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and translating bodies – Leray solution

Paul Deuring∗, Stanislav Kračmar†, Šárka Nečasová‡

1 Introduction

We consider the system of equations

−µ∆u(z)− (U + ω × z) · ∇u(z) + ω × u(z) + u · ∇u(z) +∇π(z) = f(z),
div u(z) = 0,

}
(1.1)

with z ∈ R3 \ D. This system describes the stationary flow of a viscous incompressible
fluid around a rigid body moving at a constant velocity and rotating at a constant angular
velocity. We refer to [19] for more details on the physical background of (1.1). Here
we only indicate that D ⊂ R3 is an open bounded set describing the rigid body, the
vector U ∈ R3\{0} represents the constant translational velocity of this body, the vector
ω ∈ R3\{0} stands for its constant angular velocity, and µ denotes the constant kinematic
viscosity of the fluid. The given function f : R3\D 7→ R3 describes a body force, and the
unknowns u : R3\D 7→ R3 and π : R3\D 7→ R correspond respectively to the velocity and
pressure field of the fluid. We assume that U · ω 6= 0. Then, according to [21], without
loss of generality we may replace (1.1) by the normalized system

L(u) + τ(u · ∇)u +∇π = f, div u = 0 in R3\D, (1.2)

where the differential operator L is defined by

L(u)(z) := −∆u(z) + τ ∂1u(z)− (ω × z) · ∇u(z) + ω × u(z)
for u ∈ W 2,1

loc (U)3, z ∈ U, U ⊂ R3 open,

with τ ∈ (0,∞) (Reynolds number) and ω = %(1, 0, 0) for some % ∈ R (Taylor number).
The linearized version of (1.1) we are interested in is the following:

L(u) +∇π = f, div u = 0 in R3\D, (1.3)

It is well known ([20]) that for data of arbitrary size, both problem (1.2) and (1.3) admit
a “Leray solution” characterized by the relations

u ∈ L6(R3 \D)3,∇u ∈ L2(R3 \D)9, π ∈ L2
loc(R3 \D). (1.4)
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Galdi, Kyed [21] showed that if the right-hand side f in the nonlinear problem (1.2) has
bounded support, then the velocity part u of such a solution (u, π) decays as follows:

|∂αu(x)| = O
[ (
|x| · sτ (x)

)−1−|α|/2 ]
(|x| → ∞), (1.5)

where α ∈ N3
0 with|α| := α1 + α2 + α3 ≤ 1 (decay of u and ∇u). The term sτ (x) in (1.5)

is defined by

sτ (x) := 1 + τ(|x| − x1) (x ∈ R3).

Its presence in (1.5) may be considered as a mathematical manifestation of the wake
extending downstream behind the rigid body.

In [1] – [4], we considered a different kind of solution, which we called “weak solution”,
and which satisfies the relations

u|Bc
S
∈ L6(Bc

S)3, ∇u|Bc
S
∈ L2(Bc

S)9, π|Bc
S
∈ L2(Bc

S) (1.6)

for some S > 0 with D ⊂ BS , as well as some additional regularity assumptions, which
require in particular that π ∈ W 1,p

loc (R3\Dc) and π
|BT \D

∈ Lp(BT \D) for some p ∈ (1,∞)

and for any T ∈ (0,∞) with D ⊂ BT . Although these additional regularity assumptions
and (1.6) do not imply (1.4) if p < 6/5, it is clear that weak solutions should be considered
as less general than Leray ones, in particular in view of the requirement on π in (1.4) and
(1.6), respectively.

The main results in [1] – [4] concern representation formulas, decay behaviour and
asymptotic expansions for weak solutions of the linear problem (1.3), and a representation
formula for weak solutions of the nonlinear system (1.2). In particular, the relation in
(1.5) is established in the linear case for a right-hand side f which decays sufficiently fast,
but need not have bounded support. In the work at hand, we revisit the theory in [1] –
[4], showing that it remains valid when the condition π|Bc

S
∈ L2(Bc

S) in (1.6) is dropped.
Again due to our additional regularity assumptions, this does not mean that the theory
in [1] – [4] is generalized to the Leray case. But this improved theory implies by some
additional arguments that the relation in (1.5) extends to Leray solutions of the linear
problem (1.3), even if the right-hand side f in (1.3) does not have bounded support, but
decays sufficiently fast (Corollary 3.16).

It will not be necessary to rework the theory in [1] – [4] from beginning to end. Instead,
we will only show that the representation formula established in [2, Theorem 4.6] for the
velocity part of a solution to (1.3) remains valid without the assumption imposed in (1.6)
on the pressure π. Since we used this assumption only in the proof of that formula, we
may thus drop it everywhere in [1] – [4].

We remark that our linear theory extends to pairs of functions (u, π) that do not nec-
essarily solve (1.3) because the divergence of u need not vanish. In this respect, however,
there is a feature of the theory in [1] – [4] we cannot reproduce here. In fact, we will always
assume div u to have bounded support, whereas in [2] – [4], we obtained some results under
the assumption that div u decays sufficiently fast, but need not have bounded support (see
[2, Theorem 5.3], [4, Theorem 6] for example).

The argument of the work at hand is based on a uniqueness result proved by Galdi,
Kyed [21, Lemma 4.1] for the linear problem (1.3) in the whole space R3, and on an
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existence result for the same problem in R3 established by Farwig [7] and also, more
recently, by ourselves in [5]. These references enter into the proof of Theorem 2.1 below,
which provides a regularity result for the pressure part of solutions to the linear problem
(1.3).

Readers interested in further results on flows around rotating bodies are referred to
[5], [7] – [17], and [22] – [44]. We mention in particular that in [5], we prove (1.5) also
for the nonlinear case, presenting a second access to that result besides the one previously
provided by Galdi and Kyed [21].

2 Notation, definitions and auxiliary results

The open bounded set D ⊂ R3 introduced in Section 1 will be kept fixed throughout. We
assume its boundary ∂D to be of class C2, and we denote its outward unit normal by
n(D). The numbers τ and % and the vector ω also introduced in Section 1 will be kept
fixed, too. Define the matrix Ω ∈ R3×3 by

Ω :=

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 = %

 0 0 0
0 0 −1
0 1 0

 ,

so that ω × x = Ω · x for x ∈ R3.
We recall that the function sτ was defined in Section 1, as was the notation |α| for the

length of a multi-index α ∈ N3
0. If A ⊂ R3, we write Ac for the complement R3\A of A.

The open ball centered at x ∈ R3 and with radius r > 0 is denoted by Br(x). If x = 0,
we will write Br instead of Br(0). Put e1 := (1, 0, 0). Let x × y denote the usual vector
product of x, y ∈ R3. For T ∈ (0,∞), set DT := BT \D (”truncated exterior domain”). By
the symbol C, we denote constants only depending on D, τ or ω. We write C(γ1, ..., γn)
for constants that additionally depend on parameters γ1, ..., γn ∈ R, for some n ∈ N. Put

Xq ={(v, p)|v ∈ L
2q

2−q (R3)3, ∇′v ∈ L
4q

4−q (R3)6

∂1v ∈ Lq(R3)3,∇2v ∈ Lq(R3)27, p ∈ L
3q

3−q (R3),∇p ∈ Lq(R3)3},

where (∇′)ij := ∂ivj , (i = 2, 3, j = 1, 2, 3). The key auxiliary result of this article is

Theorem 2.1. Let q ∈ (1, 2), p ∈ (1,∞), S > 0, f ∈ Lq(BS
c)3 + L3/2(BS

c)3, u ∈
L6(BS

c)3 ∩W 2,p
loc (BS

c)3, π ∈ W 1,p
loc (BS

c) with L(u) +∇π = f, div u = 0.
Then there is c ∈ R with π + c|Bc

2S
∈ L3q/(3−q)(Bc

2S) + L3(Bc
2S).

Proof We use the approach from the proof of [21, Theorem 4.4]. By the cut-off procedure
from that proof, and since W 1,q

loc (R3) ⊂ L
3/2
loc (R3), we see there are functions F ∈ Lq(R3)3 +

L3/2(R3)3, U ∈ L6(R3)3 ∩W 2,p
loc (R3)3, Π ∈ W 1,p

loc (R3) such that

L(U) +∇Π = F, div U = 0, U(x) = u(x) + β|x|−3x for x ∈ Bc
2S , Π|Bc

2S
= π|Bc

2S
,

with some constant β ∈ R. Note that the argument from that proof strongly simplifies in
the present situation because we consider the linear problem (1.3) instead of the nonlinear
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one (1.2). By the assumptions on F , there is F (1) ∈ Lq(R3)3, F (2) ∈ L3/2(R3)3 such that
F = F (1) + F (2). But according to [7] or [5, Theorem 1.2], there are pairs of functions
(U (1),Π(1)) ∈ Xq, (U (2),Π(2)) ∈ X3/2 such that

L(U (κ)) +∇Π(κ) = F (κ), div U (κ) = 0 for κ ∈ {1, 2}.

This means in particular that U (1) ∈ W 2,q
loc (R3)3∩L2q/(2−q)(R3)3, Π(1) ∈ W 1,q

loc (R3), U (2) ∈
L6(R3)3 (hence U − U (2) ∈ L6(R3)3), and U (2) ∈ W

2,3/2
loc (R3)3, Π(2) ∈ W

1,3/2
loc (R3).

We may thus apply [21, Lemma 4.1] with s = min{p, q, 3/2}, q1 = 2q/(2 − q), q2 =
6, f = F (1), (v1, p1) = (U (1),Π(1)), (v2, p2) = (U − U (2), Π − Π(2)). It follows that
U (1) = U−U (2), Π(1) = Π−Π(2)+c for some c ∈ R. Hence Π+c ∈ L3q/(3−q)(R3)+L3(R3),
so that π + c|Bc

2S
∈ L3q/(3−q)(Bc

2S) + L3(Bc
2S).

We will further use the ensuing estimate, which was proved in [6].

Lemma 2.2. Let β ∈ (1,∞). Then
∫
∂Br

sτ (x)−β dox ≤ C(β) r for r ∈ (0,∞).

3 Linear case

We begin by introducing the fundamental solutions used in what follows. We set

K(x, t) = (4πt)−3/2e−
|x|2
4t , x ∈ R3, t ∈ (0,∞),

Njk(x) = xjxk|x|−2, x ∈ R3 \ {0},

Λjk(x, t) = K(x, t)
(

δjk −Njk(x)− 1F1

(
1, 5/2,

|x|2

4t

)
(δjk/3−Njk(x))

)
,

x ∈ R3 \ {0}, t ∈ (0,∞), j, k ∈ {1, 2, 3},

(Γjk(y, z, t))1≤j,k≤3 := (Λrs(y − τ t e1 − e−tΩ · z, t))1≤r,s≤3 · e−tΩ,

y, z ∈ R3, t ∈ (0,∞) with y − τ t e1 − e−tΩ · z 6= 0,

E4j(x) := (4π)−1xj |x|−3, 1 ≤ j ≤ 3, x ∈ R3\{0}.

According to [1, Theorem 3.1], we have

Lemma 3.1.
∫ ∞
0 |Γjk(y, z, t)|dt < ∞ for y, z ∈ R3 with y 6= z, 1 ≤ j, k ≤ 3.

Thus we may define

Zjk(y, z) :=
∫ ∞

0
Γjk(y, z, t)dt

for y, z ∈ R3 with y 6= z, 1 ≤ j, k ≤ 3.

The matrix-valued function Z constitutes the velocity part of the fundamental solution
introduced by Guenther, Thomann [28] for system (1.3). In the ensuing three theorems,
we note those properties of Z we will use explicitly. Of course, many more will enter
implicitly into our reasoning, via the previous articles we will cite.

Theorem 3.2 ([2, Lemma 2.15]). Zjk ∈ C1(R3 ×R3 \ {(x, x) : x ∈ R3}) for 1 ≤ j, k ≤ 3.

Theorem 3.3. Let S ∈ (0,∞). Then |Z(y, z)| ≤ C(S)
(
|z| sτ (z)

)−1 for y ∈ BS , z ∈
Bc

2S .
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Proof This theorem is a special case of [2, Theorem 2.19].

Theorem 3.4.
∑3

k=1 ∂zkZjk(y, z) = 0 for 1 ≤ j ≤ 3, y, z ∈ R3 with y 6= z.

Proof [2, Lemma 2.15], [28, Theorem 1.3].

The next four lemmas serve to introduce the potential functions needed later on.

Lemma 3.5. Let p ∈ (1,∞), q ∈ (1, 2), f ∈ Lp
loc(R

3)3 with f|Bc
S
∈ Lq(Bc

S)3 for some
S ∈ (0,∞). Then, for j, k ∈ {1, 2, 3}, we have∫

R3

|Zjk(y, z)| |fk(z)| dy < ∞ for a. e. y ∈ R3. (3.1)

We may thus define R(f) : R3 7→ R3 by

Rj(f)(y) :=
∫

R3

3∑
k=1

Zjk(y, z) fk(z) dz

for y ∈ R3 such that (3.1) holds; else we set Rj(f)(y) := 0 (1 ≤ j ≤ 3).
If p > 3/2, the relation in (3.1) holds without the restriction “a.e.”.

Proof Lemma 3.5 holds by [2, Lemma 3.1, 3.2].

Lemma 3.6. Let p ∈ (1,∞), q ∈ (1, 3), g ∈ Lp
loc(R

3) with g|Bc
S
∈ Lq(Bc

S) for some
S ∈ (0,∞). Then, for j ∈ {1, 2, 3},∫

R3

|E4j(y − z)| |g(z)| dy < ∞ for a. e. y ∈ R3. (3.2)

Thus we may define S(g) : R3 7→ R3 by

Sj(g)(y) :=
∫

R3

E4j(y − z) g(z) dz

for y ∈ R3 such that (3.2) holds, and Sj(g)(y) := 0 else (1 ≤ j ≤ 3).
If p > 3, the relation in (3.2) holds for any y ∈ R3 (without the restriction “a. e.”).

Proof Lemma 3.6 states some of the assertions of [2, Lemma 3.4].

Lemma 3.7. Let R ∈ (0,∞) with D ⊂ BR, f ∈ L1(∂DR), 1 ≤ j, k ≤ 3, α ∈ N3
0 with

|α| ≤ 1. Then∫
∂DR

|∂α
z Zjk(y, z)f(z)|doz < ∞,

∫
∂DR

|Ej(y − z)f(z)|doz < ∞ for y ∈ DR.

Proof Theorem 3.2, Lebesgue’s theorem.

Lemma 3.8. Let f ∈ L1(∂D), 1 ≤ j, k ≤ 3, α ∈ N3
0 with |α| ≤ 1. Then∫

∂D
|∂α

z Zjk(y, z)f(z)|doz < ∞,

∫
∂D

|Ej(y − z)f(z)|doz < ∞ for y ∈ D
c
.
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Proof Theorem 3.2, Lebesgue’s theorem.

In the ensuing lemma, we introduce the function space Mp, which characterizes the
regularity of the solutions to (1.3) we consider.

Theorem 3.9 ([2, Theorem 4.4]). Let p ∈ (1,∞). Define Mp as the space of all pairs of
functions (u, π) such that u ∈ W 2,p

loc (Dc)3, π ∈ W 1,p
loc (Dc),

u|DT
∈ W 1,p(DT )3, π|DT

∈ Lp(DT ),

u|∂D ∈ W 2−1/p,p(∂D)3, div u|DT
∈ W 1,p(DT ),

L(u) +∇π|DT
∈ Lp(DT )3

for some T ∈ (0,∞) with D ⊂ BT . Then u|DT
∈ W 2,p(DT )3, π|DT

∈ W 1,p(DT ) for any
T ∈ (0,∞) with D ⊂ BT .

Next we state a representation formula on DR for solutions of (1.3) belonging to Mp.

Theorem 3.10 ([2, Theorem 4.5]). Let p ∈ (1,∞), (u, π) ∈ Mp, j ∈ {1, 2, 3}. Put
F := L(u) +∇π. Let R ∈ (0,∞) with D ⊂ BR, and let n(R) : ∂BR ∪ ∂D 7→ R3 denote the
outward unit normal to DR. Then, for a.e. y ∈ DR,

uj(y) = Rj(F|DR
)(y) + Sj(div u|DR

)(y) +
∫

∂DR

UR
j (u, π)(y, z)doz, (3.3)

with

U
(R)
j (u, π)(y, z) :=

3∑
k=1

[ 3∑
l=1

(
Zjk(y, z)(∂luk(z)− δklπ(z)

+ uk(z)(−τe1 + ω × z)l)− ∂zlZjk(y, z)uk(z)
)
n

(R)
l (z)

− E4j(y − z)uk(z)n(R)
k (z)

]
for y ∈ DR, z ∈ ∂DR.

If p > 3/2, then (3.3) holds for any y ∈ DR (without the restriction “a.e.”).

Now we arrive at the main result of this work – a representation formula on D
c for

solutions of (1.3). Contrary to a corresponding result in [2, Theorem 4.6], this formula is
valid without the assumption that the pressure belongs to L2(Bc

S) for some S > 0 with
D ⊂ BS . Still the formula in question is not proved for Leray solutions because these do
not in general belong to Mp for some p ∈ (1,∞). But in spite of that, our formula under
its present assumptions will yield decay estimates in the Leray case (Corollary 3.16). We
further remark that we have to assume the support of the divergence of the velocity to be
compact, a condition not present in [2].

Theorem 3.11. Let p ∈ (1,∞), (u, π) ∈ Mp. Put F := L(u)+∇π, and suppose there are
numbers q ∈ (1, 2), S ∈ (0,∞) such that

D ∪ supp(div u) ⊂ BS ,

u|Bc
S
∈ L6(Bc

S)3, ∇u|Bc
S
∈ L2(Bc

S)9, F|Bc
S
∈ Lq(Bc

S)3 + L3/2(Bc
S)3.
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Let j ∈ {1, 2, 3} and put

Bj(y) := Bj(u, π)(y) :=
∫

∂D

3∑
k=1

[ 3∑
l=1

(3.4)(
Zjk(y, z)(−∂luk(z) + δklπ(z) + uk(z)(τe1 − ω × z)l)

+ ∂zlZjk(y, z)uk(z)
)
n

(D)
l (z) + E4j(y − z)uk(z)n(D)

k (z)
]
doz

for y ∈ D
c. Then

uj(y) = Rj(F )(y) + Sj(div u)(y) + Bj(y) (3.5)

for a.e. y ∈ D
c. If p > 3/2, (3.5) holds for any y ∈ D

c, without the restriction “a.e.”.

Proof By Theorem 2.1, there is c ∈ R, π1 ∈ L3q/(3−q)(Bc
2S), π2 ∈ L3(Bc

2S) such that
π|Bc

2S
= π1 + π2 + c. ¿From this fact and our assumptions on u it follows that∫ ∞

2S

∫
∂Br

(|u(z)|6 + |∇u(z)|2 + |π1(z)|3q/(3−q) + |π2(z)|3)dozdr < ∞.

Thus there is an increasing sequence (Rn) in (2S,∞) with Rn →∞ and∫
∂BRn

(|u(z)|6 + |∇u(z)|2 + |π1(z)|3q/(3−q) + |π2(z)|3)doz ≤ R−1
n for n ∈ N. (3.6)

¿From assumptions on F , there are functions G(1) ∈ Lq(Bc
S)3, G(2) ∈ L3/2(Bc

S)3 such that
F |Bc

S
= G(1) + G(2). Thus by Lemma 3.5∫

D
c

3∑
k=1

|Zjk(y, z)|
(
χ(0,S)(|z|)|Fk(z)|+ χ(S,∞)(|z|)(|G

(1)
k (z)|+ |G(2)

k (z)|)
)
dz < ∞ (3.7)

for a.e. y ∈ D
c. Moreover, by Lemma 3.6 with p = q = 2∫

D
c
|E4j(y − z)| |div u(z)|dz < ∞ (3.8)

for a.e. y ∈ D
c. Due to these observations and Theorem 3.10, we see there is a subset N

of D
c with measure zero such that the relations in (3.7), (3.8) hold for y ∈ D

c \ N , and
such that (3.3) with R replaced by Rn holds for n ∈ N and y ∈ DRn \ N . In the case
p > 3/2, Lemma 3.5 yields that (3.7) is valid for any y ∈ D

c, and Theorem 3.10 states
that (3.3) with R replaced by Rn is true for n ∈ N and for any y ∈ D

c. Moreover, since
(u, π) ∈ Mp and in view of Theorem 3.9, we obtain div u|DT

∈ W 1,p(DT ) for T ∈ (0,∞)

with D ⊂ BT . But supp(div u) ⊂ BS , so divu ∈ W 1,p(Dc). Thus, if p > 3/2, a Sobolev
inequality implies there is s ∈ (3,∞] with div u ∈ Ls(Dc), so Lemma 3.6 yields that the
restriction “a. e.” may be dropped in (3.8) as well.

Take y ∈ D
c in the case p > 3/2 and y ∈ D

c \N otherwise. Let n ∈ N with Rn > |y|
(hence y ∈ DRn). Then, by (3.3) with R replaced by Rn and π by π − c, we get

uj(y) = Rj(F|DRn
)(y) + Sj(div u|DRn

)(y) + Uin,j(y) + Bj(y), (3.9)
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with

Uin,j(y) :=
∫

∂BRn

3∑
k=1

[ 3∑
l=1

(
Zjk(y, z)(∂luk(z)−

−δkl(π − c)(z)− τδ1luk(z))− ∂zlZjk(y, z)(uk(z)
) zl

Rn
− E4j(y − z)uk(z)

zk

Rn

]
doz,

where we used the relation
∑3

l=1(ω × z)lzl = 0 for z ∈ ∂BRn . Concerning Bj(y), we note
that ∫

∂D

3∑
l=1

Zjk(y, z)n(D)
k (z)doz = 0 for y ∈ DR, 1 ≤ j ≤ 3;

see Theorem 3.2 and 3.4. Thus the definition of Bj(y) need not be modified even though
we replace π by π − c.

Let n ∈ N with Rn
4 ≥ |y|. Observe that

|Uin,j(y)| ≤ C

5∑
v=1

3∑
k=1

Bv,k(y),

with

B1,k(y) :=
( ∫

∂BRn

|Zjk(y, z)|6/5doz

)5/6

‖u|∂BRn
‖6,

B2,k(y) =
( ∫

∂BRn

|Zjk(y, z)|2doz

)1/2

‖∇u|∂BRn
‖2,

B3,k(y) =
( ∫

∂BRn

|Zjk(y, z)|
3q

4q−3 doz

) 4q−3
3q

‖π1 |∂BRn
‖3q/(3−q),

B4,k(y) =
( ∫

∂BRn

|Zjk(y, z)|3/2doz

)2/3

‖π2 |∂BRn
‖3,

B5,k(y) =
3∑

l=1

( ∫
∂BRn

|∂zlZjk(y, z)|6/5doz

)5/6

‖u|∂BRn
‖6,

B6,k(y) =
( ∫

∂BRn

|y − z|−12/5doz

)5/6

‖u|∂BRn
‖6

for k ∈ {1, 2, 3}. As in the proof of [2, Theorem 4.6], we get

|B1,k(k)| ≤ C(|y|)R−1/3
n , |B2,k(y)| ≤ C(|y|)R−1

n , |B5,k(y)| ≤ C(|y|)R−5/6
n ,

|B6,k(y)| ≤ C(|y|)R−1/2
n .
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Now applying Theorem 3.3, Lemma 2.2 and (3.6), we obtain

B3,k(y) ≤ C(|y|)
( ∫

∂BRn
(|z|sτ (z))−

3q
4q−3 doz

) 4q−3
3q

‖π1|∂BRn‖3q/(3−q)

≤ C(|y|)R−1
n

( ∫
∂BRn

|sτ (z)|−
3q

4q−3 doz

) 4q−3
3q

R
− 3−q

3q
n

≤ C(|y|)R−1
n R

4q−3
3q

n R
− 3−q

3q
n ≤ C(|y|)R

2q−6
3q ,

B4,k(y) ≤ C(|y|)
( ∫

∂BRn
(|z|sτ (z))−3/2doz

)2/3

‖π2|∂BRn‖3

≤ C(|y|)R−1
n

( ∫
∂BRn

|sτ (z)|−3/2doz

)2/3

R
−1/3
n

≤ C(|y|)R−2/3.

Thus we conclude that Uin,j(y) → 0 for n → ∞. Turning to Rj(F|DRn
)(y) and

Sj(div u|DRn
)(y) and applying (3.7), (3.8) and Lebesgue’s theorem, it follows that

Rj(F|DRn
)(y) → Rj(F )|(y), Sj(div u|DRn

)(y) → Sj(div u)(y)

for n →∞. Theorem 3.11 now follows with (3.9).

Now it is obvious that the theory in [1] – [4] remains valid when we drop the condition
requiring that the pressure belongs to L2(Bc

S) for some S > 0 with D ⊂ BS . This does
not mean that the theory in question now extends to Leray solutions, because in the linear
case, we have to keep the assumption (u, π) ∈ Mp, and in the nonlinear case, we impose
an analogous restriction. The next three theorems and Theorem 4.1 give the details. We
begin by considering the decay of the velocity and its gradient in the linear case.

Theorem 3.12. Let p ∈ (1,∞), (u, π) ∈ Mp. Put F := L(u) + ∇π. Suppose there are
numbers S1, S, γ ∈ (0,∞), A ∈ [2,∞), B ∈ R such that S1 < S,

D ∪ supp(div u) ⊂ BS1 , u|Bc
S
∈ L6(Bc

S)3, ∇u|Bc
S
∈ L2(Bc

S)9,

A + min{1, B} ≥ 3, |F (z)| ≤ γ|z|−Asτ (z)−B for z ∈ Bc
S1

.

Let i, j ∈ {1, 2, 3}, y ∈ Bc
S. Then

|uj(y)| ≤C(S1, S1, A, B)(γ + ‖F|DS1
‖1 + ‖div u‖1 (3.10)

+ ‖u|∂D‖1 + ‖∇u|∂D‖1 + ‖π|∂D‖1)

(|y|sτ (y))−1lA,B(y)

|∂iuj(y)| ≤C(S, S1, A, B)(γ + ‖F|DS1
‖1 (3.11)

+ ‖u|∂D‖1 + ‖div u‖1 + ‖∇u|∂D‖1 + ‖π|∂D‖1)

(|y|Sτ (y))−3/2sτ (y)max(0,7/2−A−B)lA,B(y),

where lA,B(y) := 1 if A+min{1, B} > 3, and lA,B(y) := max(1, ln |y|) if A+min{1, B} = 3.
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Proof Theorem 3.12 may be deduced from Theorem 3.11 in exactly same way as [[4],
Theorem 6] from [2, Theorem 4.6].

Next we turn to the decay of derivatives of the velocity up to order 2.

Theorem 3.13. Let p ∈ (1,∞), (u, π) ∈ Mp. Put F := L(u) + ∇π. Suppose there are
numbers S1, S ∈ (0,∞), with S1 < S,

D ∪ supp(F ) ∪ supp(div u) ⊂ BS1 , u|Bc
S
∈ L6(Bc

S)3, ∇u|Bc
S
∈ L2(Bc

S)9.

Let Ep : W 2−1/p,p(∂D) 7→ W 2,p(D) be an extension operator with ‖Ep(v)‖2,p ≤ Cp‖v‖2−1/2,p

for v ∈ W 2−1/p,p(∂D), for some Cp > 0.
Let j ∈ {1, 2, 3}, y ∈ Bc

S , α ∈ N3
0 with |α| ≤ 2. Then

|∂αuj(y)| ≤ C(S, S1) ·
(
‖F|DS1

‖1 + ‖divu‖1 + ‖∇u|∂D‖1 + (3.12)

+‖π|∂D‖1 + Cp · ‖u|∂D‖2−1/p,p

)
·
(
|y| · sτ (y)

)−1−|α|/2
.

Proof Theorem 3.13 follows from Theorem 3.11 in exactly the same way as [[3], Theo-
rem 1.2] follows from [2, Theorem 4.6].

Another result from [1] – [4] we extend here concerns an asymptotic profile of the
velocity and its gradient in the linear case:

Theorem 3.14. Let p ∈ (1,∞), (u, π) ∈ Mp, S, S1 ∈ (0,∞) with S1 < S. Put F :=
L(u) +∇π. Suppose that

D ∪ supp (F ) ∪ supp (div u) ⊂ BS1 , u|Bc
S
∈ L6(Bc

S)3, ∇u|Bc
S
∈ L2(Bc

S)9.

Then there are coefficients β1, β2, β3 ∈ R and functions F1,F2,F3 ∈ C1(BS1

c) such that
for j ∈ {1, 2, 3}, α ∈ N3

0 with |α| ≤ 1,

∂αuj(y) =
3∑

k=1

βk∂
α
y Zjk(y, 0) +

( ∫
∂D

u · n(D)doz +
∫
DS1

div u dz

)
∂αE4j(y) + ∂αFj(y)

for y ∈ BS1

c,and

|∂αFj(y)| ≤C(S, S1)(‖F‖1 + ‖div u‖1 + ‖∇u|∂D‖1

+ ‖π|∂D‖1 + ‖u|∂D‖1)(|y|sτ (y))−3/2−|α|/2 for y ∈ Bc
S .

Proof Theorem 3.14 may be deduced from Theorem 3.11 in the same way as [[3], The-
orem 1.1] from [2, Theorem 4.6].

Remark: An explicit formula for βi, Fi, i = 1, .., 3 is given in [3], page 473.

We may use Theorem 3.12 and 3.13 in order to derive a decay estimate as in (1.5)
for Leray solutions of the linear problem (1.3). This may be done by considering the
restriction of such a solution to Bc

S0
, for some S0 > 0 sufficiently large. The idea is to

apply Theorem 3.12 and 3.13 with D replaced by BS0 . In this way, the behaviour of the
solution in question near the boundary of its domain, and the regularity of that boundary
do not matter at all. A crucial technical result in this respect is the ensuing observation
on interior regularity of generalized solutions to (1.3).
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Theorem 3.15. Let U ⊂ R3 be open and bounded, p ∈ (1,∞), f ∈ Lp
loc(U

c)3, u ∈
W 1,2

loc (U c)3, π ∈ Lp
loc(U

c),∫
U

c
(∇u · ∇ϕ + (τ∂1u− (ω × z) · ∇u + ω × u)ϕ− πdiv ϕ− fϕ)dx = 0 (3.13)

for ϕ ∈ C∞
0 (U c)3, div u = 0.

Then u ∈ W
2,min{2,p}
loc (U c)3, π ∈ W

1,min{2,p}
loc (U c), and L(u) +∇π = f.

Proof This theorem follows from interior regularity of Stokes flows, as stated in [[18],
Theorem IV.4.1]. Details of the argument may be found in the proof of [[2], Theorem 5.5].

Now we may establish (1.5) for Leray solutions of (1.3).

Corollary 3.16. Let U ⊂ R3 be open and bounded. Let p ∈ (1,∞), f ∈ Lp
loc(U

c)3, γ, S1 ∈
(0,∞) with U ⊂ BS1, A ∈ [2,∞), B ∈ R with A+min{1, B} > 3, |f(z)| ≤ γ ·|z|−Asτ (z)−B

for z ∈ Bc
S1

.
Let u ∈ W 1,1

loc (U c)3 with u ∈ L6(U c)3 and ∇u ∈ L2(U c)9. Let π ∈ L2
loc(U

c), and
suppose that (3.13) holds.

Choose some S0 ∈ (0, S1) with U ⊂ BS0, and let S ∈ (S1,∞). Then, for z ∈ Bc
S, 1 ≤ i,

j ≤ 3, inequalities (3.10) and (3.11) are valid, but with D replaced by BS0.
Now suppose that supp(f) ⊂ BS1, put s := s(p) := min{2, p}, and let Es :

W 2−1/s,s(∂BS0) 7→ W 2,s(BS0) be a continuous extension operator. Let Cp > 0 be a con-
stant with

‖Es(v)‖2,s ≤ Cp · ‖v‖2−1/s,s for v ∈ W 2−1/s,s(∂BS0).

Then, for 1 ≤ j ≤ 3, α ∈ N3
0 with |α| ≤ 2, x ∈ Bc

S, inequality (3.12) holds with D replaced
by BS0, and with the norm ‖ ‖2−1/s,s in the place of ‖ ‖2−1/p,p.

Proof Theorem 3.15 yields that u ∈ W
2,min{2,p}
loc (U c)3, π ∈ W

1,min{2,p}
loc (U c), and L(u) +

∇π = f . We may conclude in particular that the pair (u|Bc
S0

, π|Bc
S0

) belongs to Mmin{2,p},

with BS0

c in the place of D
c as the domain of reference in the definition of Mmin{2,p}.

Therefore the corollary follows from Theorem 3.12 and 3.13.

4 Nonlinear case

In this section, we show that the representation formula from [2, Theorem 5.5] pertaining
to the velocity part of solutions to the nonlinear problem (1.2) remains valid even if the
pressure does not belong to L2(Bc

S) for some S > 0 with D ⊂ BS .

Theorem 4.1. Let u ∈ W 1,1
loc (Dc)3 ∩ L6(Dc)3 with ∇u ∈ L2(Dc)9.

Let p ∈ (1,∞), q ∈ (1, 2), f : D
c 7→ R3 a function with f|DT

∈ Lp(DT )3 for T ∈ (0,∞)
with D ⊂ BT , and f|Bc

S
∈ Lq(Bc

S)3 for some S ∈ (0,∞) with D ⊂ BS.
Further assume that u|∂D ∈ W 2−1/p,p(∂D)3 and that π : D

c 7→ R is a function with
π|DT

∈ Lp(DT ) for T as above. Suppose that the pair (u, π) is a generalized solution of
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(1.2), that is,∫
D

c

(
(∇u · ∇ϕ) + (τ(u · ∇)u + τ∂1u− (ω × z) · ∇u + ω × u) · ϕ + πdiv ϕ

)
dz

=
∫
D

c
f · ϕdz, for ϕ ∈ C∞

0 (Dc)3,

div u = 0.

Then
uj(y) = Rj(f − τ(u · ∇)u)(y) + Bj(u, π)(y) (4.1)

for j ∈ {1, 2, 3} and for a.e. y ∈ D
c, where Bj(u, π) was defined in (3.4).

Note that in [2, Theorem 5.5], the assumption u|∂D ∈ W 2−1/p,p(∂D)3 is missing.

Proof of Theorem 4.1 Since u ∈ L6(Dc)3 and ∇u ∈ L2(Dc)9, we have (u · ∇)u ∈
L3/2(Dc)3, hence f−τ ·u ·∇u|DT

∈ Lmin{p,3/2}(DT )3 for T as in the theorem. By Theorem

3.15 we thus get u ∈ W
2,min{p,3/2}
loc (Dc)3, π ∈ W

1,min{p,3/2}
loc (Dc), so we may conclude that

(u, π) ∈ Mmin{p,3/2}. Moreover f − τ ·u ·∇u|Bc
S
∈ Lq(Bc

S)3 +L3/2(Bc
S)3. Thus (4.1) follows

from Theorem 3.11.
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[37] Kračmar, S., Penel, P.,Variational properties of a generic model equation in
exterior 3D domains, Funkcialaj Ekvacioj, 47 (2004), 499-523.
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[42] Nečasová, Š.,Asymptotic properties of the steady fall of a body in viscous fluids,
Math. Meth. Appl. Sci., 27 (2004), 1969-1995.
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