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ON AN EVOLUTIONARY NONLINEAR FLUID MODEL

IN THE LIMITING CASE
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Abstract. We consider the two-dimesional spatially periodic problem for an evolution-
ary system describing unsteady motions of the fluid with shear-dependent viscosity under
general assumptions on the form of nonlinear stress tensors that includes those with p-
structure. The global-in-time existence of a weak solution is established. Some models
where the nonlinear operator corresponds to the case p = 1 are covered by this analysis.
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1. Introduction

The main aim of this note is to give a global existence result for an evolutionary
nonlinear system occuring in two-dimensional fluid mechanics as the limiting case.

Let L, T ∈ (0,∞), I ≡ (0, T ). Then the considered problem for the velocity field
v : I × �

2 → �
2 and the pressure π : I × �

2 → � reads2

(1.1)

∂v

∂t
+ div(v ⊗ v)− div(Θ(|D(v)|2)D(v)) −∇π = f in I × �

2 ,

div v = 0 in I × �
2 ,

v(0, ·) = v0(·) in �2 , v, π are L-periodic at xi, i = 1, 2.

1 The research of J.Málek was supported in part by GAČR 201/00/0768 and by MSM
113200007.

2We assume that the fluid is incompressible with a constant density, which is set to be
one, for simplicity.
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The scalar function Θ: �+0 → �
+ is given by

(1.2) Θ(|D(v)|2) ≡ (µ0 + |D(v)|2)− 1
2 , µ0 > 0,

playing the role of a generalized viscosity; D(v) is the symmetric part of the velocity
gradient ∇v.
Model (1.1), (1.2) is the limiting case for a class of shear-dependent fluids where

the stress tensor T is given by

T = Θp(|D(v)|2)D(v)

with

(1.3) Θp(|D(v)|2) ≡ (µ0 + |D(v)|2)−
p
2 , µ0 � 0.

Notice that (1.3) reduces to (1.2) if p = 1 and only positive µ0 are taken into account.
If (1.1) is combined with (1.3) (instead of (1.2)) and p > 1 then the global-in-

time existence of a solution v ∈ L∞(I;W 1,2
loc (�

2 )) ∩ Lp(I;W 2,p
loc (�

2 )) is shown in [6],
Chpt. 5, Th. 4.21. The proof strongly relies on the “two-dimensional” cancellation

saying that for all vN smooth, periodic and divergence-free we have

(1.4)
∫
Ω
vNk
∂vNi
∂xk
∆vNi dx = 0, Ω ≡ (0, L)× (0, L).

Of course, if p = 1 then (1.4) holds too, however, the nonlinear elliptic operator
brings much less information in comparison with the case p = 1. More precisely, if

p > 1 then the second apriori estimates derived with help of (1.4) give

(1.5)
∫ T

0

∫
Ω
(1 + |D(vN)|2)

p−2
2 |D(∇vN)|2 dxdt � K,

while the approximations vN to the problem (1.1) with (1.2) (i.e. p = 1) satisfy

(1.6)
∫ T

0

∫
Ω
(µ0 + |D(vN)|2)− 3

2 |D(∇vN)|2 dxdt � K .

In both cases, in addition to (1.5) or (1.6) we have at our disposal the estimate

(1.7) lim sup
t∈I

‖∇vN(t)‖22 � K .

Our goal is to show that (1.6) and (1.7) are sufficient to establish the global-in-time
existence of a weak solution of (1.1), (1.2).
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Let us recall that if the viscosity is omitted (Θ = 0), then global existence of weak

solutions to the evolutionary Euler equations is well known even for the Dirichlet
problem3, see [5], Chapter 4 for details and further references. Thus it is quite natural
to expect that (1.1), (1.2) has a global-in-time solution as the viscosity should help.

However, our answer to this somehow natural expectation is not complete. First
of all, we cannot include the case µ0 = 0 into our analysis since then (1.6) becomes

singular. Secondly, we cannot extend the result to the Dirichlet problem since it is
not clear at this moment if the second apriori estimates (1.6) and (1.7) hold.

The method of the proof is different from those used before when establishing
the global-in-time existence of a solution to (1.1). Although our sample example

yields a monotone operator, the only important ingrediences needed in the course of
the proof are the estimates (1.6), (1.7) and the validity of the energy equality; the

monotonicity is not used. The result of the below stated theorem could be therefore
extended to a class of problems of the type (1.1) where the stress tensor T of the
form T (η) = Θ(|η|2)η satisfies∫ T

0

∫
Ω

∂

∂xk
T (η) · ∂η

∂xk
dxdt � C

∫ T

0

∫
Ω
(µ0 + |η|2)− 3

2 |∇η|2 dxdt.

In order to keep this exposition simple we do not deal with such forms in what
follows.

The interested reader can compare the approach used in the proof below with
other methods applied to (1.1), namely4

1. the monotone operator theory combined with compactness arguments for vN,

see [3] and [4] (p � 3d+2
d+2 );

2. the regularity method providing the compactness of ∇vN, see [6] and references
quoted therein (p > 3d

d+2 for d = 3, 4 and p > 1 if d = 2);

3. the method of the truncated test function combined with the strict monotonicity
property of T , see [1] (p > 2d+2

d+2 );

4. the construction of the global-in-time C1,α-solution, see [2] (p > 4
3 if d = 2).

Concerning the data, we assume here

(1.8) f ∈ L2(I;W 1,2
loc (�

2 )), v0 ∈ W 1,2
loc (�

2 ).

As the reader could notice, we use the summation convention and the dependence
of the constant K = K(‖v0‖21,2,

∫ T

0 ‖f‖21,2 dt, T ) on the data is not explicitly men-
tioned. We also use the standard notation for function spaces. By V2 we denote the

3 It means that Ω ⊂ �
2 is a bounded open set and the condition v · n = 0 is prescribed at

the boundary ∂Ω; n is the outward normal.
4 In the brackets, we mark the range of parameters p for which the method is known to
be successfully applicable to (1.1), d denotes dimension.

423



space {u ∈ W 1,2
loc (�

2 ), u periodic ,
∫
Ω u dx = 0, div u = 0}, by V

∗
2 its dual, and the

brackets 〈·, ·〉 represent this duality. By µ · ξ we mean µijξij , and (·, ·) denotes the
scalar product in L2(Ω).

2. Main Theorem and its proof

Theorem 2.1. Let f , v0 satisfy (1.8). Then there exists a weak solution v to
(1.1), (1.2) such that

(2.2)
v ∈ L∞(I;V2) ∩ C(I;L2loc(�2 )),

∂v

∂t
∈ L2(I;V ∗

2 ).

����� is split into several steps.
���� �. Galerkin aproximations. Let wr ∈ V2, r ∈ �, be the eigenvectors of

(∇wr ,∇ϕ) = λr(wr , ϕ) for all ϕ ∈ V2. Clearly wr are smooth. Then the Galerkin
aproximations vN of the form

vN(t, x) =
N∑

i=1

cNi (t)w
i(x)

are determined as solutions of the system

(2.3)

( dvN
dt

, wr
)
+

(
Θ(|D(vN)|2)D(vN),D(wr)

)
+

(
vN ⊗ vN,∇wr

)
= (f, wr) (r = 1, 2, . . . ,N),

vN(0) = �
Nv0, �

Nv0 → v0 strongly in L2(Ω) as N→ ∞.

Here �N denotes the projector from V2 or L2(Ω) into the space generated by the
first N-eigenvectors.

���� 	. Uniform apriori estimates. The important apriori estimates are ob-
tained by multiplying the r-th equation in (2.3) by cNr (t)λr (which is equivalent to

“testing” by −∆vN). Thanks to (1.4), we obtain

1
2
d
dt

‖∇vN‖22 + µ0
∫
Ω
(µ0 + |D(vN)|2)− 3

2 |D(∇vN)|2 dx � ‖∇f‖2‖∇vN‖2.

Integration over time and Gronwall inequality imply then (1.6) and (1.7). From (1.6)

we see

(2.4)
∫ T

0
‖∇Θ 1

2 (|D(vN)|2)‖22 � K,
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and since ∇Θ = ∇(Θ 1
2Θ

1
2 ) = 2Θ

1
2∇Θ 1

2 and Θ
1
2 ∈ L∞(I;L∞(Ω)) we also have

(2.5)
∫ T

0
‖Θ(|D(vN)|2)‖21,2 dt � K .

Finally, it follows from (2.3) and (1.7) (cf. [6], p. 230–231 if necessary) that5

(2.6)
∥∥∥ dvN
dt

∥∥∥
L2(I;V ∗

2 )
� K .

���� 
. First consequences of the uniform estimates. By (1.7), (2.5) and (2.6)
there are Θ ∈ L2(I;W 1,2(Ω)) and v ∈ L∞(I;V2) such that for a subsequence of {vN}
(denoted again by vN)

(2.7)
Θ(|D(vN)|2)⇀ Θ weakly in L2(I;W 1,2(Ω)),

Θ(|D(vN)|2)⇀ Θ ∗ -weakly in L∞(I;L∞(Ω)),

(2.8)

D(vN)⇀ D(v)

∇vN ⇀ ∇v

}
∗ -weakly in L∞(I;W 1,2(Ω)),

dvN

dt
⇀

∂v

∂t
weakly in L2(I;V ∗

2 ),

and due to the Aubin-Lions compactness lemma

(2.9)
vN → v strongly in Lq(I;Lq(Ω)) ∀q ∈ [1,∞),
vN → v strongly in C(I;L2(Ω)).

���� �. A key consequence of apriori estimates. We are going to show that

(2.5), (2.7)–(2.9) imply

(2.10) D(vN)Θ(|D(vN)|2)⇀ D(v)Θ weakly in L2(I;L2(Ω)).

Indeed, it is enough to show that for fixed r, s ∈ {1, 2} and ψ smooth we have

(2.11) Y ≡
∫ T

0

∫
Ω

(∂vNr
∂xs
Θ(|D(vN)|2)− ∂vr

∂xs
Θ

)
ψ dxdt→ 0 as N→∞.

5 The estimate (2.6) is sufficient for our purpose, but it is certainly not optimal.
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However,

Y =
∫ T

0

∫
Ω

(∂vNr
∂xs

− ∂vr

∂xs

)
Θ(|D(vN)|2)ψ dxdt

+
∫ T

0

∫
Ω

∂vr

∂xs
(Θ(|D(vN)|2)−Θ)ψ dxdt

= −
∫ T

0

∫
Ω
(vNr − vr)

∂Θ(|D(vN)|2)
∂xs

ψ dxdt

−
∫ T

0

∫
Ω
(vNr − vr)Θ(|D(vN)|2)

∂ψ

∂xs
dxdt

+
∫ T

0

∫
Ω

∂vr

∂xs
(Θ(|D(vN)|2)−Θ)ψ dxdt,

and we see that (2.11) holds due to (2.7), (2.9) and (2.5). Then (2.11) implies (2.10)
by density arguments.

���� �. We have

(2.12)
∫ T

0

∫
Ω
|D(vN)|2Θ(|D(vN)|2) dxdt N→∞−→

∫ T

0

∫
Ω
|D(v)|2Θdxdt.

To prove (2.12), we first multiply the r-th equation by cNr (t), sum over r = 1, 2, . . . ,N
and integrate with respect to t. This leads to the identity

1
2
‖vN(T )‖22 −

1
2
‖vN(0)‖22 +

∫ T

0

∫
Ω
|D(vN)|2Θ(|D(vN)|2) dxdt =

∫ T

0
(f, vN) dt.

Because of (2.9) and (2.3)2 we observe that

(2.13)
∫ T

0

∫
Ω
|D(vN)|2Θ(|D(vN)|2) dxdt→ −1

2
‖v(T )‖22 +

1
2
‖v0‖22 +

∫ T

0
(f, v) dt.

On the other hand, the passage to the limit in (2.3) with help of (2.8)–(2.10) gives

(2.14)

∫ T

0

〈
∂v

∂t
, wr

〉
dt+

∫ T

0

∫
Ω
ΘD(v) · D(wr) dxdt

+
∫ T

0

∫
Ω
vk
∂vi

∂xk
wr

i dxdt =
∫ T

0
(f, wr) ∀r ∈ �.

Using the density arguments we can conclude that (2.14) holds also for all ϕ ∈
L2(I;V2) (instead of wr). Taking in particular ϕ = v, we see that

(2.15)
1
2
‖v(T )‖22 −

1
2
‖v0‖22 +

∫ T

0

∫
Ω
Θ|D(v)|2 dxdt =

∫ T

0
(f, v) dt.
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Assertion (2.12) thus follows from (2.15) and (2.13).

���� 
. Strong convergence of D(vN). Let us first check that

(2.16) J ≡
∫ T

0

∫
Ω
|D(vN)−D(v)|2Θ(|D(vN)|2) dxdt N→∞−→ 0.

Indeed,

J =
∫ T

0

∫
Ω
|D(vN)|2Θ(|D(vN)|2) dxdt

− 2
∫ T

0

∫
Ω
Θ(|D(vN)|2)D(vN) · D(v) dxdt

+
∫ T

0

∫
Ω
|D(v)|2Θ(|D(vN)|2) dxdt

and (2.16) follows due to (2.12), (2.10) and (2.7)2.

Next, by the Hölder inequality

‖D(vN − v)‖2β2β =
∫
Ω
{|D(vN − v)|2Θ(|D(vN)|2)}β 1

Θ(|D(vN)|2)β dx

�
(∫
Ω
|D(vN − v)|2Θ(|D(vN)|2) dx

)β
(∫
Ω
(1 + |∇vN|2)

β
2(1−β)

)1−β

.

Since β
2(1−β) = 1 if β =

2
3 , (1.7) implies

‖D(vN − v)‖24
3

� K
∫
Ω
|D(vN)−D(v)|2Θ(|D(vN)|2) dx.

Thus, integration with respect to time and (2.16) give

(2.17) D(vN)→ D(v) strongly in L2(I;L 4
3 (Ω)).

���� �. To prove that v is a solution of (1.1), (1.2) with help of (2.17) is now

straightforward. The proof of Theorem 2.1 is complete. �
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