

The above estimates allow us to pass to the limit as τ ↘ 0 and obtain a solution
for the following truncated problem∫

Ω

c(χ)eR1 (θ)tw(x) dx+

∫
Ω

κ(χ)∇θ · ∇w(x) dx

=

∫
∂Ω

h(x)(θΓ(x, t)− θ)w(x) dσ(x)

−
∫

Ω

(
UtA(U, χ, x, t) + χt

(
C(U, χ) + c′(χ)(eR1 (θ)− f1(1))

))
w(x) dx , (5.38)

Ut −QR(θ) = −A(U, χ, x, t) , (5.39)

γ(θ)χt + BR(χ, θ) + ∂I(χ) 3 −C(U, χ) , (5.40)

where

BR(χ, θ) := c′(χ)(fR1 (θ)− f1(1))− 2QR(θ) , (5.41)

A and C are defined in (4.2), (4.4), and (5.38) is to be satisfied for all test functions
w ∈W 1,2(Ω) and a.e. t ∈ (0, T ), while (5.39)–(5.40) hold a.e. in ΩT .

The next step consists in proving that θ remains uniformly bounded also from
above independently of R, so that the truncation does not become active if R is
sufficiently large. Note first that the “truncated” version of the entropy balance
(3.6) reads here

d

dt

∫
Ω

(c(χ)sR1 (θ) + 2χ+ U) dx =

∫
∂Ω

h(x)

QR(θ)
(θΓ(x, t)− θ) dσ(x) (5.42)

+

∫
Ω

(
κ(χ)|∇QR(θ)|2

QR(θ)2
+
γ(θ)χ2

t

QR(θ)
+

U2
t

QR(θ)

)
dx .
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Arguing as in Section 3, we obtain the following counterpart of the extended energy
balance (3.10),∫

Ω

(
c(χ)(eR1 (θ)− f1(1)) +

λ(χ)

2
(U − 1 + χ)2

)
(x, t) dx

+

∫
Ω

(U + 2χ− gx3U) (x, t) dx+
KΓ

2

(
UΩ(t) + P0(t) +

gζΓ
KΓ

)2

+ θ̄Γ

∫ t

0

∫
Ω

(
κ(χ)|∇QR(θ)|2

Q2
R(θ)

+
γ(θ)χ2

t

QR(θ)
+

U2
t

QR(θ)

)
(x, ξ) dx dξ

+

∫ t

0

∫
∂Ω

h(x)

QR(θ)
(θ − θΓ(x, ξ))(QR(θ)− θ̄Γ) dσ(x) dξ

= E0 + E0
Γ − θ̄ΓS

0 + θ̄Γ

∫
Ω

(
c(χ)sR1 (θ) + 2χ+ U

)
(x, t) dx

+

∫ t

0

KΓ(P0)t(ξ)

(
UΩ(ξ) + P0(ξ) +

gζΓ
KΓ

)
dξ , (5.43)

which holds for every solution to (5.38)–(5.40) and every t ∈ (0, T ).

5.4. Uniform upper bound for θ. We choose R large enough such that B(R) >
θ∗ ≥ θ̄Γ. Then (θ−θΓ(x, ξ))(QR(θ)− θ̄Γ) ≥ (QR(θ)−θΓ(x, ξ))(QR(θ)− θ̄Γ). We may
therefore argue as at the end of Section 3 and obtain from (5.43) for all t ∈ (0, T )
that∫

Ω

(
eR1 (θ) + U2

)
(x, t) dx+

∫ t

0

∫
∂Ω

h(x)

QR(θ)

(
QR(θ)−

√
θ̄ΓθΓ(x, ξ)

)2

dσ(x) dξ

+

∫ t

0

∫
Ω

(
κ(χ)|∇QR(θ)|2

Q2
R(θ)

+
γ(θ)χ2

t

QR(θ)
+

U2
t

QR(θ)

)
(x, ξ) dx dξ

≤ C
(

1 +

∫ t

0

∫
∂Ω

h(x)
(√

θΓ(x, ξ)−
√
θ̄Γ

)2
dσ(x) dξ +

∫ t

0

|(P0)t(ξ)|dξ
)
.

(5.44)

In order to perform the Moser iteration scheme on θ as in [11, Prop. 3.6], we need
first to estimate U and Ut in terms of θ. Rewriting (5.39) as

Ut + λ(χ)U = QR(θ) +G(x, t)

where, by virtue of (5.44), G(x, t) is bounded above by a positive constant G0.

Denoting λ̂(x, t) :=
∫ t

0
λ(χ(x, s)) ds, we obtain the formula

U(x, t) = e−λ̂(x,t)U0(x) +

∫ t

0

eλ̂(x,ξ)−λ̂(x,t)
(
QR(θ) +G

)
(x, ξ) dξ .

Using Hypo. 4.1 (iii), we get the estimate

|U(x, t)| ≤ |U0(x)|+
∫ t

0

eλ(t−ξ)QR(θ)(x, ξ) dξ +
G0

λ
(5.45)

and

|Ut(x, t)| ≤ λ̄|U(x, t)|+QR(θ)(x, t) +G0 . (5.46)
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Now we are ready in order to start the Moser iteration scheme. Choose in (5.38)
w(x) = up, u = ψR(θ) := (QR(θ) − R)+, with any p > 1 and with R larger than
the constants in Hypothesis 4.1. Then∫

Ω

c(χ)(eR1 (θ))tu
p dx+

4p

(p+ 1)2

∫
Ω

κ(χ)|∇u
p+1
2 |2 dx+

∫
∂Ω

h(x)up+1 ds(x)

≤ −
∫

Ω

(
UtA(U, χ, x, t)− χt

(
C(U, χ)− c′(χ)(eR1 (θ)− f1(1))

))
up dx . (5.47)

Put ERp (θ) =
∫ θ

0
cR1 (r)ψpR(r) dr. Then, we can rewrite (5.47) as∫

Ω

(
c(χ)ERp (θ)

)
t

dx+
4p

(p+ 1)2

∫
Ω

κ(χ)|∇u
p+1
2 |2 dx+

∫
∂Ω

h(x)up+1 ds(x)

≤ −
∫

Ω

UtA(U, χ, x, t)up dx

−
∫

Ω

χt
(
C(U, χ)up + c′(χ)

(
(eR1 (θ)− f1(1))up − ERp (θ)

))
dx . (5.48)

We now prove that the last integral in (5.48) is non-positive if R is sufficiently large.
First of all let us note that, if χt = 0 then it vanishes. Hence, let us consider the
case χt 6= 0. Then, from (5.40) it follows that χt(γ(θ)χt + BR(χ, θ) + C(U, χ)) = 0,
hence

χt = − 1

γ(θ)
(BR(χ, θ) + C(U, χ)) .

The last integral in (5.48) is of the form −
∫

Ω
1

γ(θ)I1 × I2 dx, where

I1 := χt = −C(U, χ) + 2QR(θ) + c′(χ)(f1(1)− fR1 (θ)),

I2 := C(U, χ)up + c′(χ)
(
(eR1 (θ)− f1(1))up − ERp (θ)

)
=

(
C(U, χ)− c′(χ)f1(1)

)
up + c′(χ)

(
eR1 (θ)up − ERp (θ)

)
.

We can now estimate from below the last term as follows

eR1 (θ)up − ERp (θ) =

∫ θ

0

peR1 (r)up−1 dr ≥ e1(R)up.

We have I2 = 0 if θ ≤ R, while for θ > R we have by Hypothesis 4.1 (i)

I1 ≥ −|C(U, χ)|+ 2R+ c|fR1 (R)− f1(1)|,
I2 ≥ up

(
−|C(U, χ)|+ cf1(1) + ceR1 (R)

)
.

By virtue of (5.22), we have |C(U, χ)| ≤ C(B2(R) + 1). Referring to (5.11), we
conclude that there exists R0 > 1 larger than all constants in Hypothesis 4.1 such
that for R ≥ R0 we have in (5.48)

−
∫

Ω

χt
(
C(U, χ)up + c′(χ)

(
(eR1 (θ)− f1(1))up − ERp (θ)

))
dx ≤ 0 .

Let us fix now R > R0 and continue the Moser estimate, rewriting (5.48) as
follows∫

Ω

(
c(χ)ERp (θ)

)
t

dx+
4p

(p+ 1)2

∫
Ω

κ(χ)|∇u
p+1
2 |2 dx+

∫
∂Ω

h(x)up+1 ds(x)

≤ −
∫

Ω

UtA(U, χ, x, t)up dx . (5.49)
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We have c(χ)ERp (u) ≥ c∗c
∗

p+1 u
p+1, κ(χ) ≥ κ∗. Integrating (5.49) in time, we obtain,

using Hypo. 4.1 (i),(ii),(iv), as well as the estimates (5.45)–(5.46) and the fact that
u(x, 0) ≡ 0, that

c∗c
∗

p+ 1

∫
Ω

up+1(x, t) dx+
4pκ∗

(p+ 1)2

∫ t

0

∫
Ω

∣∣∣∇u p+1
2

∣∣∣2 (x, ξ) dx dξ

≤
∫ t

0

∫
Ω

up(x, ξ)

(
1 +QR(θ(x, ξ)) +

∫ ξ

0

e−λ(ξ−η)QR(θ(x, η)) dη

)
r(x, ξ) dxdξ .

The function r(x, t) = CA(U, χ, x, t), where C is a suitable constant, has norm
in L∞(0, T ;L2(Ω)) bounded independently of R by virtue of (5.44). Note that
QR(θ) ≤ u+R. Hence, the function v := u/R satisfies for all p > 1 the inequality

c∗c
∗

p+ 1

∫
Ω

vp+1(x, t) dx+
4pκ∗

(p+ 1)2

∫ t

0

∫
Ω

∣∣∣∇v p+1
2

∣∣∣2 (x, ξ) dxdξ

≤
∫ t

0

∫
Ω

vp(x, ξ)

(
1 + v(x, ξ) +

∫ ξ

0

e−λ(ξ−η)v(x, η) dη

)
r(x, ξ) dx dξ.

The argument of [10, Prop. 4.5] yields ‖v‖L∞(ΩT ) ≤ C̄ with a constant C̄ indepen-
dent of R and T . Consequently,

‖QR(θ)‖L∞(ΩT ) ≤ (1 + C̄)R.

Choosing R sufficiently large such that B(R) > (1+C̄)R, we can remove the trunca-
tion from (5.38)–(5.40), concluding in this way the proof of existence of a bounded
solution to (4.5)–(4.7). If moreover (3.12) holds, then r ∈ L∞(0,∞;L2(Ω)), and
the upper bound holds globally in Ω∞. Indeed, the lower bound for θ in Subsection
5.2 is independent of the time step τ and is preserved when τ ↘ 0.

6. Uniqueness and continuous data dependence. In this Section, we prove
uniqueness and continuous data dependence of solutions under the more restrictive
assumption that κ(r) = κ̄ ∈ R+ for all r ∈ R+.

In what follows, we denote by R0, R1, R2, . . . suitable constants that possibly
depend on T , but not on the solutions. We first rewrite Eq. (4.5) in the form∫

Ω

(c(χ)(e1(θ)− f1(1)))tw(x) dx+

∫
Ω

κ̄∇θ · ∇w(x) dx

+

∫
∂Ω

h(x)(θ − θΓ)w(x) dσ(x) = −
∫

Ω

(
UtA(U, χ, x, t) + χtC(U, χ)

)
w(x) dx .

(6.1)

We fix two sets of data and two corresponding solutions, and label them with

indices 1 and 2. We denote θ̂ = θ1 − θ2, χ̂ = χ1 − χ2, χ̂0 = χ01 − χ02, θ̂0 =

θ01 − θ02, θ̂Γ = θΓ1 − θΓ2, Û = U1 − U2, Û0 = U01 − U02, Θ̂(x, t) =
∫ t

0
θ̂(x, τ) dτ ,

Θ̂Γ(x, t) =
∫ t

0
θ̂Γ(x, τ) dτ , P̂0 = P01 −P02. Within the range θ[(T ) ≤ θ ≤ θ](T ) and

χ ∈ [0, 1], |χt| ≤ C of admissible values for the solutions, and, thanks to Hypo. 4.1,
all nonlinearities in (4.5)–(4.7) are Lipschitz continuous. We integrate the difference
of the two equations (6.1), written for (θ1, U1, χ1) and (θ2, U2, χ2), from 0 to t, and
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test by w = θ1 − θ2. This yields∫
Ω

|θ̂(x, t)|2 dx+
d

dt

(
R0

∫
Ω

|∇Θ̂(x, t)|2 dx+R1

∫
∂Ω

h(x)(Θ̂− Θ̂Γ)2(x, t) dσ(x)

)
≤ R2

(
‖θ̂0‖2L2(Ω) +

∫ t

0

|P̂0(ξ)|2 dξ +

∫
∂Ω

h(x)|Θ̂− Θ̂Γ| |θ̂Γ|(x, t) dσ(x)

+

∫
Ω

(∫ t

0

(
|χ̂t(x, ξ)|+ |Ût(x, ξ)|+ |χ̂(x, ξ)|+ |Û(x, ξ)|

)
dξ
)2

dx
)
. (6.2)

Repeating the argument of [10, Proposition 4.3] or [4, Proposition 3.4] about the
L1-Lipschitz continuity of solution operators to gradient flows, we obtain for the
solutions to (4.6)–(4.7) for a.e. (x, t) ∈ ΩT the estimate∫ t

0

(|χ̂t(x, τ)|+ |Ût(x, τ)|)(x, ξ) dξ + |χ̂(x, t)|+ |Û(x, t)| (6.3)

≤ R3

(∫ t

0

|P̂0(ξ)|dξ + |χ̂0(x)|+ |Û0(x)|+
∫ t

0

(
|θ̂(x, ξ)|+

∫
Ω

|θ̂(y, ξ)|dy
)

dξ

)
.

Integrating (6.2) from 0 to t and using (6.3) together with Gronwall’s argument, we
obtain for each t ∈ [0, T ] the estimate∫ t

0

∫
Ω

|θ̂(x, ξ)|2 dxdξ +

∫
Ω

|χ̂(x, t)|2 dx+

∫
Ω

|Û(x, t)|2 dx

≤ R4

(
‖θ̂0‖2L2(Ω) + ‖χ̂0‖2L2(Ω) + ‖Û0‖2L2(Ω) +

∫ t

0

|P̂0(ξ)|2 dξ

+

∫ t

0

∫
∂Ω

h(x)θ̂2
Γ(x, ξ) dσ(x) dξ

)
. (6.4)

This concludes the proof of uniqueness of solutions and of Theorem 4.2.
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