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Abstract. For a graphical property P and a graph G, a subset S of vertices of G is a P-set
if the subgraph induced by S has the property P. The domination number with respect
to the property P, is the minimum cardinality of a dominating P-set. In this paper we
present results on changing and unchanging of the domination number with respect to the
nondegenerate and hereditary properties when a graph is modified by adding an edge or
deleting a vertex.
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1. INTRODUCTION

All graphs considered in this article are finite, undirected, without loops or mul-
tiple edges. For the graph theory terminology not presented here, we follow Haynes
et al.[8]. We denote the vertex set and the edge set of a graph G by V(G) and
E(G), respectively. The subgraph induced by S C V(G) is denoted by (S,G). The
complement of a graph G is denoted by G. For a vertex x of G, N(x,G) denotes the
set of all neighbors of z in G and N[z, G| = N(z,G) U {z}. The complete graph on
m vertices is denoted by K,,.

For a graph G, let x € X C V(G). A vertex y is a private neighbor of x with
respect to X if N[y, G] N X = {x}. The private neighbor set of x with respect to X
is pngfz, X] = {y: Ny,G]N X = {z}}.

Let G denote the set of all mutually nonisomorphic graphs. A graph property is
any non-empty subset of G. We say that a graph G has the property P whenever
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there exists a graph H € P which is isomorphic to G. For example, we list some
graph properties:

o7 ={H e G: H is totally disconnected};

o C={H € G: H is connected};

o7 ={H € G: H is without isolates};

o F={H €G: H is a forest};

o UK = {H € G: each component of H is complete}.

A graph property P is called hereditary (induced-hereditary), if from the fact that
a graph G has the property P, it follows that all subgraphs (induced subgraphs)
of G also belong to P. A property is called additive if it is closed under taking
disjoint unions of graphs. A property P is called nondegenerate if Z C P. Note
that: (a) Z and F are nondegenerate, additive and hereditary properties; (b) UK is
nondegenerate, additive, induced-hereditary and is not hereditary; (c) C is neither
additive nor induced-hereditary nor nondegenerate; (d) 7 is additive but neither
induced-hereditary nor nondegenerate. Further, an additive and induced-hereditary
property is always nondegenerate.

A dominating set for a graph G is a set of vertices D C V(G) such that every
vertex of G is either in D or is adjacent to an element of D. A dominating set D is a
minimal dominating set if no set D’ C D is a dominating set. The set of all minimal
dominating sets of a graph G is denoted by MDS(G). The domination number v(G)
of a graph G is the minimum cardinality taken over all dominating sets of G. The
upper domination number I'(G) is the maximum cardinality of a minimal dominating
set of G.

Any set S C V(G) such that the subgraph (S, G) possesses the property P is called
a P-set. The concept of domination with respect to any property P was introduced by
Goddard et al. [7]. The domination number with respect to the property P, denoted
by vp(G), is the smallest cardinality of a dominating P-set of G. Note that there
may be no dominating P-set of G at all. For example, all graphs having at least
two isolated vertices are without dominating P-sets, where P € {C,7}. On the
other hand, if a property P is nondegenerate then every maximal independent set is
a P-set and thus vp(G) exists. Let S be a dominating P-set of a graph G. Then
S is a minimal dominating P-set if no set S’ C S is a dominating P-set. The
set of all minimal dominating P-sets of a graph G is denoted by MDp S(G). The
upper domination number with respect to the property P, denoted by I'p(G), is
the maximum cardinality of a minimal dominating P-set of G. Michalak [12] has
considered these parameters when the property is additive and induced-hereditary.
Note that:

(a) in the case P = G we have MDg S(G) = MDS(G), v¢(G) = v(G) and T'g(G) =
I(G);
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(b) in the case P = Z, every element of MDz S(G) is an independent dominat-
ing set and the numbers y7(G) and I'z(G) are well known as the independent
domination number i(G) and the independence number Go(G);

(c) in the case P = C, every element of MD¢ S(G) is a connected dominating set
of G, 7¢(G) (T¢(G)) is denoted by v.(G) (T'c(G)) and is called the connected
(upper connected) domination number;

(d) in the case P = T, every element of MD7 S(G) is a total dominating set of G,
v7(G) (T'7(Q)) is denoted by v:(G) (T'+(G)) and is called the total (upper total)
domination number;

(e) in the case P = F, every element of MD £ S(G) is an acyclic and dominating set
of G, v£(G) (T'£(G)) is denoted by v,(G) (T'(G)) and is called the acyclic (up-
per acyclic) domination number. The concept of acyclic domination in graphs
was introduced by Hedetniemi et al. [10].

From the above definitions we immediately have

Observation 1.1. Let Z C Py C P; C G and let G be a graph. Then

(1) [7] 7(6) <1, (G) < 19, (G) < i(G);
(2) [7] D(G) 2 Tp,(G) 2 T, (G) > Go(C).

Observation 1.2. Let G be a graph, P C G and MDp S(G) # 0. A dominating
P-set S C V(G) is a minimal dominating P-set if and only if for each nonempty
subset U C S at least one of the following holds:

(a) there is a vertex v € (V(G) — S)UU with ) # Njv,G]|NS CU;
(b) S —U is no P-set.

Proof. Assume first that S € MDpS(G), D # U C Sand Sy =S —-U isa
P-set of G. Hence some vertex v in V(G) — Sy has no neighbors in Sy. If v € U
then () # N[v,G]NS CU. Let v € V(G) — S. Since v is not dominated by Sy but
is dominated by S it follows that ) # N[v, G] NS C U. In both cases, condition (a)
holds.

For the converse, suppose S is a dominating P-set of G and for each U, () #
U C S one of the two above stated conditions holds. Suppose to the contrary that
S & MDp S(G). Then there exists a set U, 0 ## U C S such that Sy =S —U is a
dominating P-set. Since Sy is a P-set, condition (b) does not hold. Since Sy is a
dominating set it follows that every vertex of V(G) — Sy has at least one neighbor in
Su, that is, condition (a) does not hold. Thus in all cases we have a contradiction.

O
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Corollary 1.3. Let G be a graph, P C G be an induced-hereditary property and
MD»p S(G) # 0. A dominating P-set S C V(G) is a minimal dominating P-set if
and only if pnglu, S] # 0 for each vertex u € S.

This result when P = G was proved by Ore [13].

We shall use the therm yp-set for a minimal dominating P-set of cardinality yp (G).
Let G be a graph and v € V(G). Fricke et al. [5] defined a vertex v to be

(f) ~vp-good, if v belongs to some yp-set of G;
(g) yp-bad, if v belongs to no yp-set of Gj
Sampathkumar and Neerlagi [16] defined a yp-good vertex v to be
(h) ~p-fized if v belongs to every yp-set;
(i) yp-free if v belongs to some yp-set but not to all yp-sets.

For a graph G and a property P C G such that MDp S(G) # () we define:

Gp(G) ={z € V(GQ): z is yp-good};

Bp(G) ={z € V(G): zis yp-bad};

Fip(G) = {z € V(G): z is yp-fixed};

Frp(G) ={z € V(GQ): z is yp-free}.

Clearly {G»(G),Bp(G)} is a partition of V(G), and {Fip(G), Frp(G)} is a par-
tition of Gp(G). If additionally MDp S(G — v) # @ for each vertex v € V(G), then
we define:

VI(G) = {2 € V(G): 7p(G — ) = (G)};

V3(G) = {z € V(G): 19(G —2) < (O}

VH(G) = {2 € V(G): 7p(G — 1) > 1 (G)}.

In this case {V5(G), VH(G), V5(G)} is a partition of V(G).

It is often of interest to know how the value of a graph parameter is affected when
a small change is made in a graph. In this connection, in this paper we consider this

question in the case yp(G) when a vertex is deleted from G or an edge from G is
added to G.

2. VERTEX DELETION

In this section we examine the effects on vp when a graph is modified by deleting

a vertex.

Theorem 2.1. Let G be a graph, u,v € V(G), u # v and let H C G be nonde-
generate and closed under union with K.
(i) Let v e Vi (G).

(i.1) Ifuv € E(G) then u is a yy-bad vertex of G — v;
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(i.2) if M is a yy-set of G — v then M U {v} is a yy-set of G and {v} =
puglv, M U{v}];
(i.3) (G —v) = (G) - 1;
(ii) let v € VJ(G). Then v is a yu-fixed vertex of G;
(ili) ifv € Vi (G) and u is a yx-fixed vertex of G then uv € E(G);

1v

(v

if v is a yy-bad vertex of G then v (G —v) = 1 (G);
ifv € V3, (G) and wv € E(G) then v (G — {u,v}) = yn(G) — 1.

—~
—_ —

Proof. (i.1): Let uv € E(G) and let M be a 7yy-set of G —v. If u € M then
M is a dominating H-set of G with |M| < vy (G)—a contradiction.

(i.2) and (i.3): Let M be a yy-set of G —v. By (i.1), M1 = M U {v} is a
dominating set of G. Any vertex u € V(G) — M; has a neighbor in M, hence v is
isolated in M; (otherwise M would dominate G) and {v} = png[v, M U {v}]. Since
‘H is closed under union with K7 it follows that M; is a dominating H-set of G and
|M1| = vy (G—=v)+1 < y4(G). Hence M; is a yy-set of G and vy (G—v) = y4(G)—1.

(if): If M is a yy-set of G and v ¢ M then M is a dominating H-set of G — v.
But then v4(G) = |M| = (G — v) > v (G) and the result follows.

(iii): Let v (G — v) < v1(G) and let M be a yy-set of G — v. Then by (i.2),
MU {v} is a yy-set of G. This implies that v € M and by (i.1) we have uv ¢ E(G).

(iv): By (i), (G —v) < y%(G) and by (i.2), (G —v) = m(G).

(v): Immediately follows by (i) and (iv).

O

Let P C G be nondegenerate and closed under union with Kj. Since vp(G —v) <
|[V(G)| — 1 for every v € V(G) and because of Theorem 2.1 we have vp(G —v) =
vp(G) + p, where p € {—1,0,1,...,|V(G)| — 2}. This motivated us to define for a
nontrivial graph G:
Fry(G) ={z € Frp(G): 7p(G — ) =vp(G) — 1}
Frl,(G) = {z € Frp(G): vp(G —z) = vp(G)};
Fi(G) = { € Fip(G): 7p(G — 1) = 4p(G) + b}, p € {~1,0,1,....|V(G)| - 2J.
We will refine the definitions of the yp-free vertex and the ~p-fixed vertex. Let
G be a graph and let P C G be nondegenerate and closed under union with K. A
vertex € V(G) is called
(G) Y%-free if z € Fr'h(G);
(k) vp-free if x € Fry(G);
() v5(G)-fized if x € Fi%(G), where ¢ € {—1,0,1,...,|V(G)| — 2}.
Now, by Theorem 2.1 we have
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Corollary 2.2. Let G be a graph of order n > 2 and let H C G be nondegenerate
and closed under union with K;. Then
(1) {Fr;(G),Fr),(G)} is a partition of Fry(G);
(2) {Fi;}'(G),Fi}(G),...,Fi}; *(G)} is a partition of Fiy/(G);
(3) {Fi;}'(G),Fry,(G)} is a partition of V4, (G);
(4) {Fi),(G),Fr%(G),Bx(G)} is a partition of VY,(G);
(5) {Fiy(G),Fi3(G),...,Fi}; *(G)} is a partition of V};(G).

A vertex v of a graph G is yp-critical if vp(G — v) # vp(G). The graph G is
vertex-yp-critical if all its vertices are yp-critical.

Theorem 2.3. Let G be a graph of order n > 2 and let H C G be additive and
induced-hereditary. Then G is a vertex-vyy-critical graph if and only if 4 (G — v) =
Y (G) — 1 for all v € V(G).

Proof. Necessity is obvious. Sufficiency: Let G be a vertex-yy-critical graph.
Clearly, (G — v) = yx(G) — 1 for every isolated vertex v € V(G). Hence if G
is isomorphic to K, then v4(G —v) = y(G) — 1 for all v € V(G). So, let G
have a component of order at least two, say Q). Because of Theorem 2.1 (ii), (iii)
and (1.3), either v (Q — v) > vx(Q) for all v € V(Q), or Y4 (Q —v) = y(Q) — 1
for all v € V(Q). Suppose that v(Q — v) > y(Q) for all v € V(Q). But then
Theorem 2.1 (ii) implies that V(Q) is a yx-set of Q. This is a contradiction with

H(Q —v) > 7(Q). O

Theorem 2.3 when H € {G,Z,F} is due to Carrington et al.[2], Ao and
MacGillivray (see [9, Chapter 16]) and the present author [15], respectively. Further
properties of these graphs can be found in [1], [6], [8, Chapter 5], [9, Chapter 16],
[11], [14].

Now we concentrate on graphs having cut-vertices. Observe that domination and
some of its variants in graphs having cut-vertices have been the topic of several
studies—see for example [1], [18], [14] and [9, Chapter 16].

Let G; and G2 be connected graphs, both of order at least two, and let them have
a unique vertex in common, say x. Then a coalescence G 5@, is the graph G; UGs.
Clearly, x is a cut-vertex of G e

Theorem 2.4. Let G = G4 5 G5 and let H C G be induced-hereditary and closed
under union with K. Then v1(G) =2 v1(G1) + v (G2) — 1.

Proof. Since H is induced-hereditary and closed under union with K7 it follows
that M is nondegenerate. Let M be a yy-set of G and M; = M NV (G,), i = 1,2.
Since H is induced-hereditary it follows that M; and Ms are H-sets of G; and Ga,
respectively. Hence there exist three possibilities:
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(a) = ¢ M and M, is a dominating H-set of G;, i = 1, 2;

(b) x € M and there are 4, j such that {i,j} = {1, 2}, M; is a dominating H-set of
G; and M; is a dominating H-set of G; — x

(¢) = € M and M; is a dominating H-set of G;, i = 1,2.

If (a) holds, then 4% (G) = [M] = [My| + [Mz| = v4(G1) + y#(G2). If (c) holds
then v (G) = |M| = |My| + |Mz2| — 1 > v1(G1) + vx(G2) — 1. Finally, let (b) hold.
Then v (G) = M| = | M|+ |Ms| > y1(G;) + v (G — x). Now by Theorem 2.1 (i),
YH(G) 2 vr(G1) + 1 (G2) — 1.

Thus, in all cases, v (G) = v#(G1) + v (G2) — 1. O

Theorem 2.5. Let G = G5 5 Go, let H C G be additive and induced-hereditary,
and y4(G1 — x) < yx(G1). Then

(@) y1(G) = 7r(G1) + m(G2) — 1;

(b) if Y (G2 — ) < yn(G2) then v (G — z) = 7r(G) — 1;

(c) if y(G2 — ) > 1 (G2) then z is a yy-fixed vertex of G;

(d) if x is a yp-bad vertex of Gy then x is a yx-bad vertex of G.

Proof. Since H is additive and induced-hereditary it follows that H is nonde-
generate and closed under union with Kj.

(a): Let Uy be ayy-set of G1—z and let Us be a yy-set of Go. Then U = U;UUs is a
dominating set of G. It follows by Theorem 2.1(i.2) that (U, G) has two components,
namely (Uq,G) and (Usz,G). Since H is additive, U is an H-set of G. Thus U is
a dominating H-set of G. Hence v (G) < |U; U Us| = y4(G1 — z) + y1(G2) =
Y1 (G1) + v1(G2) — 1. Now the result follows by Theorem 2.4.

(b): By Theorem 2.1 (i.3) we have v (G — ) = v (G1 — ) + y(G2 — z) =
YH(G1) + 71(G2) — 2. Hence by (a), v1(G — z) = 71(G) — 1.

(©): (G =) = w(G1 —2) + (G2 — ) = m(G1) =1+ (G2 —2) =
Y1 (G) + v (G2 — ) — y1(G2) > 1 (G). The result now follows by Theorem 2.1 (ii).

(d): Let M be a yp-set of G and M; = M NV (G;), i = 1,2. Suppose x € M.
Hence M; is a dominating H-set of G;, i« = 1,2 and then yx(G;) < |M;|. Since
x belongs to no yx-set of Gy we have |Msy| > v1(G2). Hence v1(G) = |M| =
|Mi| + |M2| — 1 = y1(G1) + 1 (G2)—a contradiction with (a). O

Theorem 2.6. Let H C G be additive and induced-hereditary and let G =
G116 G2, where G1, G are both vertex-vyy-critical. Then G is vertex-yy-critical and

m(G) = yn(G1) + vr(G2) — 1.

Proof. By Theorem 2.5(b) it follows that v (G) — 1 = (G — x). Let without
loss of generality y € V(Ga—z). If G2 —y is connected then G—y = G 3 (G2—y) and
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by Theorem 2.5(a), v (G —y) = yn(G1) + v (G2 —y) — 1 = v (G1) + 1 (G2) — 2 =
(G) — 1.

So, assume G5 — y is not connected and let () be the component of G5 — y which
contains z. By Theorem 2.1 (i), V(Q) # {z}. Now, by Theorem 2.5 (a), 7 (G16Q) =
¥4(G1) +#(Q) — 1 and then vy(G — y) = 1 (G1 0 Q) + (G2 — (V(Q) U{y}))
T(G1) + (G2 —y) — 1 = y(G1) + 7m(G2) =2 = m(G) — 1.

Ol

3. EDGE ADDITION

Here we present results on changing and unchanging of vp(G) when an edge from
G is added to G. Recall that if a property P is hereditary and closed under union
with K; then P is nondegenerate and hence all graphs have a domination number
with respect to P.

Theorem 3.1. Let x and y be two different and nonadjacent vertices in a graph
G. Let H C G be hereditary and closed under union with K1. If v (G+xy) < v (G)
then v (G + zy) = v (G) — 1. Moreover, v1(G + xy) = v (G) — 1 if and only if at
least one of the following holds:

(i) * € V4 (G) and y is a yx-good vertex of G — x;
(i) @ is a yx-good vertex of G —y and y € V,(G).

Proof. Let v (G + 2y) < v4(G) and let M be a yp-set of G + zy. Since H
is hereditary, M is an H-set of G. Further, [{z,y} N M| = 1, otherwise M would
be a dominating H-set of GG, a contradiction. Let without loss of generality z ¢ M
and y € M. Since M is an H-set of G it follows that M is no dominating set of
G, which implies M N N(z,G) = . Hence M1 = M U {z} is a dominating H-
set of G with |Mq| = y4(G + xy) + 1, which implies v4(G) = y4(G + zy) + 1.
Since M is a dominating H-set of G — « we have v (G — z) < y4(G + zy). Hence
Y1 (G) = y(G — z) +1 and Theorem 2.1 implies v (G) = y(G —z) + 1. Thus z is
in V3 (G) and M is a yp-set of G —x. Since y € M, y is a y3-good vertex of G — .

For the converse let without loss of generality (i) hold. Then there is a yy-set M
of G—x with y € M. Certainly M is a dominating H-set of G+ zy and consequently
(G + ay) < [M| =y1(G —2) = yr(G) = 1 < (G + xy). O

Corollary 3.2. Let x and y be two different and nonadjacent vertices in a graph
G, let H C G be hereditary and closed under union with K, and let x € V(G).
Then v1(G) — 1 < yu(G + zy) < v (G).

Proof. Let M be a yy-set of G—x. If y € Gy (G — x) then Theorem 3.1 yields
Y (G) =1 =v1(G + zy). So, let y € By(G — z). By Theorem 2.1, My = M U {z}
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is a yp-set of G and My N N(z,G) = (). Hence M; is a dominating H-set of G + zy
and v (G + zy) < |[M1] = (G — ) + 1 = v (G). O

We need the following lemma:

Lemma 3.3. Let H C G be nondegenerate and closed under union with K1 and let
x be a~Y,-fixed vertex of a graph G. Then N(z,G) C By (G—z)N (VY (G)UFi; (G))
and for eachy € N(z,Q), vu(G — {z,y}) = vu(G).

Proof. Let M be a yy-set of G —xz and y € N(z,G). If y € M then M is a
dominating H-set of G of cardinality |[M| = y4(G — z) = y(G)—a contradiction
with « € Fiy(G). Thus N(z,G) C By (G — x). Now by Theorem 2.1 (iv), y4(G —
{z,y}) = 7#(G — x) = y1(G). Further, Theorem 2.1(iii) implies y & V,,(G). If
y & V(G), from Corollary 2.2(5) it follows that y € Fi} (G) for some p > 1.
Assume p > 2. Since M is a dominating H-set of G — x and M N N(z,G) = 0 it
follows that My = M U {z} is a dominating H-set of G and y ¢ Ms. Hence M, is a
dominating H-set of G —y. This implies 74 (G)+p = (G —y) < |[Mz]| = |[M|+1 =
Y1 (G — ) + 1 = v¢(G) + 1, a contradiction. O

It is a well known fact that v(G + ¢) < v(G) for any edge e € G. In general, for
~p this is not valid.

Theorem 3.4. Let x and y be two different and nonadjacent vertices in a graph
G and let H C G be hereditary and closed under union with K;. Then vy (G + zy) >
Y1 (G) if and only if no vyy-set of G is an H-set of G + zy and one of the following
holds:

(1) zisa ’y%—ﬁxed vertex of G and y is a 'y;li—ﬁxed vertex of G for some p,q > 1;
(2) 2 € Fi},(G) and y € Fi;,(G) N By (G — z);

(3) z € Fi,(G) NBy(G —y) and y € FiY,(G);

(4) 2,y € Fi}(G), = € By(G —y) and y € By(G — z).

Proof. Let y4(G+ zy) > v4(G). By Corollary 3.2 we have z,y € V,(G) U
V}(G). Assume to the contrary that (without loss of generality) = ¢ Fiy (G). Hence
there is a yy-set M of G with x ¢ M. But then M is a dominating H-set of G + zy
and |M| = v (G) < y4(G + xy)—a contradiction. Thus both z and y are y-fixed
vertices of G. This implies that each y-set M of G is a dominating set of G + zy
but not an H-set of G + zy.

Let = be ~4,-fixed, let y be v§,-fixed and without loss of generality, ¢ > p > 0.
Assume (1) does not hold. Hence p = 0. Let M; be a yx-set of G — x. Then
|M1| = (G — x) = v¢(G) < vy (G + zy) and y & My, for otherwise M; would be
a dominating H-set of G + xy; thus y is a yy-bad vertex of G — z. By Lemma 3.3,
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N(z,G)N M; = (. Then My U {z} is a dominating H-set of G + xy, which implies
Y (G+xy) = v (G)+1. Since y ¢ M;U{x} it follows that M;U{x} is a dominating
H-set of G — y and then y4(G) + 1 = |My U {z}| =2 (G —y) = v(G) + q. So,
g € {0,1}. If ¢ = 1 then (2) holds. If ¢ = 0 then, by symmetry, it follows that z is a
~yr-bad vertex of G —y and hence (4) holds.

For the converse, let no vp-set of G be an H-set of G 4+ zy and let one of the
conditions (1), (2), (3) and (4) hold. Assume to the contrary that v (G + zy) <
v1(G). By Theorem 3.1, v (G + zy) = vn(G). Let My be a yy-set of G + xy.
Hence |Ms2 N {xz,y}| = 1—otherwise My would be a yp-set of G. Let without loss
of generality * ¢ Ms. Then M, is a dominating H-set of G — x, which implies
TH(G — ) < |Ma] = y1(G + zy) = Y1(G). Thus y1(G — ) = (G + 2y) = y(G)
and then M is a yy-set of G — x. Hence z is a 'y%—ﬁxed vertex of G and y is a
yr-good vertex of G — x, which is a contradiction with each of (1)—(4). O

By Theorem 3.1 and Theorem 3.4 we immediately obtain:

Theorem 3.5. Let x andy be two different and nonadjacent vertices in a graph G.
Let H C G be hereditary and closed under union with K1. Then vy (G+zy) = v1(G)
if and only if at least one of the following holds:

(1) € V3 (G)NBy(G —y) and y € V3, (G) N By (G — x);

(2)

(3)

(4)

(5) z € Fi%(G) and y € Fi} (G) N Gy (G — z) for some s € {0,1};
(6) = € Fi5,(G) N Gx(G —y) and y € Fi},(G) for some s € {0,1};
(7) (

(8)
(9)

(1), (2), (3) and (4) stated in Theorem 3.4 holds.

Corollary 3.6. Let x and y be two different and nonadjacent vertices in a graph
G. Let H C G be hereditary and closed under union with K;. If x € By(G) then

T1(G + zy) = 11(G).
Proof. By Theorem 2.1 (iv), ¢ V5, (G). If y € V3, (G) then the result follows

by Theorem 3.5(4). If y € V;,(G) then by Theorem 2.1 (i.2) we have z € B (G —y)
and the result now follows by Theorem 3.5(3). O

Let € {7,7c,i}. A graph G is edge-u-critical if u(G + e) < u(G) for every edge
e not belonging to G. These concepts were introduced by Sumner and Blitch [17],
Xue-Gang Chen et al.[3] and Ao and MacGillivray [9, Chapter 16], respectively.

176



Here we define a graph G to be edge-yp-critical if vp(G + ¢) # vp(G) for every
edge e of G, where P C G is hereditary and closed under union with K. Relating
edge addition and vertex removal, Sumner and Blitch [17] and Ao and MacGillivray
showed that V#;(G) is empty for P € {G,Z}, respectively. Furthermore, Favaron
et al. [4] showed that if V}(G) # 0 then (V3(G),G) is complete. In general, for
edge-yp-critical graphs the following holds.

Theorem 3.7. Let H C G be hereditary and closed under union with K1 and let
G be an edge-yy-critical graph. Then
(1) V(G) = Fiy'(G) UFry(G) and if Fr},(G) # 0 then <Fr(7)1(G), G) is complete;
(2) v1(G + e) < vy (G) for every edge e not belonging to G.

Proof. (1) If 2,y € Fr)(G) and zy ¢ E(G) then Theorem 3.5(4) implies
(G + zy) = y1(G), a contradiction. If 2 € By(G) then Corollary 3.6 implies
N[z,G] = V(G) and hence {z} is a yy-set of G—a contradiction. Assume z €
Fij,(G) for some g > 0. Let M be any ~y3-set of G. By Corollary 1.3, png [z, M| # 0.
If png[z, M] = {x} then M — {x} dominates G —z, so x € V,(G)—a contradiction.
Hence there is y € png[z, M] — {z}. Since png[z, M]N'V(G) = 0 (by Theorem 2.1
(iii)), Bx(G) = 0 and y ¢ M, it follows that y € Fr2,(G). Let M; be a yy-set of G
and y € M;. Then there is z € (png[z, M1] — {z}) N Fr),(G). Hence y, z € Fr),(G)
and yz ¢ E(G)—a contradiction. Thus Fiy(G) = Fi,;'(G) and the result follows.

(2) This immediately follows by (1) and Theorem 3.4. O
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