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Abstract. A structure analysis of the Preisach model in a variational set-
ting is carried out by means of an auxiliary hyperbolic equation with memory
variable playing the role of time, and amplitude of cycles as spatial variable.
Using this representation, we propose an algorithm and derive error estimates
for the identification of the Preisach density function and for an approximate
inversion of the Preisach operator.

Introduction. This text offers some mathematical background for numerical treat-
ment of the Preisach hysteresis model. It was motivated by stimulating discussions
with Ciro Visone and Daniele Davino at the University del Sannio in Benevento
about the inversion method described in [3], and the author is grateful for useful
suggestions and practical comments.

We work here with the Preisach operator in a variational setting following [8],
restricting ourselves to time discrete inputs and outputs similarly as in [1]. The
extension to arbitrary regulated, and especially continuous functions of time, is
straightforward in terms of the Kurzweil integral variational formulation as in [11].
In this framework, the Nemytskii operator and the Prandtl-Ishlinskii operator turn
out to be special cases of the Preisach model.

An explicit inversion formula for the Prandtl-Ishlinskii operator was derived in
[7]. For a general Preisach operator, no inversion formula is known. The first paper
dealing with the question of invertibility of Preisach operators is [2]. The proof of
existence and continuity of the Preisach inverse there deals with evolving curves in
the Preisach plane and is based on geometrical intuition. We present here a new
purely analytical and short proof of the Lipschitz continuity of the inverse Preisach
operator with respect to the sup-norm, propose algorithms for identification of the
Preisach density and real time numerical inversion, and derive error estimates for the
schemes. This is different from [4], where the Preisach density is identified by means
of a least squares technique. Here, in Section 4, assuming output measurement error
δ, the density is approximated with error of the order δ1/3. The inversion error is
proportional to the discretization error and remains bounded independently of the
number of cycles.

2010 Mathematics Subject Classification. Primary: 34C55; Secondary: 65L70, 65Q99.
Key words and phrases. Hysteresis, Preisach model, error bounds.
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Both the identification and inversion problems can then be reduced to properties
of solutions to an auxiliary wave equation with Cauchy data, where the cycle am-
plitude can be interpreted as spatial variable, and the memory parameter plays the
role of time. As a by-product, we obtain an analytical formula for superpositions of
the Preisach operator with the Nemytskii operator and with the Prandtl-Ishlinskii
operator, extending thus the classification of hysteresis operators from [9, 10] to
more general, in particular non-symmetric, cases.

The paper is organized as follows. In Section 1 we introduce the Preisach oper-
ator, establish its basic properties, and state the main results. Section 2 is devoted
to a structure analysis of the Preisach model and superposition formulas. The proof
of the Lipschitz continuity of the Preisach operator and its inverse is carried out
in Section 3. The identification algorithm is investigated in Section 4, and error
estimates for our numerical Preisach inversion algorithm are obtained in Section 5.

1. Time discrete Preisach operator. We consider evolution processes on pos-
sibly infinite discrete time sequences. To this aim, we define the space

`∞ = {u = {uj}
∞
j=0 : sup

j∈N∪{0}

|uj | < ∞} . (1.1)

endowed with seminorms |u|k = sup0≤j≤k |uj | for k ∈ N∪{0}. It is a Banach space
with norm |u|∞ = supj∈N∪{0} |uj |.

For a given parameter r ≥ 0, an input u = {uj}
∞
j=0 ∈ `∞, and an initial condition

λ−1(r) ∈ R, the sequence

λj(r) = max{uj − r,min{λj−1(r), uj + r}} (1.2)

defines the discrete play operator with threshold r. Obviously,

λj(0) = uj (1.3)

for all j. The full one-parameter system of play operators for all r ≥ 0 gives a
complete characterization of all hysteresis operators with return point memory, see
[1, Theorem 2.7.7]. It is convenient to introduce the set

Λ = {λ ∈ W 1,∞
loc (0,∞) : |λ′(r)| ≤ 1 a.e.} (1.4)

of admissible memory configurations (the memory state space), where the prime
denotes derivative with respect to the memory variable r. It is easy to see that if
λj−1 ∈ Λ, then λj given by (1.2) also belongs to Λ. Given λ−1 ∈ Λ and u ∈ `∞, we
use for the play operator the notation

λ(r) = {λj(r)}
∞
j=0 = pr[u, λ−1] . (1.5)

The play operator is Lipschitz continuous in the following sense.

Lemma 1.1. Let u(i) ∈ `∞ and λ
(i)
−1 be given, and let λ

(i)(r) = pr[u
(i), λ

(i)
−1],

i = 1, 2. Then for all j ∈ N ∪ {0} and r ≥ 0 we have

|λ
(1)
j (r) − λ

(2)
j (r)| ≤ max{|u(1) − u(2)|j , |λ

(1)
−1(r) − λ

(2)
−1(r)|} , (1.6)

where the symbol | · |j denotes the seminorm defined at the beginning of this section.

Proof. We first check that (1.2) can be characterized by the variational inequality

|uj − λj(r)| ≤ r , (1.7)

(λj(r) − λj−1(r))(uj − λj(r)− y) ≥ 0 ∀|y| ≤ r . (1.8)
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Indeed, let (1.2) be fulfilled. Then uj − r ≤ λj(r) ≤ uj + r, hence (1.7) holds.
Assuming (1.7), condition (1.2) is equivalent to the statement

If λj(r) > λj−1(r) then λj(r) = uj − r, and if λj(r) < λj−1(r) then λj(r) = uj + r.

This proves the equivalence of (1.2) with (1.7) + (1.8). We thus have

(λ
(1)
j (r) − λ

(1)
j−1(r))((u

(1)
j − u

(2)
j )− (λ

(1)
j (r) − λ

(2)
j (r))) ≥ 0 ,

(λ
(2)
j (r) − λ

(2)
j−1(r))((u

(2)
j − u

(1)
j )− (λ

(2)
j (r) − λ

(1)
j (r))) ≥ 0 .

Summing up the above inequalities yields

((λ
(1)
j (r) − λ

(2)
j (r)) − (λ

(1)
j−1(r) − λ

(2)
j−1(r)))((λ

(1)
j (r) − λ

(2)
j (r)) − (u

(1)
j − u

(2)
j )) ≤ 0 ,

which implies in turn

|λ
(1)
j (r)− λ

(2)
j (r)| ≤ max{|λ

(1)
j−1(r) − λ

(2)
j−1(r)|, |u

(1)
j − u

(2)
j |} ,

and (1.6) follows by induction. �

The variational formulation of the Preisach operator as a nonlinear combination
of plays goes back to [8]. Here, in the discrete case, we define the Preisach output
sequence w = {wj}

∞
j=0 by the integral formula

wj = f(uj) +

∫ ∞

0

g(r, λj(r)) dr for j = 0, 1, 2, . . . , (1.9)

where f, g are functions satisfying Hypothesis 1.2 below, and λj is defined by (1.2).
Formula (1.9) enables us to introduce the Preisach operator P defined in (a subset
of) `∞ × Λ with values in `∞, and rewrite (1.9) in the form

w = {wj}
∞
j=0 = P [u, λ−1]. (1.10)

An important special case – the so-called Prandtl-Ishlinskii operator – corresponds
to the choice

f(v) = Γ′(0)v , g(r, v) = Γ′′(r)v , (1.11)

where Γ : [0,∞) → [0,∞) is a given increasing function with locally Lipschitz
continuous derivative such that Γ(0) = 0.

Hypothesis 1.2. We consider functions f : R → R and µ : (0,∞) × R → R with
the following properties.

(i) f is locally Lipschitz continuous, f(0) = 0, 0 < b < f ′(u) < F (|u|) a.e., where
F : [0,∞) → (0,∞) is a nondecreasing function;

(ii) µ ∈ L∞((0,∞)× R), |µ(r, v)| ≤ M a.e., g(r, v) =
∫ v

0
µ(r, ξ) dξ;

(iii) ∃µ0 ∈ L1(0,∞): µ0 ≥ 0 a.e.,
∫∞

0
µ0(r) dr = b0 < b, µ(r, v) ≥ −µ0(r) a.e.

We see that the integral in (1.9) is not necessarily well defined for all choices
of the initial condition λ−1 ∈ Λ. We therefore consider a special class of initial
conditions

ΛK = {λ ∈ Λ : λ(r) = 0 for r ≥ K} (1.12)

for K > 0. If λ−1 ∈ ΛK and u = {uj}
∞
j=0 is an arbitrary input sequence, we easily

prove by induction that λj defined by (1.2) has the property

λj ∈ ΛKj
, Kj = max{K, |u|j} . (1.13)

Hence, formula (1.9) is meaningful whenever λ−1 ∈ ΛK for some K > 0.
For the reader who is more familiar with the original “non-ideal relay” definition

of the Preisach operator as in [12], let us recall that µ(r, v) is the relative density
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distribution of relays with thresholds v − r and v + r, and the curve v = λj(r)
describes the interface between the +1 and −1 regions in the Preisach half-plane
with coordinates r > 0, v ∈ R (that is, rotated by 225◦ with respect to the Preisach
(α, β)-half-plane (cf. [6, 13]) with α = v− r, β = v+ r). The equivalence of the two
concepts is proved in [8].

Analytical properties of the Preisach operator and its inverse are investigated in
detail in [2]. We state here the result on local Lipschitz continuity of P and global
Lipschitz continuity of its inverse in new form and give a simple analytical proof,
which will enable us to derive error bounds for numerical inversion.

Theorem 1.3. Let Hypothesis 1.2 hold, and let λ
(1)
−1, λ

(2)
−1 ∈ ΛK be given for some

K > 0.

(i) Let u(i) = {u
(i)
j }∞j=0 ∈ `∞, i = 1, 2, be given sequences, and let w(i) =

{w
(i)
j }∞j=0 be the output sequences defined by (1.9). Then for all j ∈ N ∪ {0}

we have

|w
(1)
j − w

(2)
j | ≤ max

{

(F (Kj) +MKj)|u
(1) − u(2)|j ,M

∫ ∞

0

|λ
(1)
−1(r)− λ

(2)
−1(r)| dr

}

,

(1.14)
where Kj = max{K, |u(i)|j , i = 1, 2}

(ii) Let w(i) = {w
(i)
j }∞j=0 ∈ `∞ be given sequences, and let K be a constant such

that |w(i)|∞ ≤ (b − b0)K, i = 1, 2. Then there exist uniquely determined

sequences u(i) = {u
(i)
j }∞j=0 such that (1.9) holds, |u(i)|∞ ≤ K for i = 1, 2, and

for all j ∈ N ∪ {0} we have

|u
(1)
j −u

(2)
j | ≤

2

b− b0
|w(1)−w(2)|j+max

{

1,
K∗

b− b0

}

max
r≥0

|λ
(1)
−1(r)−λ

(2)
−1(r)|, (1.15)

where K∗ = 2(F (K) +MK).

We postpone the proof of Theorem 1.3 to Section 3 and investigate first some
structure properties of the Preisach operator.

2. Auxiliary results. We associate with f and g from Hypothesis 1.2 a Cauchy
problem for the wave equation

Srr − Svv = g(r, v) ,

S(0, v) = 0 ,

Sr(0, v) = f(v) .















(2.1)

Here and in the sequel, the indices r and v denote partial derivatives with respect
to r and v, respectively.

We see that the Preisach memory variable r thus plays the role of time in (2.1).
We call S the generating function of the Preisach operator P . It is given by the
integral formula

S(r, v) =
1

2

∫ v+r

v−r

f(ξ) dξ +
1

2

∫ r

0

∫ v+r−%

v−r+%

g(%, ξ) dξ d% . (2.2)

In PDE terminology, the integration domain

T (r, v) = {(%, ξ) ∈ R
2 : 0 < % < r, |v − ξ| < r − %} (2.3)

in (2.2) is called the characteristic triangle with vertex (r, v).
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For convenience, we write down explicit formulas for partial derivatives of S,
which we need in the sequel.

Sr(r, v) = 1
2 (f(v + r) + f(v − r))

+ 1
2

∫ r

0 (g(%, v + r − %) + g(%, v − r + %)) d% ,

Sv(r, v) = 1
2 (f(v + r) − f(v − r))

+ 1
2

∫ r

0 (g(%, v + r − %)− g(%, v − r + %)) d% ,

Srv(r, v) = 1
2 (f

′(v + r) + f ′(v − r))

+ 1
2

∫ r

0
(µ(%, v + r − %) + µ(%, v − r + %)) d% ,

Svv(r, v) = 1
2 (f

′(v + r)− f ′(v − r))

+ 1
2

∫ r

0
(µ(%, v + r − %)− µ(%, v − r + %)) d% ,

Srr(r, v) = 1
2 (f

′(v + r)− f ′(v − r))

+ 1
2

∫ r

0
(µ(%, v + r − %)− µ(%, v − r + %)) d%+ g(r, v) .























































































(2.4)

Note that Sv is precisely what the engineers call Everett function, that is, the
integral of the Preisach density over the characteristic triangle T (r, v) including the
corresponding part of the coordinate line r = 0, see, e.g., [5]. The interface lines
between the +1 and −1 regions in the Preisach model stated in terms of non-ideal
relays as, for example, in [2], follow the characteristic directions of the hyperbolic
equation (2.1).

In the particular case of the Prandtl-Ishlinskii operator (1.11), the function S
has the form

S(r, v) = Γ(r)v , (2.5)

so that the Everett function Γ = Sv is independent of v.
For S as in (2.2), set

S+(r, v) = f ′(v + r) +
∫ r

0
µ(%, v + r − %) d% ,

S−(r, v) = f ′(v − r) +
∫ r

0 µ(%, v − r + %) d% .

}

(2.6)

By Hypothesis 1.2, we have S+ ≥ b − b0, S− ≥ b − b0, and Srv = 1
2 (S+ + S−),

Svv = 1
2 (S+ − S−).

Let now λ ∈ Λ be arbitrary. We define the function ϕλ : [0,∞) → [0,∞) by the
formula

ϕλ(r) = Sv(r, λ(r)) for r ≥ 0 . (2.7)

Then ϕλ(0) = 0, and for a. e. r > 0 we have

ϕ′
λ(r) = Srv(r, λ(r))+Svv(r, λ(r))λ

′(r) =
1

2
(1+λ′(r))S++

1

2
(1−λ′(r))S− ≥ b− b0.

(2.8)
Hence, the inverse ϕ−1

λ : [0,∞) → [0,∞) is increasing and Lipschitz continuous
with Lipschitz constant 1/(b− b0).

The following result plays a crucial role in our analysis.

Lemma 2.1. Let Hypothesis 1.2 hold, and let λ ∈ ΛK be given for some K > 0.
For s ≥ 0 set

λ∗(s) =

(

Sr(r, λ(r)) +

∫ ∞

r

g(%, λ(%)) d%

)
∣

∣

∣

∣

r=ϕ−1
λ

(s)

. (2.9)

Then λ∗ ∈ Λ.
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Proof of Lemma 2.1. For all r ≥ 0 we have

λ∗(ϕλ(r)) = Sr(r, λ(r)) +

∫ ∞

r

g(%, λ(%)) d% .

The chain rule yields

dλ∗

ds
(ϕλ(r))ϕ

′
λ(r) = Srv(r, λ(r))λ

′(r) + Srr(r, λ(r)) − g(r, λ(r))

= Srv(r, λ(r))λ
′(r) + Svv(r, λ(r)) ,

hence

dλ∗

ds
(ϕλ(r)) =

Srv(r, λ(r))λ
′(r) + Svv(r, λ(r))

Svv(r, λ(r))λ′(r) + Srv(r, λ(r))

=
(1 + λ′(r))S+ − (1 − λ′(r))S−

(1 + λ′(r))S+ + (1 − λ′(r))S−
.

We see that dλ∗/ ds ∈ [−1, 1] almost everywhere, which we wanted to prove. Note
also the implications

λ′(r) = 1 ⇒
dλ∗

ds
(ϕλ(r)) = 1, λ′(r) = −1 ⇒

dλ∗

ds
(ϕλ(r)) = −1 . (2.10)

�

Lemma 2.2. Let λ−1 ∈ ΛK be given for some K > 0, let u = {uj}
∞
j=0 ∈ `∞ be a

given input sequence, and let w = {wj}
∞
j=0 be given by the Preisach formula (1.9).

For s ≥ 0 set

λ∗
j (s) =

(

Sr(r, λj(r)) +

∫ ∞

r

g(%, λj(%)) d%

)∣

∣

∣

∣

r=ϕ−1
λj

(s)

for j ∈ N ∪ {−1, 0}, (2.11)

λ̂−1(s) = λ∗
−1(s) , (2.12)

λ̂j(s) = max{wj − s,min{λ̂j−1(s), wj + s}} for j ∈ N ∪ {0} . (2.13)

Then for all j ∈ N ∪ {0} and s ≥ 0 we have λ̂j(s) = λ∗
j (s).

Proof of Lemma 2.2. By definition, the assertion holds for j = −1. We proceed
by induction, and assume that it holds for some j − 1. We consider first the case
uj ≥ uj−1 and set

rj = min{r ≥ 0 : uj ≤ λj−1(r) + r} .

Then

λj(r) =

{

uj − r for r ∈ [0, rj) ,

λj−1(r) for r ≥ rj .
(2.14)

In agreement with (1.3) and (1.9), set u−1 = λ−1(0), w−1 = λ̂−1(0) = λ∗
−1(0). We

have

wj − wj−1 = f(uj)− f(uj−1) +

∫ ∞

0

∫ λj(r)

λj−1(r)

µ(r, v) dv dr (2.15)

≥ b(uj − uj−1)−

∫ rj

0

∫ uj−r

uj−1−r

µ0(r) dv dr

≥ (b− b0)(uj − uj−1) ≥ 0 .
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We have used the fact that in [0, rj), the function r 7→ λj−1(r)+ r is nondecreasing,
hence λj−1(r) ≥ uj−1 − r. It follows from (2.13) that putting

ŝj = min{s ≥ 0 : wj ≤ λ̂j−1(s) + s} ,

we have

λ̂j(s) =

{

wj − s for s ∈ [0, ŝj) ,

λ̂j−1(s) for s ≥ ŝj .
(2.16)

The next step consists in putting

s∗j = ϕλj−1 (rj) = Sv(rj , λj−1(rj)) .

For s ≥ s∗j we have r := ϕ−1
λj−1

(s) ≥ rj , hence λj(r) = λj−1(r), and

s = Sv(r, λj−1(r)) = Sv(r, λj(r)) = ϕλj
(r) .

Consequently,

λ∗
j (s) =

(

Sr(r, λj−1(r)) +

∫ ∞

r

g(%, λj−1(%)) d%

)∣

∣

∣

∣

r=ϕ−1
λj−1

(s)

= λ∗
j−1(s) = λ̂j−1(s)

by induction hypothesis. On the other hand,

wj − λ∗
j (s

∗
j ) = f(uj) +

∫ rj

0

g(%, λj(%)) d%− Sr(rj , λj(rj))

=
1

2
(f(uj)− f(uj − 2rj)) +

1

2

∫ rj

0

(g(%, uj − %)− g(%, uj − 2rj + %)) d%

= Sv(rj , λj(rj)) = s∗j .

Note that λ∗
j (0) = λ̂j(0) = wj . The function s 7→ λ∗

j (s) + s − wj is nondecreasing

in [0, s∗j ] and vanishes at the endpoints of the interval, hence it is constant, that is,
λ∗
j (s) = wj − s for s ∈ [0, s∗j ].

Set s+j = max{ŝj, s
∗
j}, s

−
j = min{ŝj , s

∗
j}. The functions λ̂j and λ∗

j coincide on

[0, s−j ] ∪ [s+j ,∞], and for s ∈ [s−j , s
+
j ] we have

λ̂j(s)− λ∗
j (s) =

{

λ̂j−1(s) + s− wj if ŝj ≤ s∗j ,

−λ̂j−1(s)− s+ wj if ŝj > s∗j .

In both cases, this is a monotone function which vanishes at the endpoints of the

interval [s−j , s
+
j ], hence λ̂j = λ∗

j . The argument is similar if uj ≤ uj−1. This
completes the proof of Lemma 2.2. �

Note that (2.13) defines the play operator applied to w, or, in other words, the
play operator superposed to the Preisach operator applied to u. We now derive
further superposition formulas, which generalize analogous results in [9], where the
argument is based on the investigation of memory sequences, and therefore is valid
only for symmetric nonlinearities. Here, no symmetry is assumed.

Proposition 2.3. Let P be the Preisach operator (1.9)–(1.10) satisfying Hypothesis
1.2, let h : R → R be an increasing locally Lipschitz continuous function such that
h(0) = 0, and let Q be the Prandtl-Ishlinskii operator (1.11). Let S be the generating
function of P according to (2.1).
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(i) Let
∫∞

0 g(12 (h(r) − h(−r)), 1
2 (h(r) + h(−r))) dr < ∞. Then the superposed

operator P h = P ◦ h is a Preisach operator with generating function

Sh(r, v) =

∫ v

0

Sq(p(r, ξ), q(r, ξ)) dξ , (2.17)

where

p(r, v) =
1

2
(h(v + r) − h(v − r)) ,

q(r, v) =
1

2
(h(v + r) + h(v − r)) .

(ii) Let there exist R > 0 such that Sr(r, 0) = 0 for r > R. Then PQ = Q ◦ P is
a Preisach operator with generating function

SQ(r, v) =

∫ v

0

Γ(Sξ(r, ξ)) dξ . (2.18)

(iii) Let limr→∞ Γ(r) = ∞. Then the superposition h ◦Q is a Preisach operator if
and only if at least one of the functions h, Γ is linear.

In particular, it follows immediately from (2.18) and (1.11) that the composition
Q1 ◦ Q2 of two Prandtl-Ishlinskii operators Q1, Q2 with Everett functions Γ1,Γ2,
respectively, is again a Prandtl-Ishlinskii operator with Everett function Γ1 ◦Γ2, so
that the inverse of a Prandtl-Ishlinskii operator is explicitly obtained by inverting
the Everett function Γ. This result goes back to [7]. In general, no explicit formula
for the inverse Preisach operator P−1 is known. This is possible only in special
cases like Q−1 ◦h−1 = (h◦Q)−1 as in (iii), see [14]. This also shows that the inverse
of a Preisach operator cannot be expected to be Preisach in general.

Proof of Proposition 2.3. (i) Let us consider a function λ ∈ ΛK for some K > 0.
The Nemytskii operator h is a special case of the Preisach operator with f = h and
g = 0. Hence, in view of (2.4)–(2.9) and Lemma 2.2, it suffices to construct two

functions f̃ and g̃ such that the following implication holds:

s = p(r, λ(r)), λ̃(s) = q(r, λ(r))

=⇒ f(λ̃(0)) +

∫ ∞

0

g(s, λ̃(s)) ds = f̃(λ(0)) +

∫ ∞

0

g̃(r, λ(r)) dr . (2.19)

We have by substitution
∫ ∞

0

g(s, λ̃(s)) ds =

∫ ∞

0

(Spp − Sqq)(p, q)(pr + λ′(r)pv)(r, λ(r)) dr . (2.20)

On the other hand,

d

dr

(

Sp(p(r, λ(r)), q(r, λ(r)))
)

= (pr + λ′(r)pv)Spp + (qr + λ′(r)qv)Spq , (2.21)

and
d

dr

(

Sh
r (r, λ(r))

)

= Sh
rr + λ′(r)(Spqpr + Sqqqr) . (2.22)

Furthermore, Sh
vv(r, v) = Spqpv + Sqqqv and pr = qv, pv = qr. Hence,

d

dr

(

Sh
r (r, λ(r)) − Sp(p(r, λ(r)), q(r, λ(r)))

)

= Sh
rr − Sh

vv − (pr + λ′(r)pv)(Spp − Sqq)(p, q) . (2.23)
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Integrating (2.23) over r from 0 to ∞ and using (2.20), we obtain (2.19) with

f̃(v) = f(h(v)) = Sh
r (0, v) and g̃(r, v) = Sh

rr − Sh
vv, which we wanted to prove.

(ii) We proceed in a similar way, with λ∗ as in (2.9), with the intention to find

f̂ , ĝ such that

Γ′(0)λ∗(0) +

∫ ∞

0

Γ′′(s)λ∗(s) ds = f̂(λ(0)) +

∫ ∞

0

ĝ(r, λ(r)) dr . (2.24)

We have

Γ′(0)λ∗(0) +

∫ ∞

0

Γ′′(s)λ∗(s) ds = −

∫ ∞

0

Γ′(s)λ′
∗(s) ds

= −

∫ ∞

0

Γ′(Sv(r, λ(r)))(Svv + λ′(r)Srv) dr .

(2.25)

Using the identities SQ
v = Γ′(Sv) and

d

dr

(

SQ
r (r, λ(r))

)

= SQ
rr + λ′(r)Γ′(Sv(r, λ(r)))Srv , (2.26)

we obtain

Γ′(0)λ∗(0)+

∫ ∞

0

Γ′′(s)λ∗(s) ds = SQ
r (0, λ(0))+

∫ ∞

0

(SQ
rr−SQ

vv)(r, λ(r)) dr , (2.27)

and (2.24) follows with f̂(v) = SQ
r (0, v), ĝ = SQ

rr − SQ
vv as in (2.1).

(iii) Assume that there exist functions f and g such that for every λ ∈ ΛK we
have

h

(

Γ′(0)λ(0) +

∫ ∞

0

Γ′′(r)λ(r) dr

)

= f(λ(0)) +

∫ ∞

0

g(r, λ(r)) dr . (2.28)

For given numbers 0 < a < b < c such that u ≥ 2b− c, we consider the functions

λ(r) =















−u+ r for r ∈ [0, b) ,
−u+ 2b− r for r ∈ [b, c) ,
−u+ 2b− 2c+ r for r ∈ [c, 2c− 2b+ u) ,
0 for r ≥ 2c− 2b+ u ,

(2.29)

λ̄(r) =

{

−u+ 2a− r for r ∈ [0, a) ,
λ(r) for r ≥ a .

(2.30)

We evaluate the left hand side of (2.28) for λ and λ̄ using the integration-by-parts
formula

Γ′(0)λ(0) +

∫ ∞

0

Γ′′(r)λ(r) dr = −

∫ ∞

0

Γ′(r)λ′(r) dr .

Subtracting the identities (2.28) written for λ̄ and λ, we thus obtain

h(2Γ(a)− 2Γ(b) + 2Γ(c)− Γ(2c− 2b+ u))− h(−2Γ(b) + 2Γ(c)− Γ(2c− 2b+ u))

= f(−u+ 2a)− f(−u) +

∫ a

0

(g(r,−u+ 2a− r) − g(r,−u+ r)) dr . (2.31)

The right hand side of (2.31) is independent of b and c. We differentiate (2.31) with
respect to b and with respect to c, add the two results and obtain for all a, b, c, u as
above that

(

h′(2Γ(a)− 2Γ(b) + 2Γ(c)− Γ(2c− 2b+ u))

− h′(−2Γ(b) + 2Γ(c)− Γ(2c− 2b+ u))
)(

Γ′(c)− Γ′(b)
)

= 0 . (2.32)
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Let now x ∈ R be arbitrarily given, and let us assume that Γ′ is non-constant in
[0,∞). Then there exist c0 > b0 > 0 such that Γ′(b0) 6= Γ′(c0). Set z = (x/Γ(b0))

+.
We find b ∈ [b0, c0] and c ≥ Γ−1((z+2)Γ(b)) such that Γ′(b) 6= Γ′(c). We now claim
that u ≥ 2b− c can be chosen in such a way that

− 2Γ(b) + 2Γ(c)− Γ(2c− 2b+ u) = x . (2.33)

Indeed, we have

−2Γ(b)+2Γ(c)−Γ(2c−2b+u)≥ zΓ(b)+Γ(c)−Γ(2c−2b+u)≥ x+Γ(c)−Γ(2c−2b+u) ,

and (2.33) follows. By virtue of (2.32), for all x ∈ R and all δ ∈ (0, 2Γ(b0)) we have
h′(x+ δ)− h′(x) = 0, hence h is linear. �

3. Proof of Theorem 1.3. Inequality (1.14) is an immediate consequence of
Lemma 1.1. Indeed, we have

w
(1)
j − w

(2)
j = f(u

(1)
j )− f(u

(2)
j ) +

∫ Kj

0

∫ λ
(1)
j

(r)

λ
(2)
j

(r)

µ(r, v) dv dr

≤ F (Kj)|u
(1)
j − u

(2)
j |+M

∫ Kj

0

|λ
(2)
j (r) − λ

(1)
j (r)| dr ,

and (1.14) follows easily.
Part (ii) is more involved. Let w = {wj}

∞
j=0 and λ−1 ∈ ΛK be given. As in

Lemma 2.2, we define λ∗
−1(s) by (2.11) and put w−1 = λ∗

−1(0), u−1 = λ−1(0).
The first line of (2.15) can now be viewed as an equation for unknown uj. More
precisely, for u ∈ R we define the function

W (u) = f(u)− f(uj−1) +

∫ ru

0

∫ λu(r)

λj−1(r)

µ(r, v) dv dr , (3.1)

where

ru = min{r ≥ 0 : |u− λj−1(r)| ≤ r} .

We have ru = 0 if u = uj−1, and

λu(r) =















λj−1(r) for r ≥ ru ,

u− r for r ∈ [0, ru) if u > uj−1 ,

u+ r for r ∈ [0, ru) if u < uj−1 .

(3.2)

The identity W (uj−1) = 0 is obvious. For u > uj−1, we use Fubini’s Theorem and
rewrite (3.1) in the form

W (u) = f(u)− f(uj−1) +

∫ ru

0

∫ u−r

λj−1(r)

µ(r, v) dv dr

= f(u)− f(uj−1) +

∫ u

uj−1

∫ rv

0

µ(r, v − r) dr dv .

Similarly, for u < uj−1 we obtain

W (u) = f(u)− f(uj−1) +

∫ u

uj−1

∫ rv

0

µ(r, v + r) dr dv .

Hence, W is absolutely continuous and W ′(u) ≥ b − b0 a.e. This allows us to
conclude that the equation W (u) = wj − wj−1 has a unique solution u = uj . It



PREISACH HYSTERESIS MODEL 111

remains to check that |uj| ≤ K for all j. It is certainly true for j = −1, Assume
that it holds for some j − 1, and assume for example that wj > wj−1, uj > K.
Then ruj

= uj, λuj
(r) = max{uj − r, 0}, and we directly obtain from (1.9) that

wj = f(uj) +

∫ ∞

0

g(r, λuj
(r)) dr = f(uj) +

∫ uj

0

∫ uj−r

0

µ(r, v) dv dr

≥ (b− b0)uj > (b− b0)K, (3.3)

which is a contradiction. The existence part is thus complete.
To prove inequality (1.15), we define as in (2.11)

λ
∗(i)
j (s) =

(

Sr(r, λ
(i)
j (r)) +

∫ ∞

r

g(%, λ
(i)
j (%)) d%

)∣

∣

∣

∣

r=ϕ−1

λ
(i)
j

(s)

(3.4)

for s ≥ 0, j ∈ N ∪ {0}, and i = 1, 2. We define

rj = min{r ≥ 0 : λ
(1)
j (r) = λ

(2)
j (r)} , sj = ϕ

λ
(1)
j

(rj) = ϕ
λ
(2)
j

(rj) . (3.5)

Assume that for example

rj > 0 , λ
(1)
j (r) > λ

(2)
j (r) for r ∈ [0, rj) . (3.6)

then

w
(i)
j − λ

∗(i)
j (sj) = f(u

(i)
j )− Sr(rj , λ

(i)
j (rj)) +

∫ rj

0

g(%, λ
(i)
j (%)) d% , (3.7)

hence

(w
(1)
j − w

(2)
j )− (λ

∗(1)
j (sj)− λ

∗(2)
j (sj))

= (f(u
(1)
j )− f(u

(2)
j )) +

∫ rj

0

(g(%, λ
(1)
j (%))− g(%, λ

(2)
j (%))) d%

= (f(u
(1)
j )− f(u

(2)
j )) +

∫ rj

0

∫ λ
(1)
j

(%)

λ
(2)
j

(%)

µ(%, v) dv d%

≥ b(u
(1)
j − u

(2)
j )−

∫ rj

0

µ0(%)(λ
(1)
j (%)− λ

(2)
j (%)) d%

≥ b(u
(1)
j − u

(2)
j )− b0 max{|u(1) − u(2)|j ,max

r≥0
|λ

(1)
−1(r) − λ

(2)
−1(r)|} .

This yields

b|u
(1)
j − u

(2)
j | ≤ |w

(1)
j − w

(2)
j |+max{|w(1) −w(2)|j ,max

s≥0
|λ

∗(1)
−1 (s)− λ

∗(2)
−1 (s)|}

+ b0max{|u(1) − u(2)|j ,max
r≥0

|λ
(1)
−1(r) − λ

(2)
−1(r)|} . (3.8)

Without assumption (3.6), inequality (3.8) holds as well. Indeed, we have u
(1)
j = u

(2)
j

if rj = 0, and if u
(1)
j < u

(2)
j , then we simply interchange u

(1)
j and u

(2)
j .

We first prove that

max
s≥0

|λ
∗(1)
−1 (s)− λ

∗(2)
−1 (s)| ≤ K∗ max

r≥0
|λ

(1)
−1(r) − λ

(2)
−1(r)| , K∗ = 2(F (K) +KM) .

(3.9)
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Indeed, let s > 0 be arbitrary. Set ri = ϕ−1

λ
(i)
−1

(s), that is,

s = Sv(r1, λ
(1)
−1(r1)) = Sv(r2, λ

(2)
−1(r2)) ,

and assume that r1 ≥ r2. If r1 ≥ K, then

s = Sv(r1, λ
(1)
−1(r1)) = Sv(r1, 0) = Sv(r1, λ

(2)
−1(r1)) = Sv(r2, λ

(2)
−1(r2)) ,

hence r1 = r2 and λ
∗(1)
−1 (s) = λ

∗(2)
−1 (s). It suffices thus to consider that case r2 ≤

r1 < K. Set D = maxr≥0 |λ
(1)
−1(r) − λ

(2)
−1(r)|. We have

λ
∗(1)
−1 (s)− λ

∗(2)
−1 (s) (3.10)

= Sr(r1, λ
(1)
−1(r1))− Sr(r1, λ

(2)
−1(r1)) +

∫ ∞

r1

g(r, λ
(1)
−1(r)) − g(r, λ

(2)
−1(r)) dr

+Sr(r1, λ
(2)
−1(r1))− Sr(r2, λ

(2)
−1(r2))−

∫ r1

r2

g(r, λ
(2)
−1(r)) dr .

By hypothesis, the inequality r1 ± λ
(i)
−1(r1) ≤ K holds for i = 1, 2, hence

∣

∣

∣

∣

Sr(r1, λ
(1)
−1(r1))− Sr(r1, λ

(2)
−1(r1)) +

∫ ∞

r1

g(r, λ
(1)
−1(r)) − g(r, λ

(2)
−1(r)) dr

∣

∣

∣

∣

≤ D(F (K) +MK).

Furthermore, set s1 = Sv(r1, λ
(2)
−1(r1)) ≥ s. Then

Sr(r1, λ
(2)
−1(r1))− Sr(r2, λ

(2)
−1(r2))−

∫ r1

r2

g(r, λ
(2)
−1(r)) dr = λ

∗(2)
−1 (s1)− λ

∗(2)
−1 (s) ,

where

|λ
∗(2)
−1 (s1)−λ

∗(2)
−1 (s)| ≤ s1−s = |Sv(r1, λ

(2)
−1(r1))−Sv(r1, λ

(1)
−1(r1))| ≤ D(F (K)+MK),

and (3.9) follows from (3.10).
Taking in (3.8) the maximum over j, we obtain, using (3.9), that

b|u(1) − u(2)|j ≤ |w(1) −w(2)|j +max{|w(1) −w(2)|j ,K
∗ max

r≥0
|λ

(1)
−1(r)− λ

(2)
−1(r)|}

+ b0max{|u(1) − u(2)|j ,max
r≥0

|λ
(1)
−1(r) − λ

(2)
−1(r)|} . (3.11)

This is an inequality of the form

bx ≤ y +max{y,K∗a}+ b0 max{x, a} (3.12)

with x = |u(1) − u(2)|j , y = |w(1) − w(2)|j , a = maxr≥0 |λ
(1)
−1(r) − λ

(2)
−1(r)|, which

yields

x ≤
2

b− b0
y +max

{

1,
K∗

b− b0
a

}

. (3.13)

Estimate (1.15) now follows from (3.13).
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4. Identification. Here, the constitutive functions f, g in (1.9) are assumed to be
unknown, and we propose an algorithm to determine them with a controlled error.
To this aim, we use again formula (2.9) that we rewrite in the form

λ∗(s) =

(

Sr(r, λ(r)) +

∫ ∞

r

g(%, λ(%)) d%

)

, s = Sr(r, λ(r)) . (4.1)

For simplicity, we assume the asymptotically symmetric case

∃K > 0 : r + |v| > K =⇒ f(v) = −f(−v) , g(r, v) = −g(r,−v) . (4.2)

This is not a real restriction: We see from (1.13) that if |u|∞ < K and λ−1 ∈ ΛK ,
the values of f and g outside T (K, 0) (cf. (2.3)) never come into play in the formula
(1.9).

We first derive a few special properties of the play system.

Lemma 4.1. Let r0 ≥ r1 > r2 > · · · > rn = 0 be a sequence, and let λ ∈ ΛK be
such that

λ(rj−1)− λ(rj) = ±(−1)j(rj−1 − rj) for j = 1, . . . , n . (4.3)

Put λ−1(r) = λ(max{r, r0}) for r ≥ 0, and

uj = λ(rj)± (−1)jrj for j = 0, 1, . . . , n , (4.4)

with an arbitrary (e.g. constant) extension for j > n. Let λ(r) = {λj(r)}
∞
j=0 =

pr[u, λ−1]. Then λ(r) = λn(r) for all r ≥ 0.

Proof. The sequence {λj(r)}
∞
j=0 is defined by the formula (1.2). Assume for defi-

niteness that
{

λ(rj−1)− λ(rj) = (−1)j(rj−1 − rj) for j = 1, . . . , n ,
uj = λ(rj) + (−1)jrj for j = 0, 1, . . . , n ,

(4.5)

the other case is analogous. We prove by induction that for all j = 0, 1, . . . , n we
have

λj(r) =

{

uj − (−1)jr for r ∈ [0, rj) ,
λ(r) for r ≥ rj .

(4.6)

For j = 0 and r < r0 we have

λ0(r) = max{u0 − r,min{u0 + r, u0 − r0}} = u0 − r ,

while for r ≥ r0 we use the fact that λ ∈ Λ to conclude that

λ0(r) = max{λ(r0) + r0 − r,min{λ(r0) + r0 + r, λ(r)}} = λ(r) ,

which is precisely (4.6). Let us assume now that (4.6) holds for j − 1, that is,

λj−1(r) =

{

uj−1 + (−1)jr for r ∈ [0, rj−1) ,
λ(r) for r ≥ rj−1 .

(4.7)

We have λ′
j−1(r) = λ′(r) = (−1)j for r ∈ (rj , rj−1), hence λj−1(r) = λ(r) for

r ≥ rj . From the formula

λj(r) = max{λ(rj) + (−1)jrj − r,min{λ(rj) + (−1)jrj + r, λj−1(r)}}

we immediately obtain that λj(r) = λ(r) for r ≥ rj . On the other hand, we have
λj(0) = uj = λ(rj)+(−1)jrj , λj(rj) = λ(rj), which entails λ′

j(r) = (−1)j in (0, rj),
and (4.6) follows. The induction step is thus complete and for j we obtain the
assertion. �
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Lemma 4.2. Let (4.2) hold, and let λ ∈ ΛK be as in Lemma 4.1. Let λ∗ be given
by (4.1), and put

sj = Sv(rj , λ(rj)) for j = 0, 1, . . . , n , (4.8)

where S is the function (2.2). Then λ∗ ∈ ΛK∗
with K∗ = Sv(K, 0), and

λ∗(sj−1)− λ∗(sj) = ±(−1)j(sj−1 − sj) for j = 1, . . . , n . (4.9)

Proof. We have λ′(r) = ±(−1)j in (rj , rj−1), hence λ′
∗(s) = ±(−1)j in (sj , sj−1)

by (2.10), and the assertion follows. �

We now fix a constant R ∈ (0,K), with the goal to identify the functions f, g in
the characteristic triangle T (R, 0). We choose a discretization parameter m ∈ N,
and for α, β = −m, . . . ,m, we define the lines

Lα =
{

(r, v) ∈ R
2 : v − r = αR

m

}

,

Lβ =
{

(r, v) ∈ R
2 : v + r = β R

m

}

,

and their intersection points

zβα = Lα ∩ Lβ = (rβα, v
β
α) , rβα = (β − α)

R

2m
, vβα = (β + α)

R

2m
.

The set

D
(m)
R = {zβα : −m ≤ α ≤ β ≤ m}

forms a grid of T (R, 0), with square cells

Qβ
α =

{

(r, v) ∈ R : α
R

m
< v − r < (α+ 1)

R

m
, (β − 1)

R

m
< v + r < β

R

m

}

(4.10)

for β ≥ α+ 2, and triangular cells T (zββ−1) for b = −m+ 1, . . . ,m, see Figure 1.

���z
β
α

v = λ`(r)
`R
m

αR
m

βR

m

0

R

−R

R r

v

Figure 1. A square cell Qβ
α is represented in dark gray, a characteristic triangle T (zβα) in

light gray, the thick line represents the memory path v = λ
(γ)(r).
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We now define a sequence of functions λ(γ) from ΛR, γ = −m, . . . ,m − 1, such
that

λ(γ)(0) = vγγ = γ
R

m
, λ(γ)′ = (−1)k−1 for r ∈

(

(k − 1)
R

2m
, k

R

2m

)

, k = 1, . . . , pγ ,

(4.11)
where pγ is defined by the formula

{

pγ
R
2m +

∣

∣λ(γ)
(

pγ
R
2m

)∣

∣ = R ,

(pγ + 1) R
2m +

∣

∣λ(γ)
(

(pγ + 1) R
2m

)∣

∣ > R .
(4.12)

We then extend λ(γ) for r ≥ pγR/(2m) in an arbitrary way, for example λ(γ) =

(R − r)+ if γ ≥ 0, λ(γ) = −(R − r)+ if γ < 0, see Figure 1. A straightforward
computation yields

pγ =

{

2(m− γ) if γ ≥ 0 ,
2(m+ γ) + 1 if γ < 0 .

(4.13)

Each function λ(γ) satisfies the hypotheses of Lemma 4.1, with the choice r0 = r1 =
pγ , rj = r1 − (j − 1)R/(2m).

Furthermore, for each grid point zβα ∈ D
(m)
R but zmm = (0, R) there exist uniquely

determined γ ∈ {−m, . . . ,m− 1} and p ∈ {0, . . . , pγ} such that

zβα =
(

p
R

2m
,λ(γ)

(

p
R

2m

))

. (4.14)

Indeed, it suffices to put

p = β − α , γ = α+
[p

2

]

, (4.15)

where [·] denotes the integer part of a real number.
The identification algorithm is defined as follows: For each λ = λ(γ) we define

u and λ as in Lemma 4.1, and set w(γ) = P [u, λ
(γ)
−1 ]. By Lemmas 2.2 and 4.2, the

sequence λ∗(s) = ps[w, λ∗
−1] is given by (2.11), with λj as in (1.2). From Lemmas

4.1, 4.2 it follows that w
(γ)
j can be represented in terms of λ∗ defined in (4.1). We

have in particular

w
(γ)
j = λ∗(sj)± (−1)jsj ,

w
(γ)
j−1 = λ∗(sj−1)± (−1)j−1sj−1 ,

hence

w
(γ)
j − w

(γ)
j−1 = λ∗(sj)− λ∗(sj−1)± (−1)j(sj + sj−1) .

Together with (4.9), this yields

w
(γ)
j − w

(γ)
j−1 = ±2(−1)jsj for j = 1, . . . , n . (4.16)

We conclude that

sj = Sv(rj , λ(rj)) =
1

2
|w

(γ)
j − w

(γ)
j−1| . (4.17)

If the values w
(γ)
j are obtained from measurements, then the values of Sv(z

β
α) are

available for all −m ≤ α ≤ β ≤ m. Indeed, this follows from (4.14) if α < β, while

Sv(z
β
β ) = 0 for all β ∈ {−m, . . . ,m}. With µ as in Hypothesis 1.2, we now set

Aβ
α =

∫

Qβ
α

µ(%, ξ) d% dξ . (4.18)
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From (2.4) it follows

Sv(z
β
α) =

1

2

(

f
(

β
R

m

)

− f
(

α
R

m

))

+
1

2

∫

T (zβ
α)

µ(r, v) dr dv . (4.19)

Hence,

Aβ
α = 2

(

Sv(z
β
α) + Sv(z

β−1
α+1)− Sv(z

β
α+1)− Sv(z

β−1
α )

)

(4.20)

for all −m ≤ α < β ≤ m, β ≥ α+ 2.

Assume now that the measured values ŵ
(γ)
j differ from the the accurate outputs

w
(γ)
j by an error δ, that is,

∣

∣

∣
ŵ

(γ)
j − w

(γ)
j

∣

∣

∣
≤ δ (4.21)

for all γ and all j. The approximate values Ŝβ
α of Sv(z

β
α) and Âβ

α of Aβ
α then, by

virtue of (4.17) and (4.20), satisfy for all −m ≤ α < β ≤ m the estimates
∣

∣

∣
Ŝβ
α − Sv(z

β
α)
∣

∣

∣
≤ δ , (4.22)

and
∣

∣

∣
Âβ

α −Aβ
α

∣

∣

∣
≤ 8δ if β ≥ α+ 2 . (4.23)

For α = β − 1 we have

Sv(z
β
β−1) =

1

2

(

f
(

β
R

m

)

− f
(

(β − 1)
R

m

))

+
1

2

∫

T (zβ

β−1)

µ(r, v) dr dv . (4.24)

Equations (4.18) and (4.24) suggest to define the approximate values of f̂ of f and
µ̂ of µ by the formula

µ̂(r, v) =















2m2Âβ
α for (r, v) ∈ Qβ

α , β ≥ α+ 2 ,

2m2Âβ
β−2 for (r, v) ∈ T (zββ−1) , β ≥ −m+ 2 ,

2m2Â−m+2
−m for (r, v) ∈ T (z−m+1

−m ) .

(4.25)

f̂ ′(v) =
2m

R
Ŝβ
β−1 for v ∈

(

(β − 1)
R

m
, β

R

m

)

, β = −m+ 1, . . . ,m .(4.26)

We now state and prove the following identification result.

Proposition 4.3. Let Hypothesis 1.2 hold, and let both f ′ and µ be Lipschitz con-
tinuous on T (R, 0) with a Lipschitz constant L, that is,

{

|f ′(v)− f ′(ṽ)| ≤ L|v − ṽ| ∀v ∈ [−R,R] ,

|µ(r, v)− µ(r̃, ṽ)| ≤ Lmax{|r − r̃|, |v − ṽ|} ∀(r, v) ∈ T (R, 0) .
(4.27)

Let the output data w
(γ)
j be given with error δ as in (4.21). Then we have

{

|f̂ ′(v) − f ′(v)| ≤ 2δm
R + (M + 4LR2) 1

4Rm for a.e. v ∈ [−R,R] ,

|µ̂(r, v)− µ(r, v)| ≤ 2LR
m + 16δm2 for a.e. (r, v) ∈ T (R, 0) .

(4.28)

Remark 4.4. We see that the error may become large when we decrease the grid
size. The optimal value for m in terms of the measurement error δ is of the order
δ−1/3, and the error is then of the order δ1/3 as mentioned in the Introduction.
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Proof of Proposition 4.3. For β ≥ α+ 2 and (r, v) ∈ Qβ
α we have by (4.23) that

∣

∣

∣

∣

µ̂(r, v)− 2m2

∫

Qβ
α

µ(%, ξ) d% dξ

∣

∣

∣

∣

< 16δm2 . (4.29)

On the other hand, by the Lipschitz continuity of µ,
∣

∣

∣

∣

µ(r, v) − 2m2

∫

Qβ
α

µ(%, ξ) d% dξ

∣

∣

∣

∣

<
LR

m
. (4.30)

Hence,

|µ̂(r, v)− µ(r, v)| ≤
LR

m
+ 16m2δ ∀(r, v) ∈ Qβ

α if β ≥ α+ 2 . (4.31)

For (r, v) ∈ T (zββ−1), we proceed in a similar way. Inequality (4.29) still holds with
α = β − 2 if β ≥ −m + 2, and with α = −m, β = −m + 2 otherwise. Inequality
(4.30) is satisfied with right hand side (2LR)/m instead of (LR)/m, which proves
the second estimate in (4.28).

For v ∈ ((β − 1)Rm , β R
m ) we have by (4.24) and (4.26) that

∣

∣

∣

∣

f̂ ′(v)−
m

R

(

f
(

β
R

m

)

− f
(

(β − 1)
R

m

))

∣

∣

∣

∣

< δ
2m

R
+

M

4mR
. (4.32)

The Lipschitz continuity of f ′ yields
∣

∣

∣

∣

f ′(v) −
m

R

(

f
(

β
R

m

)

− f
(

(β − 1)
R

m

))

∣

∣

∣

∣

< L
R

m
, (4.33)

and the first estimate in (4.28) follows. �

5. Numerical inversion. We proceed in principle as at the beginning of the proof
of Theorem 1.3. Given a sequence w = {wj}

∞
j=0 ∈ `∞ and an initial configuration

λ−1 ∈ ΛK , we define λ∗
−1 by (2.11), set u−1 = λ−1(0), w−1 = λ∗

−1(0), and determine
uj consecutively for j = 0, 1, 2, . . . as solutions u = uj of the equation W (u) = wj −
wj−1. The problem here is that the Preisach measure is known only approximately,
and that the equation W (u) = wj − wj−1 can also be solved only approximately,
with uj from an a priori given discrete set of admissible values.

We denote by Z the set of all integers, assume that Hypothesis 1.2 holds, and
make the following discretization assumptions. The identification algorithm in Sec-
tion 4 offers an example of admissible approximations, cf. Proposition 4.3 and Re-
mark 4.4.

Hypothesis 5.1. A discretization parameter h > 0, and functions fh : R → R,
µh : (0,∞)×R → R, fh locally Lipschitz, µh ∈ L∞((0,∞)×R) are given such that

(i) |fh(u)− f(u)| ≤ h ∀u ∈ R, f ′
h(u) ≥ b a.e.;

(ii)
∫ R

−R

∫ R

0 |µh(r, v)− µ(r, v)| dr dv < MR2h for all R > 0, µh(r, v) ≥ −β(r) a.e.;

(iii) We define Λh
K as the set of all λ ∈ ΛK such that λ′(r) ∈ {−1, 1} is constant

in (kh, (k + 1)h) and λ(kh) ∈ hZ for all k ∈ N ∪ {0}, k ≤ K/h, and assume
that λh

−1 ∈ Λh
K is given such that maxr≥0 |λ

h
−1(r)− λ−1(r)| < h;

(iv) The approximate solutions uh
j belong to the set 2hZ.

We now define the approximate Preisach operatorw = Ph[u, λ
h
−1] by the formula

wj = fh(uj) +

∫ ∞

0

gh(r, λ
h
j (r)) dr for j = 0, 1, 2, . . . , (5.1)
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analogous to (1.9), with gh related to µh as in Hypothesis 1.2, and λ
h(r) =

{λh
j (r)}

∞
j=0 = pr[u, λ

h
−1] for any sequence u = {uj}

∞
j=0 ∈ `∞.

Solving the equation w = Ph[u, λ
h
−1] for given w involves numerical integration

over a 2D domain limited by the curves v = λh
j−1(r) and v = λh

j (r), cf. the first line

of (2.15). The following Lemma shows that the integration domain has a convenient
form.

Lemma 5.2. Let λh
−1 and uh = {uh

j }
∞
j=0 be as in Hypothesis 5.1, let |uh

j | ≤ K for

all j ∈ N ∪ {0}, and let λh(r) = pr[u
h, λh

−1]. Then λh
j ∈ Λh

K for all j ∈ N ∪ {0}.

Proof. We proceed by induction. Let the assertion hold for j − 1, and assume for
example that uh

j > uh
j−1 = λh

j−1(0). Then

λh
j (r) =

{

uh
j − r for r < rj ,

λh
j−1(r) for r ≥ rj ,

(5.2)

where rj = min{r > 0 : r + λh
j−1(r) = uh

j }. The function ν(r) := r + λj−1(r) is

nondecreasing, ν′(r) ∈ {0, 2} is constant in (kh, (k + 1)h) for k ≤ K/h. We have
ν(0) ∈ 2hZ, hence ν(kh) ∈ 2hZ for all k ∈ N ∪ {0}, and ν(r) /∈ 2hZ for all r /∈ hZ.
We conclude that rj ∈ hZ, which completes the proof. �

The approximate inversion algorithm is defined as follows. We set

λ∗h
−1(s) =

(

Sh
r (r, λ

h
−1(r)) +

∫ ∞

r

gh(%, λ
h
−1(%)) d%

)
∣

∣

∣

∣

r=ϕ−1

λh
−1

(s)

, (5.3)

and uh
−1 = λh

−1(0), w
h
−1 = λ∗h

−1(0). The function Sh is related to fh and µh as in

(2.1). We have by Hypothesis 5.1 that |wh
−1 − w−1| ≤ (F (K) +MK)h.

We assume that the discretization parameter h is sufficiently small and choose
Kh > K such that (F (Kh) + MKh)h < (b − b0)(Kh − K). We now continue by
induction, and assume that we have constructed uh

i , w
h
i for i = −1, 0, 1, . . . , j− 1 in

such a way that
wh

i = fh(u
h
i ) +

∫∞

0
gh(%, λ

h
i (%)) d% ,

uh
i ∈ 2hZ ,

|wh
i − wi| ≤ (F (Kh) +MKh)h ,

|uh
i | ≤ Kh



























(5.4)

for all i = −1, 0, 1, . . . , j− 1. Let uh
j run over the set {2hk : k = −Kh/h . . . ,Kh/h}.

The distance between two consecutive values of uh
j is 2h, so that the distance be-

tween two consecutive values of wh
j is at most 2(F (Kh) +MKh)h. Hence, wh

j can
be chosen in such a way that (5.4) holds for i = j. We now state the numerical
approximation result. It shows that the above algorithm does not accumulate the
error in time and is independent of the number of time steps.

Theorem 5.3. Let Hypotheses 1.2, 5.1 hold, and let K > 0, w ∈ `∞ such that
|w|∞ < (b−b0)K and λ−1 ∈ ΛK be given. Let u ∈ `∞ be the solution of the equation
w = P [u, λ−1], and let uh,wh be constructed by the algorithm (5.4). Then there
exists a constant C∗ > 0 depending only on the data such that |u− uh|∞ ≤ Ch.

Proof of Theorem 5.3. We denote by Ph the operator which with uh and λh
−1

associateswh. Thenwh = Ph[u
h, λh

−1], and we set ŵh = P [uh, λh
−1]. By Hypothesis
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5.1 (i), (ii) we have |wh− ŵh|∞ ≤ (1+MK2
h)h. Furthermore, by (1.15), there exist

positive constants C1, C2, C3 such that

|u− uh|∞ ≤ C1(h+ |w − ŵh|∞) ≤ C2(h+ |w −wh|∞) ≤ C3h ,

and the proof is complete. �
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