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Mathematical model

State variables

Mass density

% = %(t, x)

Absolute temperature

ϑ = ϑ(t, x)

Velocity field

u = u(t, x)

Thermodynamic functions

Pressure

p = p(%, ϑ)

Internal energy

e = e(%, ϑ)

Entropy

s = s(%, ϑ)

Transport

Viscous stress

S = S(ϑ,∇xu)

Heat flux

q = q(ϑ,∇xϑ)
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Field equations

Claude Louis
Marie Henri
Navier
[1785-1836]

Equation of continuity

∂t%+ divx(%u) = 0

Momentum balance

∂t(%u) + divx(%u⊗ u) +∇xp(%, ϑ) = divxS + %∇xF

George
Gabriel
Stokes
[1819-1903]

Entropy production

∂t(%s(%, ϑ)) + divx(%s(%, ϑ)u) + divx

(q

ϑ

)
= σ

σ = (≥)
1

ϑ

(
S : ∇xu− q · ∇xϑ

ϑ

)



Constitutive relations

Joseph Fourier [1768-1830]

Fourier’s law

q = −κ(ϑ)∇xϑ

Isaac Newton
[1643-1727]

Newton’s rheological law

S = µ(ϑ)

(
∇xu +∇t

xu− 2

3
divxu

)
+ η(ϑ)divxuI
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Gibbs’ relation

Willard Gibbs
[1839-1903]

Gibbs’ relation:

ϑDs(%, ϑ) = De(%, ϑ) + p(%, ϑ)D

(
1

%

)

Thermodynamics stability:

∂p(%, ϑ)

∂%
> 0,

∂e(%, ϑ)

∂ϑ
> 0
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Boundary conditions

Impermeability

u · n|∂Ω = 0

No-slip

utan|∂Ω = 0

No-stick

[Sn]× n|∂Ω = 0

Thermal insulation

q · n|∂Ω = 0
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Weak solutions to the complete system

Equation of continuity holds in the sense of distributions
(renormalized equation also satisfied)

Momentum balance holds in the sense of distributions

Entropy production equation holds in the sense of distributions,
entropy production rate satisfies the inequality

The system is augmented by

Total energy balance

d

dt

∫
Ω

(
1

2
%|u|2 + %e(%, ϑ)− %F

)
dx = 0
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Relative entropy (energy)

Dynamical system

d

dt
u(t) = A(t, u(t)), u(t) ∈ X , u(0) = u0

Relative entropy

U : t 7→ U(t) ∈ Y a “trajectory” in the phase space Y ⊂ X

E
{

u(t)
∣∣∣U(t)

}
, E : X × Y → R
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Basic properties

Positivity(distance)

E {u |U} is a “distance” between u, and U, meaning E(u|U) ≥ 0
and E {u|U} = 0 only if u = U

Lyapunov function

E
{

u(t)|Ũ
}

is a Lyapunov function provided Ũ is an equilibrium

t 7→ E
{

u(t)
∣∣∣Ũ} is non-increasing

Gronwall inequality

E
{

u(τ)
∣∣∣U(τ)

}
≤ E

{
u(s)

∣∣∣U(s)
}

+ c(T )

∫ τ

s

E
{

u(t)
∣∣∣U(t)

}
dt

if U is a solution of the same system (in a “better” space) Y



Applications

Stability of equilibria

Any solution ranging in X stabilizes to an equilibrium belonging to
Y (to be proved!)

Weak-strong uniqueness

Solutions ranging in the “better” space Y are unique among
solutions in X .

Singular limits

Stability and convergence of a family of solutions uε corresponding
to Aε to a solution U = u of the limit problem with generator A.
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Navier-Stokes-Fourier system revisited

Total energy balance (conservation)

d

dt

∫
Ω

(
1

2
%|u|2 + %e(%, ϑ)− %F

)
dx = 0

Total entropy production

d

dt

∫
Ω

%s(%, ϑ) dx =

∫
Ω

σ dx ≥ 0

Total dissipation balance

d

dt

∫
Ω

(
1

2
%|u|2 + %e(%, ϑ)−Θ%s(%, ϑ)− %F

)
dx +

∫
Ω

σ dx = 0
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Equilibrium (static) solutions

Equilibrium solutions minimize the entropy production

u ≡ 0, ϑ ≡ Θ > 0 a positive constant

Static problem

∇xp(%̃,Θ) = %̃∇xF

Total mass and energy are constants of motion∫
Ω

%̃ dx = M0,

∫
Ω

%̃e(%̃,Θ)− %̃F dx = E0
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Total dissipation balance revisited

d

dt

∫
Ω

(
1

2
%|u|2 + HΘ(%, ϑ)− ∂HΘ(%̃,Θ)

∂%
(%− %̃)− HΘ(%̃,Θ)

)
dx

+

∫
Ω

σ dx = 0

Ballistic free energy

HΘ(%, ϑ) = %
(

e(%, ϑ)−Θs(%, ϑ)
)
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Coercivity of the ballistic free energy

∂2
%,%HΘ(%,Θ) =

1

%
∂%p(%,Θ)

∂ϑHΘ(%, ϑ) = %(ϑ−Θ)∂ϑs(%, ϑ)

Coercivity

% 7→ HΘ(%,Θ) is convex

ϑ 7→ HΘ(%, ϑ) attains its global minimum (zero) at ϑ = Θ
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Relative entropy

E
(
%, ϑ,u

∣∣∣ r ,Θ,U
)

=

∫
Ω

(
1

2
%|u−U|2 + HΘ(%, ϑ)− ∂HΘ(r ,Θ)

∂%
(%− r)− HΘ(r ,Θ)

)
dx
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Dissipative solutions

Relative entropy inequality[
E
(
%, ϑ,u

∣∣∣r ,Θ,U)]τ
t=0

+

∫ τ

0

∫
Ω

Θ

ϑ

(
S(ϑ,∇xu) : ∇xu− q(ϑ,∇xϑ) · ∇xϑ

ϑ

)
dx dt

≤
∫ τ

0

R(%, ϑ,u, r ,Θ,U) dt

for any r > 0, Θ > 0, U satisfying relevant boundary conditions

Eduard Feireisl Navier-Stokes-Fourier



Remainder

R(%, ϑ,u, r ,Θ,U)

=

∫
Ω

(
%
(
∂tU + u · ∇xU

)
· (U− u) + S(ϑ,∇xu) : ∇xU

)
dx

+

∫
Ω

[(
p(r ,Θ)− p(%, ϑ)

)
divU +

%

r
(U− u) · ∇xp(r ,Θ)

]
dx

−
∫

Ω

(
%
(

s(%, ϑ)− s(r ,Θ)
)
∂tΘ + %

(
s(%, ϑ)− s(r ,Θ)

)
u · ∇xΘ

+
q(ϑ,∇xϑ)

ϑ
· ∇xΘ

)
dx

+

∫
Ω

r − %
r

(
∂tp(r ,Θ) + U · ∇xp(r ,Θ)

)
dx
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Basic properties

Global existence. Weak solutions exist globally in time, under
certain constitutive restrictions, for any finite energy initial data.

Compatibility. Any weak solution to the Navier-Stokes-Fourier
system is a dissipative solution.

Weak-strong uniqueness Dissipative and strong solutions
emanating from the same initial data coincide
as long as the latter exists.
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Conditional regularity criterion

Theorem (Conditional regularity)

Let Ω ⊂ R3 be a bounded domain of class C 2+ν . Under the
structural hypotheses specified above, suppose that {%, ϑ,u} is a
dissipative (weak) solution of the Navier-Stokes-Fourier system on
the set (0,T )× Ω emanating from regular initial data satisfying the
relevant compatibility conditions.
Assume, in addition, that

ess sup
t∈(0,T )

‖∇xu(t, ·)‖L∞(Ω;R3×3) <∞

The {%, ϑ,u} is a classical solution determined uniquely in the class
of all dissipative (weak) solutions to the problem.
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Other applications

Inviscid incompressible limits for the system with Navier-type
boundary conditions

Inviscid vanishing viscosity and/or heat conductivity, convergence
to (inviscid) Boussinesq system
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