Metabolic Seminar – 23rd of January 2013

Institute of Physiology AS ČR, p.r.i.

µPET/CT

Molecular imaging in small laboratory animals

Nuclear Physics Institute AS ČR, p.r.i.

Sebastian Eigner, ORF, NPI AS ČR, p.r.i.

Molecular Imaging

In vivo molecular imaging in small animals is the bridge between in vitro data and translation to clinical application

Multiple longitudinal images provide more reliable information and reduce animal numbers

Discover new predictive imaging biomarkers

Accelerate the pre-clinical validation of new drugs

Enable selection of drug candidates for clinical translation

No one imaging method is ideal for all studies

Morphological Imaging

Out of: Richard Scarry's Children's Books

Functional Imaging

Image Fusion PET/CT

Out of: Richard Scarry's Children's Books

eigner@ujf.cas.cz

Molecular Imaging: The Big Picture

Nuclear Physics Institute AS ČR, p.r.i.

Small Animal Imaging

Requirements

High spatial resolution

- mouse organs ~1000-fold smaller volume than human

High sensitivity

- number of targets also smaller, radiation dosimetry can be limiting

ADVANTAGES

- high spatial resolution (20µm)
- easy to operate
- relatively cheap

DISADVANTAGES

- sensitivity = milli-molar
- No functional information
- High radiation source
- Bad soft tissue contrast
- Contrast agents required to improve soft tissue contrast

CT is based on the measurement on X-ray attenuation (~ 40-80 keVp)

Tomography Principle

X-ray source and X-ray-detector are mounted on a common rotational stage

Projection data are acquired in a step-and-shoot (SAS) mode

CT-Detector Principle

CCD-Array and Scintilator Scintilator: Nal CCD Array: Large Area (2048 x 3072, 33microns pitch)

eigner@ujf.cas.cz

Step-and-Shoot (SAS) Mode

CT Data Acquisition and Processing

microCT Reconstruction

No additional sorting process for projection data \rightarrow already sinograms

Data will be corrected for detector inefficiencies and geometry distortions → system specific; similar to a PET normalization

microCT uses non-iterative methods similar to a FBP used in PET reconstruction

 \rightarrow cone beam recon, Feldkamp

ComputedX-ray tomography Bone Biology using CT

Easy to capture whole body CT

Digital zoom for high resolution CT imaging

Bone size and volume quantifiable via PMOD

High resolution renderings of mouse knee achievable through <35 µm voxels

Segmentation of adipose tissue – obese mouse

Segmentation of adipose tissue – normal mouse

Analysis of segmented fat areas

WT (C57BL/6J)				Obese (B6.V-Lep ^{ob} /J)			
	Total (cm ³)	Fat (cm ³)	<u>Fat</u> Total		Total (cm ³)	Fat (cm ³)	<u>Fat</u> Total
Animal 1	28.79	3.00	0.10	Animal 1	66.25	26.75	0.40
Animal 2	33.25	3.05	0.09	Animal 2	61.15	26.31	0.43
Animal 3	30.30	2.63	0.09	Animal 3	64.19	25.7	0.40
				Animal 4	54.25	23.78	0.44

eigner@ujf.cas.cz

Decrease in Lung Volume – Metastatic Mamacarcinom

Tumor mediated Lung Degradation – Longitudinal Study

In press at Current Molecular Methods

WK 2 WK4 WK6 Healthy Lung X-ray CT overlay on CT

Healthy Lung Degradation – Longitudinal Study

Week 2

Week 4

Week 6

Computed X-ray tomography 3D Printing of preclinical X-ray CT Data Sets

Rat Skeleton and Lungs

ProJet 3000 Overnight

Shapeways Inc.

MakerBot

CT Contrast Agents

Radiographic Contrast Agents:

Any substance that renders an organ or structure more visible than is possible without its addition.

Allows visulization of structures that can not be seen well or at all under normal circumstances.

Radiographic Contrast Agents are needed because:

soft tissue has a low absorption/interaction ratio

Absorption depends on:

atomic number atomic density electron density part thickness K-shell binding energy (K-edge)

CT Contrast Agents – Why does it work?

	Atomic Number	Atomic Density	Electrons cm ³	Main Element
Air	7.64	0.00129	0.0039x10 ²³	Oxygen
Fat	5.92	0.91	3.27x10 ²³	
Water	7.42	1.00	3.34x10 ²³	Oxygen
Bone	13.8	1.85	5.5x10 ²³	Calcium
lodine	53	4.93		lodine
Barium	56	3.5		Barium

CT Contrast Agents – Types of Contrast Media

NEGATIVE

Air Oxygen Carbon Dioxide Nitrous Oxide

POSITIVE Barium Iodine

Contrast Agent enhanced picture – Angiography, Liver & Spleen

Boll H, Nittka S, Doyon F, Neumaier M, Marx A, et al. (2011) Micro-CT Based Experimental Liver Imaging Using a Nanoparticulate Contrast Agent: A Longitudinal Study in MicePLoS ONE 6(9)

Novel Liver Contrast Agent for CT

Novel Contrast Agent for CT of Vascular System

Contrast Media = Aurovist

Positron – Electron Annihilation

Vif

Positron Emitting Radionuclides

Isotope	Halflife	β^+ fraction	Max. Energy	range(mm)
C–11	20.4 mins	0.99	0.96 MeV	0.4 mm
N–13	9.96 mins	1.00	1.20 MeV	0.7 mm
O–15	123 secs	1.00	1.74 MeV	1.1 mm
F–18	110 mins	0.97	0.63 MeV	0.3 mm
Cu-62	9.74 mins	0.98	2.93 MeV	2.7 mm
Cu-64	12.7 hours	0.19	0.65 MeV	0.3 mm
Ga–68	68.3 mins	0.88	1.83 MeV	1.2 mm
Br-76	16.1 hours	1.00	1.90 MeV	1.2 mm
Rb-82	78 secs	0.96	3.15 MeV	2.8 mm
I–124	4.18 days	0.22	1.50 MeV	0.9 mm

ALBIRA Gamma-ray Detector Principle

Positron – Electron Annihilation

Positron – Electron Annihilation

Current technology utilized packed crystals with dead zones

Tighter packing yields more dead zones

Susceptible to the parallax error

Operation of a PET-Scanner

y-ray Detection in a PET system

True Coincidences

both γ -rays escape without scatter and interact in detctors

Scatter coincidences

one, or both y-rays scatter in tissue

Random coincidences

two γ -rays from different origins strike the detectors at the same time

(a.k.a. accidental coincidences)

PET Hardware

Scintilators	Light-Detectors	Detectortype
 High stopping power High light output Fast scintillator Small crystal size → High spatial resolution 	 Photomultiplier Tubes (PMT) Single Channel Multi Channel 	 Single Crystal Coupling Block Detector Detectors with DOI capabilities (Phoswitch)
LSO, LYSO, YAP, etc.	 Solid State Detectors Avalanche Photo Diodes (APD) Geiger-Mode APDs Silicon-PMTs 	

- A full PET system comprises several detector rings summing up to several 1000 to 10.000 individual crystals
- The performance of a PET system as well as physical limitations will be determined by the choice of hardware

Important Scanner Parameters

Energy Resolution

detection limit for measured energy of detected γ -rays

Timing Resolution

time variation (inaccuracy) of the system for detection of two single events originating from the same annihilation

Spatial Resolution

smallest object that can be visualized (partial volume effect)

Sensitivity

detection limit for radiotracer (isotope) or contrast media

Cardiology

UF

Cardiology – From mouse to man

¹⁸F-FDG – human heart ^A ¹⁸F-FDG – rat heart ^B ¹⁸F-FDG – mouse heart

^A Tossios, P., et al. No evidence of myocardial restoration following transplantation of mononuclear bone marrow cells in coronary bypass grafting surgery patients based upon cardiac SPECT and 18F-PET. BMC Medical Imaging. (2006),

^B Courtesy of Prof. J. Viña, Research Unit, Physiology Faculty, Uni. Valencia.

Cardiology - 3D imaging of a rat heart (PET/CT-Fusion)

¹⁸F-FDG imaging of a rat heart without gating

Major walls of the heart are clearly visible

Cardiology - Mouse heart imaging - without gating

Cardiology - Mouse heart imaging - without gating

- With a high resolution PET scanner gating may not always be necessary
- Saves time and dose
- Protocol
 - 500 uCi of 18F-FDG injected
 - Data acquired for 10 min
 - Data reconstructed with MLEM
 - Data fused with CT

Metabolic Diseases

Brown fat in mice – PET/CT-fusion

Brown fat in mice – PET/CT-fusion

Nuclear Physics Institute AS ČR, p.r.i.

eigner@ujf.cas.cz

Bone Development and Bone Diseases

¹⁸F-NaF PET/CT imaging in rat

Bone Development in mouse – single PET scan

Injected 200 uCi of ¹⁸F NaF

Imaged on Albira 2 ring PET/CT

 Areas of new bone growth show significant uptake

Positron Emission Tomography Triple Tracer Imaging – PET/SPECT/Optical

Positron Emission Tomography Dual Tracer Mouse Scan – PET/SPECT/CT

Nuclear Physics Institute AS ČR, p.r.i.

eigner@ujf.cas.cz

Positron Emission Tomography ¹⁸F-NaF – Four Mice PET/CT

Neurology – Functional Brain imaging

¹⁸F-FMISO – identification of hypoxic lesions in the brain

¹⁸F-FMISO in rats

¹⁸F-FDG Brain Metabolism after Ischemic Injury

¹⁸F-FDG in rats

Metabolic Changes in Alzheimer's Models

Control

APP+

Prof. M.A.Pozo Instituto Pluridisciplinar. Universidad Complutense de Madrid

- significant decrease in brain metabolism in mouse models that over express APP
- can be readily visualized with the Albira system and then in this case co-registered with T2 weighted MRI images
- Co-registration done using the supplied PMOD software package and MRI compatible animal transport beds. Animals were iamges with ¹⁸F-FDG

A β Damage reduced by Cannabinoids – ¹⁸F-FDG PET

- App Tg mice show decreased levels of FDG Uptake
- Treatment with CB2 selective agonist JWH rescued glucose metabolism reduction
- CB₂ agonist also rescued behavioral deficits
- Note: CB₁ activation induces psychoactive effects NOT CB₂ activation

Dr. Daan van der Veen and graduate student Jinping Shou, from the laboratory of Prof. Giles Duffield, are measuring the effects of circadian rhythms on brain metabolism using *in vivo* PET-CT imaging.

In both whole brain but not in sub brain regions you can observe circadian rhythms in the murine brain with peak activity in the night time. ZT means Zeitgeiber time which is a normalized day night cycle.

Effects of circadian rhythm on brain metabolism – ¹⁸F-FDG PET/CT

¹⁸F-FDOPA time course in mouse brain

Crump Institute for Biological Imaging, UCLA

eigner@ujf.cas.cz

G

¹⁸F-FDOPA - Tracer Kinetic Modeling

Crump Institute for Biological Imaging, UCLA

Striatal Dopamine System of Rats

[C-11]WIN 35,428 DA Transporter Binding

Control

[C-11]Raclopride DA D2 Receptor Binding

Unilateral 6-Hydroxydopamine Lesion

Dan Rubins, Goran Lacan, Simon Cherry, and William Melega

¹¹C-WIN 35, 428 in mouse brain

30g mouse transverse brain section

180µCi of ¹¹C-WIN 35,428 (0.018µg)

W

Oncology & Therapeutic Evaluation

Positron Emission Tomography Colon Cancer Xenograft – ¹⁸F-FDG PET/CT

Colon Cancer Xenograft – ¹⁸F-FDG PET – 6 week progression

Evaluation of locoregional application of chemotherapeutics

Candidate Saline EtOH Day 9 ¹⁸F-FDG PET **Day 10**

eigner@ujf.cas.cz

- Athymic mouse with LS174T (CEA+) and C6 (CEA-) xenografts
- Injected with 70 µCi ⁶⁴Cu-anti-CEA minibody (engineered antibody fragment, scFv-C_{H3})
- Scanned 12 hr post injection
- Courtesy of Anna Wu (UCLA and City of Hope)

Imaging gene Expression by PET

Crump Institute for Biological Imaging, UCLA

Positron Emission Tomography

WIF

microPET in Drug Development

- direct radiolabeling of drug
 - biodistribution and pharmacokinetics
- binding/competition studies
 - dosing and pharmacodynamics
- indirect markers
 - pharmacodynamic effect on secondary marker (e.g. metabolism or blood flow)

Pharmacokinetic

Absorption; Distribution, Metabolism, Excretion

Radiopharmacy

Routine Production, Custom Synthesis & Labeling Concepts

Nuclear Physics Institute of the Academy of Sciences of the Czech Republic, p.r.i. Department of Radiopharmaceuticals

Ass. Prof. Ondřej Lebeda, Ph.D.

Head of Department Phone: +420 266 172 136 E-Mail: lebeda@ujf.cas.cz

Acknowledgements

Dr. Jens Waldeck Dr. Todd Sasser Andrew Stoneley

Dr. Ondrej Lebeda Dr. Denis Beckford Dr. Katerina Eigner Henke

Thank You

for Your Attention

