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Abstract—During the last decade, an active line of research in
proof complexity has been to study space complexity and time-
space trade-offs for proofs. Besides being a natural complexity
measure of intrinsic interest, space is also an important issue
in SAT solving. For the polynomial calculus proof system, the
only previously known space lower bound is for CNF formulas
of unbounded width in [Alekhnovich et al. ’02], where the
lower bound is smaller than the initial width of the clauses in
the formulas. Thus, in particular, it has been consistent with
current knowledge that polynomial calculus could refute any
k-CNF formula in constant space.

We prove several new results on space in polynomial calculus
(PC) and in the extended proof system polynomial calculus
resolution (PCR) studied in [Alekhnovich et al. ’02].

1) For PCR, we prove an Ω(n) space lower bound for a
bitwise encoding of the functional pigeonhole principle
with m pigeons and n holes. These formulas have width
O(logn), and hence this is an exponential improvement
over [Alekhnovich et al. ’02] measured in the width of
the formulas.

2) We then present another encoding of the pigeonhole
principle that has constant width, and prove an Ω(n)
space lower bound in PCR for these formulas as well.

3) We prove an Ω(n) space lower bound in PC for the
canonical 3-CNF version of the pigeonhole principle
formulas PHPm

n with m pigeons and n holes, and show
that this is tight.

4) We prove that any k-CNF formula can be refuted in PC
in simultaneous exponential size and linear space (which
holds for resolution and thus for PCR, but was not known
to be the case for PC). We also characterize a natural
class of CNF formulas for which the space complexity in
resolution and PCR does not change when the formula
is transformed into 3-CNF in the canonical way.

Keywords-proof complexity; polynomial calculus; PCR; res-
olution; space; k-CNF

I. INTRODUCTION

A proof system for a language L is a binary predicate
P (x, π) computable in time polynomial in the sizes of the
inputs such that for all x ∈ L there is a string π (a proof )
for which P (x, π) = 1, while for any x 6∈ L it holds for all
strings π that P (x, π) = 0. A propositional proof system is
a proof system for TAUTOLOGY, the language of tautologies
in propositional logic.

The field of proof complexity, initiated by Cook and
Reckhow [21], studies the complexity of proving proposi-

tional formulas in different propositional proof systems. One
important motivation for proof complexity is the problem
of P vs. NP. A proof system is said to be polynomially
bounded if for every x ∈ L there is a proof πx of size
at most polynomial in the size of x. As observed in [21],
one way of establishing co-NP 6= NP, and hence P 6= NP,
would be to prove that there are no polynomially bounded
proof systems. This goal remains very distant, however, and
it is probably fair to say that most current work in proof
complexity is motivated by other concerns.

One such other concern, that has motivated an interesting
line of research in proof complexity in the last decade, is the
SATISFIABILITY problem and the study of proof complexity
measures related to SAT solving. While it is generally
believed that SATISFIABILITY is an intractable problem in
the worst case, impressive algorithmic developments in the
last 10–15 years have led to SAT solvers that can handle
real-world problem instances with millions of variables. A
somewhat surprising aspect of this is that at the core, the
state-of-the-art solvers today are still based on the fairly
simple Davis-Putnam-Logemann-Loveland or DPLL proce-
dure [23], [24] from the early 1960s augmented with clause
learning [4], [30]; these programs are also known as conflict-
driven clause learning solvers or CDCL solvers. Despite
the fact that such SAT solvers can be seen to be searching
for proofs in the relatively weak resolution proof system,
for which numerous exponential lower bounds are known,
CDCL solvers have carried the day in the international SAT
competition (www.satcompetition.org) in recent years.

From the point of view of proof complexity, by studying
proof systems that are, or could potentially be, used by SAT
solvers, one can hope to gain a better understanding of the
potential and limitations of such solvers. There is a growing
literature of such papers, with [3], [9], [18] being a very
subjective pick of just three of the most recent interesting
examples. While the current paper is of a more purely
theoretical nature, it is also partly motivated by similar
concerns.

The two main bottlenecks for modern SAT solvers are
running time and memory usage. By studying proof size,
proof space, and trade-offs between these two measures in
different proof systems, we want to understand how the



important resources of time and space are connected to one
another and whether they can be optimized simultaneously
or have to be traded for one another in SAT solvers using
these proof systems.1 In this context, it seems that the
most interesting proof systems are resolution, polynomial
calculus and cutting planes. For more on proof complexity
and space see, for instance, [5], [32], [36]. A recent, very
comprehensive, reference on SAT solving is [13].

A. Previous Work

Any formula in propositional logic can be efficiently
converted to a CNF formula that is only linearly larger
and is unsatisfiable if and only if the original formula is
a tautology. Therefore, any sound and complete system
for refuting CNF formulas can be considered as a general
propositional proof system. Furthermore, while the general
definition of a proof system allows for any predicate P , in
practice the proof systems studied in the proof complexity
literature tend to have the structure that a proof π can be
viewed as a sequence of lines, where each line either is
(some encoding of) a disjunctive clause of the CNF formula
being refuted or follows from previous lines in the proof by
the inference rules of the proof system in question. We will
say that such proof systems are sequential. All proof systems
considered in this paper are sequential proof systems for
refuting unsatisfiable CNF formulas.

Of the three proof systems mentioned above, the resolu-
tion proof system is by far the most well-studied and well-
understood. Resolution was introduced in [14] and began
to be investigated in connection with automated theorem
proving in the 1960s [23], [24], [35]. In this context, it is
natural to prove bounds on the length of refutations, i.e.,
the number of clauses, rather than on the total size (the
two measures are easily seen to be polynomially related).
One of the early break-throughs in proof complexity was
the result by Haken [26] that CNF formulas encoding
the pigeonhole principle (PHP formulas) require proofs of
exponential length. There have been a sequence of follow-up
papers establishing quantitatively stronger bounds for other
formula families in, for instance, [12], [19], [37].

Motivated by the fact that memory usage is a major
concern in applied SAT solving, and by the question of
whether proof complexity could say anything interesting
about this, the study of space in resolution was initiated
by Esteban and Torán in [25]. Alekhnovich et al. [1] later
extended the concept of space to a more general setting,
including other proof systems, and this setting is what will
be of interest to us in this paper. Intuitively, the space of
a resolution refutation is the amount of memory needed
while verifying the refutation (where in resolution usually

1For instance, recent experimental work by the third author joint with
Järvisalo, Matsliah and Živný [29] seems to indicate a correlation between
theoretical space complexity in resolution and practical running time for
CDCL solvers.

one thinks of each clause as requiring one unit of memory, a
measure that is known as clause space). Perhaps somewhat
surprisingly, it turns out that one need never use more than
linear (clause) space in resolution, and a sequence of papers
[1], [8], [25] have established matching lower bounds (up to
constant factors).

Another sequence of papers culminating in [10] involving
the third author clarified the relation between length and
space in resolution. It was established in [10] that there
exist explicit formulas that are maximally easy with respect
to length, having linear length refutations, but which are
hard for space in that their clause space complexity is
Ω(n/ log n) (this separation is optimal). Regarding trade-
offs betweem length and space, some results in restricted
settings were presented in [7], [31], and strong trade-offs
for general resolution were finally obtained in [11]. Very
recently, [6] announced trade-off results for formulas that
require even superlinear space if length is to be optimized.

In the polynomial calculus (PC) proof system introduced
by Clegg et al. [20], clauses are interpreted as multilinear
polynomial equations over some field, and a CNF formula
is refuted by showing that there is no common root for the
polynomial equations corresponding to all the clauses. The
minimal refutation size of a formula in this proof system
turns out to be closely related to the total degree of the
polynomials appearing in the refutation [28], and a number
of strong lower bounds on proof size have been obtained by
proving degree lower bounds in, for instance, [2], [28], [34].

The treatment of negated and unnegated literals in PC
is asymmetric and means that wide clauses with literals
of the wrong sign can blow up to polynomial equations
of exponential size. To get a more symmetric treatment of
space, [1] introduced polynomial calculus resolution (PCR)
as a common extension of PC and resolution.2 Briefly, in
PCR one adds an extra set of parallel formal variables
x, y, z, . . . as well as axioms specifing that x and x must
always take opposite signs (so that we can think of the
variable x as the literal negating x). In this way, negated
and unnegated literals can both be represented in a space-
efficient fashion.

In this stronger PCR system, [1] managed to estab-
lish lower bounds on space measured as the number of
monomials, but only sublinear bounds and for formulas of
unbounded width (namely, for PHP formulas). The problem
of proving linear lower bounds on space in PC and PCR, and
more importantly of proving any nontrivial lower bounds for
formulas of bounded width in terms of PCR-space or even
PC-space, has remained open since [1]. Thus, it has been

2It should be noted, though, that if our main concern in studying space
is the connection to SAT solving, then it is not entirely clear that the
generalization to PCR is the right way to go. The issue is that PCR might in
fact be a bit too strong in the sense that it magically eliminates a problem
with exponential space blow-up that actually appears to be an issue in
practice for some PC-based SAT solvers.



theoretically consistent with our current state of knowledge
that all k-CNF formulas would potentially be refutable in
constant space in polynomial calculus. And as far as we
are aware, there have not been any trade-off results shown
before (the partial results in) the very recent paper [27].

At the time the paper [20] was published, there was
quite some excitement about polynomial calculus, since this
proof system seemed to hold out the promise of better SAT
solvers than those based on resolution. This promise has
failed to materialize so far, however. There are PC-based
solvers such as PolyBoRi [16], but in general they seem to
be an order of magnitude slower than state-of-the-art CDCL
solvers (although [17] reports that PolyBoRi can be faster
on certain specific industrial instances).

In the cutting planes (CP) proof system [22], the clauses
of a CNF formula are translated to linear inequalities and
the formula is refuted by showing that the polytope de-
fined by these does not have any zero-one integer points
(corresponding to satisfying assignments). We only know of
one superpolynomial lower bound on CP proof size [33]
(improving on the result [15] in a somewhat restricted
setting). As far as we are aware, nothing is known on space
for cutting planes, much less for size-space trade-offs, except
again for the recent paper [27].

B. Our Results

In this paper, we focus on polynomial calculus and PCR
and prove several new results. We give an overview of these
results below. The notation and terminology used follows
that of the survey [32] fairly closely, but for completeness
we provide all the necessary preliminaries in Section II.

1) Upper Bound on Space for k-CNF Formulas in Poly-
nomial Calculus: A first natural question when proving
lower bounds on space in polynomial calculus is how strong
bounds we can hope for, i.e., what upper bounds there are
to match. For the resolution proof system, it is easy to show
that any CNF formula F with m clauses over n variables has
a refutation in simultaneous length exp(min{m,n}+O(1))
and clause space min{m,n}+O(1). Since PCR can simulate
resolution efficiently line by line, we get similar upper
bounds for size and monomial space there.

For polynomial calculus without extra variables for neg-
ative literals, however, it is easy to see that one cannot
polynomially simulate resolution. Namely, consider a for-
mula F with a wide clause consisting of only negative
literals. Just representing such a clause in the PC-translation
to a polynomial requires exponential size and space. This
counter-example for PC seems somewhat artificial, however,
since we could transform F to an equivalent 3-CNF formula
in the canonical way and work with this formula instead
to avoid the problems with downloading wide all-negative
clauses. Therefore, we are interested in determining upper
bounds for the worst case for PC when the unsatisfiable
input formulas are given in k-CNF.

Interestingly, this turns out to be connected to a problem
regarding width in resolution. We know from [12] that if a
formula cannot have resolution refutations without at least
one clause of linear length, then the length of any resolution
refutation has to be exponential. In fact, by counting one
immediately gets that not only must any refutation contain
at least one wide clause in such a case, but rather an
exponential number of wide clauses. Suppose now that we
are considering random k-CNF formulas, where the signs
of the literals in the axioms will be randomly (and evenly)
divided. Is it true that in any resolution refutation of such
a formula, there must also be wide clauses with reasonably
evenly divided positive and negative literals? Or weakening
this question a bit: Is it true that in any resolution refutation
of a random k-CNF formula, it holds with high probability
that the refutation must contain at least one clause with a
large positive component and one clause (the same one or
another one) with a large negative component?

Somewhat surprisingly, the answer to this question is a
resounding “no.” If we want to minimize negative width (or
positive width, for that matter), then for any unsatisfiable
k-CNF formula F we can find a resolution refutation that
never has any clause with more than k negative (positive)
literals.

This is an interesting fact in itself, but it also has im-
mediate consequences for polynomial calculus. Namely, the
reason that PC cannot simulate resolution in the same way
as PCR is that clauses with many negative literals cause an
exponential blow-up in monomial space. But since we can
construct a resolution refutation that never has more than
k negative literals in any clause, we can limit this blow-up
to an exponential in k, which is a constant. Hence, we get
that PC has at least as good worst-case behaviour for k-CNF
formulas as does resolution.

Theorem 1. Any unsatisfiable k-CNF formula F with
m clauses over n variables has a PC-refutation in simul-
taneous length exp(O(min{m,n})) and monomial space
O(min{m,n}), where the hidden constant depends on k.

2) Lower Bound on Space for k-CNF Formulas in Polyno-
mial Calculus: Next, we turn our attention to lower bounds
for k-CNF formulas in PC. There is a standard way to turn
any CNF formula F into an equivalent 3-CNF formula F̃ by
converting every wide clause C = a1 ∨ a2 ∨ . . .∨ aw to the
set of 3-clauses C̃ = {y0}∪{yj−1 ∨ aj ∨ yj | 1 ≤ j ≤ w}∪
{yw} where the yi are new variables that do not appear
anywhere else. Let P̃HPmn denote the pigeonhole principle
formula PHPmn converted to 3-CNF in this way. For reso-
lution we know that the space requirements for these two
versions are the same, but the Ω(n) lower bound on space
in PCR for PHPmn in [1] unfortunately breaks down for
P̃HPmn , and no lower bound has been known even for PC.

Intuitively, one would like to think of the semantics of
the new auxiliary variables as being yi ≡

∨w
j=i+1 aj , and



use this to extract a PCR-refutation of PHPmn from any
PCR-refutation of P̃HPmn by substituting

∨w
j=i+1 aj for yi.

Sadly, this idea does not work. The problem is that the
semantics of the negation of yi in the 3-CNF conversion is
yi ≡

∨i
j=1 aj , and under this interpretation there is nothing

ruling out that both yi and yi “are true simultaneously,” as
it were. Therefore, this simulation idea fails.

However, for PC we never need to deal with yi, since
this literal does not exist, and if we do the substitution for
yi above then it turns out we can in fact extract a PC-
refutation of PHPmn from any PC-refutation of P̃HPmn .
This immediately yields a first nontrivial lower bound on
space for 3-CNF formulas in PC. Using the ideas from
Section I-B1 together with results from the literature, it is
not hard to show that this bound is asymptotically tight.

Theorem 2. The space of refuting P̃HPn+1
n in polynomial

calculus is Θ(n), or Θ
(

3
√
N
)

expressed in the formula
size N .

This lower bound holds for the standard (from the alge-
braic point of view) encoding equating 0 with true and 1
with false. Since PC is clearly very sensitive to such issues
of representation, it is natural to ask whether the lower bound
is due to an unfavourable encoding and could be avoided by
a preprocessing step flipping the polarities of the literals in
the formula in some way. However, it is straightforward to
show, appealing to [1], that Theorem 2 holds even if we
allow arbitrary flips of literal polarities in the formula.

3) Lower Bound on Space for k-CNF Formulas in PCR:
The main goal of this paper, however, is to prove lower
bounds on space for k-CNF formulas not in polynomial
calculus, but in the stronger PCR system. And here the
simple simulation used to obtain Theorem 2 no longer
works, for the reasons sketched above.

As a first step, we instead consider an alternative encoding
of the pigeonhole principle. In the PHPmn formula, we have
variables pi,j encoding that pigeon i sits in hole j. However,
there is another way to encode the pigeonhole principle that
arises naturally in bounded arithmetic, which uses variables
x[i, `] for ` = 1, . . . , log2 n encoding in binary the hole
into which pigeon i goes. Note that in this encoding the
pigeonhole principle will automatically be functional, i.e.,
every pigeon gets sent to exactly one hole and not more.
These “bit-graph PHP formulas” have width logarithmic in n
and, as we prove, require space linear in n in PCR. Hence,
this provides an exponential improvement over [1] measured
in the width of the formulas.

Theorem 3. The space in PCR of refuting bit-graph
pigeonhole principle formulas BPHPn+1

n is Ω(n), or
Ω
(

3
√
N/ logN

)
expressed in the formula size N .

We then tweak the formulas in a specific way to have
“hole indicators” for each hole and pigeon, where we say
that pigeon i sits in hole j if the exclusive or of the hole

indicator variables for (i, j− 1) and (i, j) is true. While we
certainly do not claim that this is the most natural encoding
of the pigeonhole principle ever presented in the literature,
it has the nice feature that it can be written as a 4-CNF
and that the proof of Theorem 3 still works with very minor
modifications. So in this way we are finally able to prove
strong lower bounds on PCR space for k-CNF formulas.

Theorem 4. The space in PCR of refuting the XOR pigeon-
hole principle XPHPn+1

n encoded in 4-CNF is Ω(n), or
Ω
(

3
√
N
)

expressed in the formula size N .

The proofs of Theorems 3 and 4 are very much inspired
by [1] and follow the arguments in that paper fairly closely,
but also require some subtle but crucial twists. We refer to
Section III for the proof of Theorem 3. The easy modifica-
tions to prove Theorem 4 are described in the upcoming full
version of the paper.

4) Space Complexity of Wide CNF Formulas and Their 3-
CNF Versions: While Theorem 4 establishes nontrivial PCR
space lower bounds for specially crafted 4-CNF formulas,
we still do not know any lower bounds for 3-CNF formulas.
In particular, the PCR space complexity of the “3-CNF
version” P̃HPmn of the pigeonhole principle formulas re-
mains open. Returning to the discussion in Section I-B2, it
is natural to ask the question in general what happens to
the space complexity of formula F when it is transformed
to a 3-CNF F̃ in the canonical way described above. It is
clear that such a transformation can never increase the space
complexity. For all formula families that we are aware of, the
space complexity, when it is known, does not decrease either,
but stays the same. It would be very interesting to know
whether this is true in general, or whether it is somehow
possible to come up with a family of wide formulas Fn
where the space complexity of F̃n is asymptotically smaller.

As a first step towards resolving this question, we char-
acterize a natural class of CNF formulas for which the
space complexity in resolution and PCR provably does not
decrease when the formula is transformed into a 3-CNF.
Suppose that for every wide clause a1 ∨ ... ∨ aw in F
there are also axioms ai ∨ aj for all 1 ≤ i < j ≤ w
requiring that any satisfying assignment of the clause is
constrained to have Hamming weight 1 (we call such a
formula weight-constrained). Then for such a formula F
the idea in Section I-B2 of substituting

∨w
j=i+1 aj for yi

and
∨i
j=1 aj for yi turns out to actually work.

Theorem 5. Let F be a weight-constrained CNF formula
and let F̃ be its 3-CNF version as described above. Then
in resolution F and F̃ have the same space complexity up
to a small additive constant, and in PCR the two formulas
have asymptotically the same space complexity (within small
multiplicative factors).

In particular, this means that for the standard encoding of
the functional pigeonhole principle, which has precisely such



weight constraints, the space complexity of the wide formula
and its 3-CNF version is essentially the same. Unfortunately,
nothing is known about the PCR space complexity of this
formula, and in particular the techniques in [1] break down
when functional axioms are added to the formula. However,
what Theorem 5 says is that if one can manage to prove
PCR space lower bounds for the wide functional pigeonhole
principle, then the same bound also holds for the 3-CNF
version. We hope that this insight can be useful when
approaching the task of proving PCR space lower bounds
for (3-CNF versions of) the functional pigeonhole principle
and other well-studied formula families in proof complexity.
Also, it would be interesting to see if Theorem 5 could
be generalized to hold for any CNF formula, even without
weight constraints, or if there is some counter-example.

C. Outline of This Paper

The rest of this paper is organized as follows. The
necessary preliminaries are presented in Section II. We then
give a detailed presentation of what we consider to be
the most exciting result, namely our space lower bound
in polynomial calculus resolution for a particular encod-
ing of the pigeonhole principle with small-width clauses
presented in Section III. Though these formulas do not
quite have constant width, we feel this result is for a more
natural family of formulas, and therefore perhaps a bit
easier to follow, than the analogous result for formulas of
constant width. This latter result, as well as all other results
mentioned in Section I-B, can be found in the upcoming
full-length version of the paper. In Section IV, we make
some concluding remarks and mention a few of the many
fascinating problems in this area that remain open.

II. PRELIMINARIES

Let x be a Boolean variable. A literal over x is either the
variable itself or its negation, denoted ¬x or x. It will also be
convenient to use the alternative notation xb for b ∈ {0, 1},
where xb is x when b = 0 and x when b = 1.

A clause C = a1 ∨ · · · ∨ ak is a disjunction of literals.
We denote the empty clause, i.e., the clause containing no
literals, by ⊥. A clause containing at most k literals is
called a k-clause. A CNF formula F = C1 ∧ · · · ∧ Cm is a
conjunction of clauses. A k-CNF formula is a CNF formula
consisting of k-clauses.

Assignments are functions that assign a truth value for
each variable in v. We write α, β to denote truth value
assignments. An assignment satisfies a Boolean function if
it makes the function true. In the context of the algebraic
proof systems PC and PCR (defined below) we will identify
0 with true and 1 with false (so that xb is true if x = b).

We say that a proof system for refuting unsatisfiable
CNF formulas is sequential if a proof π in the system is a
sequence of lines, where each line is derived from previous
lines by one of a finite set of allowed inference rules.

The following definition is a straightforward generalization
of [1].

Definition 6 (Refutation). For a sequential proof system
P with lines of the form Li, a P-configuration D, or,
simply, a configuration, is a set of such lines. A sequence
of configurations {D0, . . . ,Dτ} is said to be a P-derivation
from a CNF formula F if D0 = ∅ and for all t ∈ [τ ], the set
Dt is obtained from Dt−1 by one of the following derivation
steps:
• Axiom Download: Dt = Dt−1 ∪ {LC}, where LC is

the encoding of a clause C ∈ F in the syntactic form
prescribed by the proof system (an axiom clause).

• Inference: Dt = Dt−1 ∪ {L} for some L inferred
by one of the inference rules for P from a set of
assumptions L1, . . . , Lm ∈ Dt−1.

• Erasure: Dt = Dt−1 \ {L} for some L ∈ Dt−1.
A P-refutation π : F `⊥ of a CNF formula F is a P-
derivation π = {D0, . . . ,Dτ} such that D0 = ∅ and ⊥ ∈ Dτ ,
where ⊥ is the representation of contradiction (e.g. for
resolution the empty clause without literals).

Definition 7 (Refutation size, length and space). Given
a size measure S (L) for lines L in P-derivations , the size
of a P-derivation π is the sum of the sizes of all lines in
a derivation, where lines that are derived multiple times are
counted with repetitions. The length of a P-derivation π is
the number of axiom downloads and inference steps in it.
For a space measure SpP(D) defined for P-configurations,
the space of a derivation π is defined as the maximal space
of a configuration in π.

We define the P-refutation size of a formula F , denoted
SP(F ` ⊥), to be the minimum size of any P-refutation
of it. The P-refutation length LP(F `⊥) and P-refutation
space SpP(F `⊥) of F are analogously defined. When the
proof system in question is clear from context, we will drop
the subindex in the proof complexity measures.

Let us next give formal definitions in the framework of
Definition 6 of the proof systems that will be of interest in
this paper.

Definition 8 (Resolution). In resolution, derivation lines are
clauses and inferences follow the resolution rule:

B ∨ x C ∨ x
B ∨ C (1)

for clauses B and C. We refer to B ∨C as the resolvent of
B ∨x and C ∨x on x. Sometimes it will be useful to allow
an additional rule, weakening:

B
B ∨ C (2)

for clauses B and C. Weakening is admissible, in the sense
that weakening can be eliminated from every resolution
refutation without increasing any of the standard parameters
such as length, size, or space.



For resolution, we will consider three separate space
measures: clause space, total space and width.

Definition 9 (Width and space in resolution). The width
W(C) of a clause C is the number of literals in it, and
the width of a CNF formula or clause configuration is the
size of the widest clause in it. The clause space Sp(C) of
a clause configuration C is the number of clauses in C, and
the total space TotSp(C) is the total number of literals in
C counted with repetitions. The width or space of a reso-
lution refutation π is the maximum that the corresponding
measures attains over any configuration C ∈ π.

The polynomial calculus (PC) proof system was intro-
duced in [20] under the name of “Gröbner proof system.”
In a PC-refutation, clauses are interpreted as multilinear
polynomials. For instance, the requirement that the clause
x ∨ y ∨ z should be satisfied gets translated to the equation
xy(1−z) = 0 or xy−xyz = 0 (recall that we think of 0 as
true and 1 as false), and we derive contradiction by showing
that there is no common root for the polynomial equations
corresponding to all the clauses.

Definition 10 (Polynomial Calculus (PC)). Lines in a poly-
nomial calculus proof are multivariate polynomial equations
p = 0, where p ∈ F[x, y, z, . . .] for some (fixed) field F. It
is customary to omit “= 0” and only write p. The derivation
rules are as follows, where α, β ∈ F, p, q ∈ F[x, y, z, . . .],
and x is any variable:

• Boolean axioms:
x2 − x

(forcing 0/1-solutions).

• Linear combination:
p q

αp+ βq
• Multiplication: p

xp
For an assignment α to variables and a PC configuration P,
we say that α satisfies P, or P(α) = 0, if when we substitute
0 for each true variable in α and 1 for each false variable
in α then all polynomials in P are zeroed.

Definition 11 (PC refutation). The PC translation of a
clause C is the product

∏
x∈P x ×

∏
x∈N (1 − x) written

out as a sum of monomials, where P is the set of variables
which appear positively in C, and N is the set of variables
appearing negatively. Note that the PC translation is defined
in such a way that a literal xb (where b ∈ {0, 1}) is satisfied
if its PC translation is zeroed when substituting x = b.

A polynomial calculus refutation of a CNF formula F is
a derivation of 1. The size measure for lines (polynomials)
in a PC-derivation is the number of monomials in the poly-
nomial. (counted with repetitions). The (monomial) space of
a PC-configuration is the total number of monomials in the
configuration (counted with repetitions).3

3Alekhnovich et al. [1] define monomial space as the maximal number
of distinct monomials in any configuration. While their lower bounds hold
even for this stricter definition (and so do ours), we think that their definition
is somewhat artificial, and prefer the definition given here.

The representation of a clause
∨n
i=1 xi as a PC-

polynomial is
∏n
i=1(1−xi), which means that the number of

monomials is exponential in the clause width. This problem
arises only for negative literals, however—a large clause
with only positive literals is translated to a single mono-
mial. This is a weakness of monomial space in polynomial
calculus when compared to clause space in resolution. In
order to obtain a cleaner, more symmetric treatment of proof
space, in [1] the proof system polynomial calculus resolution
(PCR) was introduced as a common extension of polynomial
calculus and resolution. The idea is to add an extra set
of parallel formal variables x, y, z, . . . so that positive and
negative literals can both be represented in a space-efficient
fashion. Thus, in PCR the clause x ∨ y ∨ z gets translated
to the single monomial xyz.

Definition 12 (Polynomial Calculus Resolution (PCR)).
Lines in a PCR-proof are polynomials over the ring
F[x, x, y, y, z, z, . . .], where as before F is some field. We
have all the axioms and rules of PC plus the following
axioms:
• Complementarity:

x+ x− 1
for all pairs of vari-

ables (x, x).
A truth value assignment α to the variables x, y, z, . . .

extends to an assignment α̃ to the variables x, x, y, y, z, z, . . .
by assigning ¬α(x) to x. The assignment α satisfies a PCR-
configuration P if its extension α̃ satisfies P (under the
semantics of PC).

Definition 13 (PCR-refutation). The PCR translation of a
clause C is the monomial

∏
x∈P x ×

∏
x∈N x, where P is

the set of variables which appear positively in C, and N is
the set of variables which appear negatively in C. A PCR-
refutation of a CNF formula is a derivation of 1. Size, length
and space are defined as for PC.

In PCR, monomial space is a natural generalization of
clause space, since every clause translates into one monomial
as just explained.

An even stronger proof system, defined in [1], is func-
tional calculus (FC). This purely semantical system works
with arbitrary Boolean functions, regardless of their syn-
tactical representation complexity, and the (clause) space
complexity in FC is defined by minimizing the number
of clauses needed to represent configurations as arbitrary
functions of clauses. We refer to the full-length version of
this paper for the details. Although FC is much stronger than
PCR, it turns out that the lower bounds in [1] apply equally
well to FC. The same is true for our PCR lower bounds.

III. A PCR SPACE LOWER BOUND

In this section, we present a PCR space lower bound for
an encoding of the pigeonhole principle that has clauses of
only logarithmic width. The lower bound we get is linear
in the number of holes, just as in [1], but measured in the



initial width of the clauses it is an exponential improvement.
In the full-length version of this paper, we improve this result
further to a qualitatively similar bound for CNF formulas of
bounded width, resolving an open problem in [1]. We believe
that the result in this section is of independent interest,
however, since the lower bound holds for a natural family
of CNF formulas, whereas the constant-width formulas in
the full-length version are more contrived and are designed
specifically to get PCR-space lower bounds.

The formulas we consider are so-called bit-graph pigeon-
hole principle formulas, which are encodings of the func-
tional pigeonhole principle where the functionality condition
that every pigeon should only go into one hole does not
require extra axiom clauses but is hard-coded in the variable
representation. Such an encoding arises naturally in bounded
arithmetic. We employ the standard notation that [n] denotes
the set {1, . . . , n} (where n is a positive integer), that [i, j]
denotes the set {i, i + 1, . . . , j}, and that [i, j) denotes the
set {i, i+ 1, . . . , j − 1}.

Definition 14 (Bit-graph PHP formula). Let n = 2`.
The bit-graph pigeonhole principle formula BPHPmn has
propositional variables x[p, i] for each p ∈ [0,m) and
i ∈ [0, `). We think of [0,m) as a set of pigeons and of [0, n)
as a set of holes. Each pigeon p is thought of as mapping
to the hole whose binary encoding is given by the string
x[p, ` − 1] · · ·x[p, 1]x[p, 0], and we say that the variables
x[p, i] are associated with the pigeon p.

The formula BPHPmn then asserts that no two pigeons
map to the same hole. For every two pigeons p1 6= p2 ∈
[0,m) and every hole h ∈ [0, n) we have a hole axiom

H(p1, p2, h) =

`−1∨
i=0

x[p1, i]
1−hi ∨

`−1∨
i=0

x[p2, i]
1−hi ,

stating that either p1 is not mapped to h or p2 is not mapped
to h, where h`−1 · · ·h1h0 is the binary encoding of h.

Recall our notational convention that for a variable v we
have v0 ≡ v and v1 ≡ v, so that vb = 0 (i.e., vb is true) if
and only if v = b. Then what the axiom clause H(p1, p2, h)
says is that for at least one of the pigeons p1 or p2, the
binary expansion of the hole this pigeon is sent to does not
match the binary expansion of h.

Fix n = 2` ≥ 1 and m > n. We will prove a PCR space
lower bound for BPHPmn using a similar construction to that
in Alekhnovich et al. [1]. As in [1], our proof also applies to
the much stronger functional calculus proof system. Notice
that we can identify total truth value assignments α to the
variables of BPHPmn with functions fα : [0,m) → [0, n)
mapping pigeons to holes. In what follows, we will switch
freely back and forth between these two ways of looking at
assignments.

Definition 15 (Well-behaved assignment). Let α be a total
assignment to the variables of BPHPmn and let S ⊆ [0,m)

be a set of pigeons. We say that α is well-behaved on S if
the holes assigned by α to the pigeons in S are all distinct.

Definition 16 (Commitment). A disjunctive commitment,
or just commitment, is a clause of the form x[p1, i1]b1 ∨
x[p2, i2]b2 , where p1 and p2 are distinct pigeons.

A commitment set is a set of commitments where all
pigeons are distinct. We think of a commitment set as the
conjunction of its constituent commitments. The domain of
a commitment set A, written domA, is the set of pigeons
mentioned in A. The size of a commitment set A, denoted
|A|, is the number of commitments in A.

An assignment α is well-behaved on and satisfies a
commitment set A if α is well-behaved on domA and
satisfies A.

The following observation is central to our argument. It
states that given a one-to-one assignment of fewer than n/2
pigeons to holes and a literal concerning a new pigeon, we
can always find some new hole to assign to that pigeon so
that the literal is satisfied.

Lemma 17. Suppose S is any set of fewer than n/2 pigeons,
α is an assignment well-behaved on S, and x[p, i]b is a
literal associated with a pigeon p /∈ S. Then we can modify
α by reassigning p in such a way that the new assignment
is well-behaved on S ∪ {p} and satisfies the literal x[p, i]b.

Proof: There are exactly n/2 holes for pigeon p that
will satisfy the literal x[p, i]b if p is sent there. Fewer than
n/2 holes are taken by the pigeons in S so there is a hole h,
not assigned to any pigeon in S, whose assignment to p will
satisfy x[p, i]b.

Corollary 18. Let S, T be two disjoint sets of pigeons such
that |S∪T | ≤ n/2, and let X be a set containing exactly one
literal associated with pigeon p for each p ∈ T . Then any
assignment which is well-behaved on S can be modified,
by reassigning pigeons in T , into an assignment which is
well-behaved on S ∪ T and satisfies all literals in X .

Proof: Consider the pigeons in T one by one, and apply
Lemma 17.

Definition 19 (Entailment). Given a commitment set A and
a PCR-configuration P, we say that A entails P over well-
behaved assignments if every assignment α which is well
behaved on and satisfies A also satisfies P.

The idea of the lower bound is that, given a purported
refutation using small space, we can inductively construct a
commitment set At for each configuration Pt in the proof
in such a way that the commitment set At entails the
configuration Pt. The following lemma, based on a similar
lemma in [1], is the technical heart of the lower bound. We
will use it to show that as long as the configurations do
not get too big, we never need to use a commitment set
that is more than twice as large as its configuration. We can



then use Corollary 18 to show that all the configurations are
satisfiable, giving a contradiction.

Lemma 20 (Locality lemma). Let A be a commitment set
and P be a PCR-configuration such that A entails P over
well-behaved assignments and |A| ≤ n/4. Then there is a
commitment set B of size |B| ≤ 2 ·Sp(P) such that B entails
P over well-behaved assignments.

Proof: Consider a bipartite graph with the left vertex
set being the set M of all distinct monomials in P, and the
right vertex set being the set of all disjunctive commitments
in A. We draw an edge between a monomial m ∈ M on
the left and a commitment C ∈ A on the right if there is a
pigeon p mentioned in both (that is, there is some variable
x[p, i]b in m and some literal x[p, i′]b

′
in C, where i may

be different from i′, and b from b′). To follow the rest of
the argument, it might be helpful for the reader to consider
the illustration in Figure 1(a).

Let Γ ⊆M be a set of maximal size such that |N(Γ)| ≤
2 · |Γ|. Note that Γ is not necessarily unique, but such
a maximal set always exists, since Γ = ∅ satisfies the
requirement.

It must hold for all S ⊆M\Γ that |N(S)\N(Γ)| > 2·|S|,
since otherwise we could add S to Γ to get a larger set. But
this implies that there is a matching of every m ∈M \Γ to
two distinct commitments C ′, C ′′ ∈ A \N(Γ) such that no
two m,m′ share any commitments. To see this, just make
two copies of each monomial/vertex in m ∈M \Γ with the
same edges from both copies to the vertices on the right,
apply Hall’s theorem, and then identify the two copies of
the monomial again (this step is depicted in Figure 1(b),
where Γ and N(Γ) are in the upper half of the graph).

Fix such a monomial m ∈ M \ Γ and suppose it has
been matched to the two disjunctive commitments C ′ =
x[p′, i′]b

′ ∨ x[q′, j′]c
′

and C ′′ = x[p′′, i′′]b
′′ ∨ x[q′′, j′′]c

′′

as shown in Figure 1(c). By construction, m mentions at
least one pigeon each from C ′ and C ′′, so suppose without
loss of generality that p′ and p′′ are such pigeons. Thus,
there exist literals x[p′, i1]b1 and x[p′′, i2]b2 such that m =
x[p′, i1]b1 ·x[p′′, i2]b2 ·m′. We construct a new commitment
Cm = x[p′, i1]b1 ∨ x[p′′, i2]b2 . We construct commitments
in this way for every m ∈ M \ N(Γ), and let our new
commitment set be B = N(Γ) ∪ {Cm | m ∈M \N(Γ)},
that is, the union of all these new commitments with the
old commitments from A in N(Γ). We claim that this is the
commitment set we are looking for.

Firstly, it is easily verified that B is indeed a commitment
set. This is so since all pigeons mentioned in A are different,
and the pigeons in B are just a subset of the pigeons in A.
Secondly, with regard to size it clearly holds that |B| ≤
|N(Γ)| + |M \ N(Γ)| ≤ 2 · |M | ≤ 2 · Sp(P). However,
we also need to show that B entails P over well-behaved
assignments. That is, we must prove that every β that is
well-behaved on and satisfies B also satisfies P.

We prove that B entails P over well-behaved assign-
ments in a slightly roundabout way by finding, given any
assignment β well-behaved on and satisfying B, another
assignment α such that

1) P(α) = P(β), and
2) α is well-behaved on and satisfies A.

By item 2 it follows from the inductive hypothesis that α
satisfies P. But if so, then β also satisfies P by item 1, which
is what we want to prove.

To this end, let S = domB and T = domA \ domB
(notice that domB ⊆ domA). Let X be the set of literals
that for each p ∈ T includes the (unique) literal x[p, i]b

associated with p and appearing in A. Notice that each
commitment in A \ N(Γ) will have at least one literal
in X (some commitments will potentially have both literals
in X). Since |A| ≤ n/4, we have |S ∪ T | ≤ n/2. Apply
Corollary 18 to S, T , and β to get a truth value assignment α
that is well-behaved on S ∪ T , agrees with β on pigeons
outside T , and satisfies all literals in X . We claim that this
is the assignment that we need.

To see this, note first that no monomial in Γ mentions
pigeons in T (by construction), so α and β agree on on
monomials in Γ. For m ∈ M \ Γ, all β satisfying B must
set the monomial m to zero, since this is how the new
commitments were constructed. Reassigning pigeons in T
can change variables in m, but there is still at least one
variable that is set to zero, zeroing the whole monomial. So
for all m ∈M , the assignment α gives the same value to m
as does β, namely 0. Hence α and β agree on all monomials
in M and P(α) = P(β). This takes care of item 1 above.
By Corollary 18, α is well-behaved on S ∪ T = domA.
Also, since α satisfies all literals in X as well as N(Γ),
consequently α satisfies A. This takes care of item 2, and as
already discussed it now follows that P(α) = 0. Thus, every
β that is well-behaved on and satisfies B must also satisfy
P. The lemma follows.

Using this Locality lemma, we can prove our PCR space
lower bound for bit-graph PHP formulas.

Theorem 21 (Restatement of Theorem 3).
SpPCR(BPHPmn `⊥) > n/8.

Proof: Let π = {P0, . . . ,PN} be a PCR-refutation of
BPHPmn in monomial space at most n/8, with P0 = ∅
and 1 ∈ PN . We will construct by induction a sequence
of commitment sets A0, . . . ,AN such that for each step t,
it holds that |At| ≤ 2 · Sp(Pt) and At entails Pt over
well-behaved assignments. In particular, by Corollary 18
(with S = ∅) this will imply that every configuration Pt
is satisfiable, which gives a contradiction for PN .

Clearly we may define A0 to be the empty commitment.
Now suppose we have defined At. To define At+1 we
consider three cases, depending on which step is used to
obtain Pt+1 from Pt.
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Figure 1. Illustration of argument in proof of the Locality lemma.

Axiom download. We distinguish two download cases:
(a) complementarity axioms of the form x+x−1 or boolean
axioms of the form x2−x and (b) hole axioms H(p1, p2, h).
In the former case, we can simply set At+1 = At since any
truth value assignment satisfies such an axiom by definition,
so let us focus on hole axiom downloads.

Suppose that Pt+1 is Pt together with some hole axiom
H(p1, p2, h). Suppose first that the pigeons mentioned in
H(p1, p2, h) are already in domAt. Then we put At+1 =
At. Let α be any assignment well-behaved on and satisfying
At+1. Then α satisfies Pt by the inductive hypothesis, and
must also satisfy H(p1, p2, h) since it is well-behaved on
the pigeons in H(p1, p2, h).

Otherwise, there are either one or two pigeons mentioned
in H(p1, p2, h) which are not in domAt. Then for each such
pigeon pi we add a “dummy” commitment Cpi to At whose
sole purpose is to put pi into the domain of At+1. We can
take Cpi to be x[pi, 0] ∨ x[p′, 0], where p′ is any pigeon
which has not been used so far.

In both cases, we add at most two new commitments, and
so |At+1| ≤ 2 · Sp(Pt+1).

Inference. Suppose Pt+1 = Pt ∪ {P}, where P se-
mantically follows from Pt. We put At+1 = At. Clearly
|At+1| ≤ 2 ·Sp(Pt+1). Suppose now that α is an assignment
which is well-behaved on and satisfies At+1. The induction
hypothesis implies that α satisfies Pt. Since P semantically
follows from Pt+1, α also satisfies P .

Erasure. Suppose Pt+1 ⊂ Pt. Since |At| ≤ 2 · Sp(Pt) ≤
n/4, Lemma 20 applies, and furnishes us with a commitment
set At+1 such that |At+1| ≤ 2 · Sp(Pt+1) and At+1 entails
Pt+1 over well-behaved assignments.

A nice feature of this lower bound is that it applies
equally well to functional calculus (FC), where polyno-
mials are replaced by arbitrary Boolean functions over
clauses/monomials, with only very minor modifications. We
refer to the full-length version for the details.

IV. CONCLUDING REMARKS

In this paper, we prove the first lower bounds on space in
polynomial calculus (PC) and polynomial calculus resolution
(PCR) for CNF formulas of constant width. This resolves
a relatively longstanding open question from [1]. We also
establish nontrivial upper bounds for proof size and space
in PC, showing that for CNF formulas of constant width
the worst-case behaviour is the same as for resolution and
PCR. Finally, we study how the space complexity of a CNF
formula is related to the space complexity of its standard
transformation to 3-CNF, and show that for a certain class
of CNF formulas, including the functional pigeonhole prin-
ciple, the space complexity of a wide formula and its 3-CNF
version coincide asymptotically for both resolution and PCR.

However, the concept of space is still a fairly poorly
understood in polynomial calculus. This is all the more
true for the cutting planes proof system discussed in the
introduction, for which no nontrivial space lower bounds
are known. Thus, many interesting and natural problems
regarding space in polynomial calculus and cutting planes
remain open. We conclude this paper by giving a (non-
exhaustive) list of such problems which we believe merit
further study.

1) Prove lower bounds on monomial space in PCR, or
as a first step in PC, that match the worst-case upper
bounds up to constant factors. That is, we are looking



for formulas (preferably of constant width) such that
the monomial space lower bound is linear in the size
of the formula. All lower bounds proven in this paper
are sublinear even in the number of variables, not to
mention the size of the formula (which for a k-CNF
formula is asymptotically the same as the number of
clauses).

2) Prove lower bounds on space in PCR or at least PC for
random k-CNF formulas. (These formulas are excel-
lent candidates for having space complexity matching
the worst case upper bound as discussed above.)

3) Separate size and space in PCR by proving (or perhaps
on the contrary ruling out) that there are k-CNF
formulas that have small PCR-refutations but require
large PCR-space.

4) Prove (or rule out, although that would be surprising)
time-space trade-offs for PCR or at least for PC. That
is, find formulas, preferably in constant width, which
are easy with respect to monomial space and also have
proofs of small size, but for which optimizing one
of these measures must cause a dramatic blow-up in
the other. In view of the recent paper [27], a natural
candidate for such results are the so-called pebbling
formulas studied in [10], [11], and another recent time-
space trade-offs paper that might be relevant is [6].

5) Prove any nontrivial space lower bounds or time-
space trade-offs for cutting planes, or indeed any lower
bound on proof size for formulas such as random
k-CNFs or Tseitin contradictions.

6) Can the space required in resolution or PCR for refut-
ing the standard 3-CNF version F̃ of a CNF formula
be asymptotically less than that of the original, wide
formula F ? Or is it the case that the space complexity
of F and F̃ always coincide (asymptotically or even
up to an additive term)? As a concrete example, is it
true that the 3-CNF versions P̃HPmn of the pigeonhole
principle formulas require space linear in n for PCR?
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for Gröbner-basis computations with Boolean polynomi-
als,” Journal of Symbolic Computation, vol. 44, no. 9, pp.
1326–1345, Sep. 2009.

[17] M. Brickenstein, A. Dreyer, G.-M. Greuel, M. Wedler, and
O. Wienand, “New developments in the theory of Gröbner
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