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Abstract

We give a new characterization of the strict ∀Σb
j sentences provable

using Σb
k induction, for 1 ≤ j ≤ k. As a small application we show that,

in a certain sense, Buss’s witnessing theorem for strict Σb
k formulas

already holds over the relatively weak theory PV.

We exhibit a combinatorial principle with the property that a lower

bound for it in constant-depth Frege would imply that the narrow

CNFs with short depth j Frege refutations form a strict hierarchy with

j, and hence that the relativized bounded arithmetic hierarchy can be

separated by a family of ∀Σb
1 sentences.
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Mathematics subject classification: 03F30, 68Q15, 03F20

1 Introduction

Let LPV be a language for arithmetic containing a function symbol for every

polynomial time machine. We work over a universal base theory PV which

fixes the basic properties of these symbols [11, 18]. Define a Σ̂b
k (or strict

Σb
k) formula to be a formula consisting of k or fewer alternating blocks of

bounded quantifiers, with the first one existential, followed by a quantifier-

free formula, where a bounded quantifier has the form ∀x<t or ∃x<t for t

a term not containing x. We are interested in Buss’s [3] hierarchy (T k2 )k∈N
of bounded arithmetic theories, which we may take to be defined as

T k2 := PV + Σ̂b
k-IND
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where Γ-IND stands for the usual induction axiom restricted to formulas

from the class Γ.

Whether or not this hierarchy collapses to a finite level is a long-standing

open question, closely connected to a similar question in complexity theory

[18, 6, 28]. It is expected that it does not collapse, and that in fact the

theories prove different ∀Σ̂b
1 (or even ∀Π̂b

1) sentences, by analogy with the

behaviour of classical fragments of Peano arithmetic. If we expand the

language so that induction hypotheses may contain new, undefined relation

or (bounded) function symbols, it is known, using oracle separation results

from complexity theory, that the hierarchy does not collapse. However it is

still open whether this separation of “relativized” theories can be done using

sentences of low, fixed complexity. The best general relativized separation

that is known is that T i+1
2 is not ∀Σ̂b

i+1 conservative over T i2 [8].

The ∀Σ̂b
j sentences provable in T k2 , for j ≤ k, were first characterized in

[17] in terms of reflection principles for systems of quantified propositional

logic. Other characterizations of at least the provable ∀Σ̂b
1 sentences have

appeared in [21, 12, 9, 13, 24, 20, 25, 1, 2]. In [26], building on [20], Alan

Skelley and this author presented a simple, combinatorial characterization

of the ∀Σ̂b
1 sentences provable in T k2 in terms of a game induction principle

GIk. In this paper we extend the work of [26] by three small results which

make use of versions of the principle GIk with higher quantifier complexity.

In Section 2, slightly generalizing a construction from [26], we define

the j-initial game induction principle j-GIk and show that it captures, in

a strong way, the ∀Σ̂b
j sentences provable in T k2 for all 1 ≤ j ≤ k. Another

recent characterization of these sentences appears in [1] and [2].

In Section 3 we use this characterization to give a strengthening of one

direction of Buss’s witnessing theorem for Sk2 [3]. We show that any ∀Σ̂b
k

sentence provable in Sk2 can be witnessed by a �p
k function, provably in PV

(although we have to be careful about how this is expressed, because we do

not expect PV to be able to prove that this �p
k function is total). Previously

the witnessing was only known to be provable in T k−1
2 [5].

In Section 4 we show how GI|||a|||(a), the (negated) game induction prin-

ciple for log(3)-turn games, can be written as a narrow CNF and show

that a superquasipolynomial lower bound for constant-depth refutations of

GI|||a|||(a) would imply a separation between the narrow CNFs with short

refutations in depth k and in depth k + 1 Frege systems, for all k ∈ N.

Via a standard correspondence between first-order and propositional proofs

([22] or see e.g. [15]), this would imply a ∀Σ̂b
1 separation of the relativized

bounded arithmetic hierarchy, as discussed above.

One reason this last result is interesting is that we do have a subexpo-

nential lower bound on constant-depth refutations of GI|a|(a). This follows
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from the lower bounds known for the pigeonhole principle PHPaa−1 [19, 23],

since the pigeonhole principle is reducible to GI|a|(a) – the reduction is es-

sentially by the construction in Section 2.3 of [26], which is based on the way

counting can be done in Frege proof systems and in the theory U1
1 [4, 15].

At the end of Section 4 we briefly discuss a possible approach to a low-

level separation using GI|||a|||(a), based on an idea from [16].

We will assume familiarity with [26] and will make heavy use of the

notation, definitions and results from there.

In this paper we will say that a formula φ is a Herbrandization of a

formula ψ if φ is obtained from ψ by replacing some or all of the existen-

tial quantifiers in ψ with explicit PV functions (we use this name because

formulas of this kind arise from Herbrand’s theorem for PV, and reserve

Skolemization for the replacement of existential quantifiers with new, un-

defined function symbols). To make it easier to talk about long alternating

sequences of quantifiers, we will often use three dots . . . in a formula to

stand for a sequence of finite length.

The author would like to thank Jan Kraj́ıček and the anonymous referee

for helpful comments on earlier versions of this paper.

2 The ∀Σ̂b
j consequences of T k

2

We first observe that a simple way to characterize the ∀Σ̂b
j+1 consequences of

T k+j
2 for k ≥ 1, j ≥ 0 would be to take the principle GIk, which captures the

∀Σ̂b
1 consequences of T k2 , and relativize everything to a complete Π̂b

j oracle.

Our construction in this section has a few advantages over this. One is that

it is tidier, and in particular is built up out of games, effective strategies

and game reductions that are polynomial time rather than �p
j+1. Others

are that we get a stronger notion of reducibility, and that it works provably

over PV.

Definition 1 An instance of the j-initial k-game induction principle j-GIk
is given by size parameters a and b, a uniform sequence G0, . . . , Ga−1 of poly-

nomial time relations, a polynomial time function V and a uniform sequence

W0, . . . ,Wa−2 of polynomial time functions.

The instance GIk(G,V,W, a, b) states that, interpreting G0, . . . , Ga−1 as

k-turn games in which all moves are bounded by b, the following cannot all

be true:

1. Deciding the winner of game G0 depends only on the first j moves;

2. Player B can always win G0 (expressed as a Π̂b
j property);
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3. For i = 0, . . . , a− 2, Wi gives a game-reduction of Gi+1 to Gi;

4. V is an explicit winning strategy for Player A in Ga−1.

The statement that this holds for all a and b can be written as a ∀Σ̂b
j

formula (see below). It is provable in T k2 by Π̂b
k-IND on i with the inductive

hypothesis “Player B can always win Gi”.

To explain the sense in which this captures the provable ∀Σ̂b
j sentences

of T k2 , we will need a technical definition. We repeat a definition from [26],

since it is used here in a slightly different way.

Definition 2 A formula is Σ̃b
k if it consists of k bounded quantifiers, be-

ginning with an existential quantifier and then strictly alternating in type.

The bounds on the quantifiers may only contain free variables, not bound

variables. Π̃b
k is defined dually.

Any Σ̂b
k formula Φ can be made into a Σ̃b

k formula Ψ by using pairing to

combine adjacent quantifiers, finding a common bounding term, and possibly

adding dummy quantifiers. Clearly Ψ is equivalent to Φ in a strong sense.

In particular, witnessing results about Ψ can be transferred to Φ provably

in PV.

We may write a sentence from j-GIk as a ∀Σ̃b
j sentence as follows:

∀(a, b)∃(w, x1)<(ab2k, b) ∀x2<b ∃x3<b . . .Qxj<b

[¬G0(x1, . . . , xj , 0, . . . , 0) ∨ ψ(w)]

where Q stands for ∃ if j is odd and ∀ if j is even, and where we are (rather

informally) using a pairing function (u, v) to avoid repeated quantifiers. Here

ψ(w) stands for a PV formula expressing that w witnesses that condition

1, 3 or 4 from Definition 1 fails. Notice that, under the assumption that

condition 1 holds, the formula

∃x1<b ∀x2<b ∃x3<b . . .Qxj<b¬G0(x1, . . . , xj , 0, . . . , 0)

is equivalent to condition 2 failing.

Definition 3 Let Φ and Ψ be ∀Σ̃b
k sentences respectively of the form

∀x∃y1<s1 ∀y2<s2 ∃y3<s3 . . . φ(x, ȳ)

and

∀u∃v1<t1 ∀v2<t2 ∃v3<t3 . . . ψ(x, ȳ).
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Then we say that Ψ is reducible to Φ if there are PV functions f0(u),

f1(u, y1), f2(u, y1, v2), . . . such that fi(u, y1, v2, . . . , yi−1, vi) < si for all even

0 < i ≤ k, fi(u, y1, v2, . . . , vi−1, yi) < ti for all odd i ≤ k, and

φ(f0(u), y1, f2(u, y1, v2), y3, . . . )→ ψ(u, f1(u, y1), v2, f3(u, y1, v2, y3), . . . ).

For classes Γ and ∆ of ∀Σ̃b
k sentences, we write Γ ≤ ∆ if every sentence

in Γ is reducible to some sentence in ∆, and Γ ≡ ∆ if this holds in both

directions.

This is a natural extension to higher complexity classes of the definition

of reducibility between NP search problems. Notice that it is a Herbran-

dization of a prenex form of the implication Φ → Ψ, and is essentially the

same thing as what [26] calls a game-reduction between games represented

by Ψ and Φ.

We can now state our characterization result.

Theorem 4 For k ≥ 1 and 1 ≤ j ≤ k, ∀Σ̃b
j(T

k
2 ) ≡ j-GIk, provably in PV.

Proof For one direction, each sentence in j-GIk is provable in T k2 , so j-

GIk ⊆ ∀Σ̃b
j(T

k
2 ). The other direction will follow from Lemmas 5 and 6

below. �

Lemma 5 For all k ≥ 1, ∀Σ̃b
1(T k2 ) ≤ 1-GIk, provably in PV.

Proof This is by a straightforward reduction of GIk to 1-GIk. Suppose

we have an instance of GIk given by games G0, . . . , Ga−1, strategies U and

V and game-reductions W0, . . . ,Wa−2. This is reducible to an instance of

1-GIk formed by adding an extra game G−1 at the start in which B wins

every play, and using the strategy V to define a game-reduction W−1 of G0

to G−1. �

Lemma 6 For k ≥ 0 and 2 ≤ j ≤ k+ 2, ∀Σ̃b
j(T

k+2
2 ) ≤ j-GIk+2, provably in

PV.

Proof The argument is essentially that of Theorems 4 and 5 of [26]. Sup-

pose that ∀uΨ(u) is provable in T k+2
2 , for Ψ a Σ̃b

j formula. The first step

is to replace Ψ with an equivalent (under reducibility) Σ̃b
j formula Φ of the

form ∃v1 < t(u) ∀v2 < t(u) . . . φ(u, v̄), where t is a term with u as its only

free variable.

We have that ∀uΦ(u) is provable in T k+2
2 . Let Φ∆(u) be the dual

∀v1 < t(u) ∃v2 < t(u) . . .¬φ(u, v̄) of Φ(u). By free-cut elimination (see e.g.

[7]) there is a first order derivation, in the sequent calculus for T k+2
2 , of the
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sequent Φ∆(u) −→ ∅ in which every formula is of complexity Π̃b
k+2 or lower.

Hence by Theorem 21 of [26] there is a family of PK0
k refutations, of size

quasipolynomial in a, of the table of cedents (Φ∆(a))◦ +A, where (Φ∆(a))◦

is the propositional translation of Φ∆(a) and A is a sequence of true, poly-

logarithmic width “auxiliary” clauses. Furthermore these refutations are

polynomial-time definable using the parameter a.

From now on we will write t for t(a). By simple changes to the refutation,

we may build a new, at most quasipolynomially larger, refutation which

begins not with the initial cedents (Φ∆(a))◦ but with a slightly different

translation of Φ∆(a) into a table of propositional cedents, namely

({〈∀v3<t ∃v4<t . . .¬φ(a, s1, s2, v3, . . . , vj)〉 : s2 < t})s1<t.

If j = k + 1 or k + 2, this is the same thing as (Φ∆(a))◦. If j ≤ k, then

(Φ∆(a))◦ is the cedent consisting just of the symbol 〈Φ(a)〉, and our version

differs in that the formula is broken down so that we can access its structure.

So our refutation now starts with exactly the t initial cedents above,

which we will call B0, . . . , Bt−1. These are followed by the auxiliary clauses

and then the body of the refutation; we will call these two sets of cedents

together C1, . . . , Ce, so that C1 is the first auxiliary clause and Ce is the

final, empty cedent of the refutation.

We can now define our instance of j-initial k-game induction. For conve-

nience we will use a slightly different notation from the definition and call our

first game G−1 rather than G0, and our last game Ge. So the instance will

consist of games G−1, . . . , Ge, a strategy V and reductions W−1, . . . ,We−1.

The games G0, G1, . . . , Ge are defined from our refutation B0, . . . , Bt−1,

C1, . . . , Ce as in the proof of Theorem 4 of [26], except that this time we

do not have games corresponding to the first t − 1 cedents B0, . . . , Bt−2

but instead begin with Bt−1. So G0 is a game which starts with player A

choosing a cedent from B0, . . . , Bt−1 and claiming that all formulas in it are

false; player B then picks a formula from the cedent and claims that it is

true, and then the game continues as in [26]. For 1 ≤ i ≤ e, Gi is a game

which starts with player A choosing a cedent from B0, . . . , Bt−1, C1, . . . , Ci
and then proceeds in the same way.

The strategy V is the same as in the proof of Theorem 4 of [26].

We define the reductions W0, . . . ,We−1 as follows: if Ci+1 is an auxiliary

clause, then the reduction Wi of Gi+1 to Gi is trivial. This is because Ci+1 is

true and its literals can be listed in polynomial time, so if player A chooses

Ci+1 on the first turn of Gi+1 then B can win on the second turn by naming

the first true literal in Ci+1. If Ci+1 is not an auxiliary clause then the

reduction of Gi+1 to Gi is exactly as in the proof of Theorem 4 of [26].
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It remains to define the game G−1 and the reduction W−1 of G0 to G−1.

Notice that game G0 has the following structure:

1. Player A first names a cedent Br1 , with r1 ≤ t− 1, and claims all

formulas in it are false. By construction, Br1 has the form

{〈∀v3<t . . .¬φ(a, r1, s2, v3, . . . , vj)〉 : s2 < t},

which is a translation of ∃v2<t ∀v3<t . . .¬φ(a, r1, v2, . . . , vj).

2. Player B then names a formula r2 ∈ Br1 , claiming it is true. By the

structure of Br1 , r2 must be a formula of the form

〈∀v3<t . . .¬φ(a, r1, r
′
2, v3, . . . , vj)〉

for some r′2 < t. So choosing r2 is equivalent to choosing a value r′2 for

the variable v2 in the formula ∃v2<t ∀v3<t . . .¬φ(a, r1, v2, . . . , vj).

3. Player A then names a conjunct r3 of r2, claiming it is false. This

is equivalent to choosing a value r′3 for the variable v3 in the formula

∀v3<t . . .¬φ(a, r1, r
′
2, v3, . . . , vj).

4. etc.

The game ends on the jth turn, in which one of the players must name some

literal 〈¬φ(a, r1, r
′
2, . . . , r

′
j)〉, with B winning if the literal is true and A if it

is false.

So we define the game G−1 as follows: if either player plays a move ≥ t,
that player loses immediately (this captures the bounds on the quantifiers

in Φ∆(a)). Otherwise, after a finished play v1, . . . , vk, player B wins if

¬φ(a, v1, . . . , vj) and player A wins if φ(a, v1, . . . , vj).

The games G0 and G−1 are now essentially the same, and a reduction of

G0 to G−1 consists simply of a sequence of functions translating moves rm
in G0 (naming cedents or subformulas in the propositional translation) to

equivalent moves r′m in G−1 (naming values to assign to the variables) and

vice versa. Also notice that although they are both formally k turn games,

only the first j moves play a role in deciding the winner.

The sentence of j-GIk we have built has the following form, where q is

a term in a coming from the size of the PK0
k refutation and ψ(w) expresses

that w is a witness that condition 1, 3 or 4 from Definition 1 fails:

∀a ∃(w, v1)<(q2k+1, t) ∀v2<t ∃v3<t . . .Qvj<t

[¬G−1(v1, . . . , vj , 0, . . . , 0) ∨ ψ(w)].
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Observe that ¬G−1(v1, . . . , vj , 0, . . . , 0) is just φ(a, v1, . . . , vj). Furthermore

this, together with the fact that the PK0
k refutation we used in our con-

struction is well-formed, provably in PV, means that PV proves that ψ(w)

is always false. Therefore the sentence

∀u ∃v1<t(u) ∀v2<t(u) . . . φ(u, v̄)

is reducible to the j-GIk sentence written above, provably in PV, by a re-

duction in which all functions f0, . . . , fj are projections. �

3 A witnessing theorem

Theorem 4 can be seen as a kind of witnessing theorem, since in some sense

it gives a mechanical way to witness a provable Σ̂b
k sentence, by reducing it

to an instance of game induction. Furthermore it works over the relatively

weak theory PV. We can use this, together with the fact that k-GIk can be

witnessed by a �p
k+1 machine using binary search, to give a strengthening

of one direction of Buss’s witnessing theorem about the ∀Σ̂b
k consequences

of Sk2 .

In its original form in [3], this was the following result: if φ is a Π̂b
k

formula and Sk+1
2 ` ∀x ∃y φ(x, y), then there is a �p

k+1 function f such that

N |= ∀xφ(x, f(x)). In [5] Buss strengthened this by showing that, under the

same assumptions, the sentence ∀xφ(x, f(x)) is actually provable in T k2 , for

a natural way of formalizing the function f . We show below that, for the

right choice of f , this witnessing is provable even in PV. However we do not

show that PV proves that f is a total function (and we do not expect this

to be provable); rather we prove in PV that, on any input x, if there is any

correct computation w of f with output y, then φ(x, y).

For a �p
k+1 machine M , that is, a polynomial time Turing machine with

an oracle for a Σ̂b
k formula ∃x< tΘ(q, x), where Θ is some complete Π̂b

k−1

formula, let CompM (x, y, w) express that w is a correct history of a compu-

tation of machine M on input x giving output y. In detail, it expresses that

the initial configuration of the work tape contains x, that the final configura-

tion contains y, that for each j, going from configuration j to configuration

j + 1 obeys the transition rules, and that oracle queries are replied to cor-

rectly as follows: for each pair of a query and reply qj and rj recorded in w,

either rj witnesses that the oracle answer is “yes” (rj is a number in [0, t)

and Θ(qj , rj) is true) or rj correctly records that the oracle answer is “no”

(rj =“no” and ∀x<t¬Θ(qj , x)). In this way we can write CompM (x, y, w)

as a Π̂b
k formula.
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Theorem 7 For k ≥ 0, suppose Sk+1
2 ` ∀u∃v χ(u, v), where χ is a Π̂b

k

formula. Then there is a �p
k+1 machine M such that

PV ` ∀u, v, w, CompM (u, v, w)→ χ(u, v).

Proof We may suppose k ≥ 1, since the case k = 0 already follows from

[5]. Suppose we have

Sk+1
2 ` ∀u∃v ∀z φ(u, v, z)

for φ a Σ̂b
k−1 formula, which we assume contains some implicit bound t on the

variable z. Then by the witnessing theorem of [5] there is a �p
k+1 machine

P such that ∀u∀z φ(u, P (u), z), provably in T k2 . We may write this as

T k2 ` ∀u, z, w, v, ¬CompP (u, v, w) ∨ φ(u, v, z).

The right hand side is equivalent to a ∀Σ̂b
k sentence and is provable in T k2 ,

so by Theorem 4 it is reducible, provably in PV, to an instance of k-GIk
taking parameters u, z, w, v. Let us write this instance as a Σ̂b

k sentence

∃xH(u, z, w, v, x). We do not need the full strength of reducibility, but only

the consequence that the existence of a solution x implies the above Σ̂b
k

formula. That is,

PV ` ∀u, z, w, v [∃xH(u, z, w, v, x)→ ¬CompP (u, v, w)∨φ(u, v, z)]. (∗)

We will now describe a �p
k+1 machine Q that solves H, given the pa-

rameters as input. Furthermore, this will be provable in PV, in the sense

that

PV ` ∀u, z, w, v, x, s [CompQ((u, z, w, v), x, s)→ H(u, z, w, v, x)].

Machine Q works as follows. It first makes the oracle query “can player B

always win G0?”. If the answer is “no”, then by binary search it looks for

a witness that condition 2 of the definition of k-GIk is false, that is, a first

move x1 for player A that puts A into a winning position in G0. It then

makes an oracle query to check that x1 really has this property. Provably

in PV, there are three possibilities: either x1 is such a witness, or the final

oracle reply was incorrect, or the binary search breaks down at some point

because the oracle asserts that there is a witness within some interval but

that there is no witness in either half of the interval (and so one of these

three oracle replies must be incorrect). Note that induction for polynomial

time predicates is enough to show that such a breakdown in the binary

search exists, if neither of the first two possibilities holds.
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Machine Q then queries “can player A always win Ga−1?”. Again if the

answer is “no”, then it is easy to compute either a witness that condition 4

of the definition of k-GIk is false, or an incorrect oracle reply, or a small set

of inconsistent replies, provably in PV.

If both answers are “yes”, then by binary search the machine finds i such

that player B can always win Gi but player A can always win Gi+1, and from

this computes a witness to condition 3 being false. Again PV is enough to

prove that if this does not work, some oracle reply must be incorrect.

The machine M needed for the theorem now works as follows. On input

u, it first simulates P , obtaining strings v and w for the output and compu-

tation of P . It then uses an oracle query to find out whether ∀z<t φ(u, v, z)

(where t is the implicit bound on z in φ). If the answer is “yes”, M halts

and outputs v. If it is “no”, M uses binary search to find a counterexample

z, then simulates Q on input (u, z, w, v), then halts.

We claim that M witnesses ∀u∃v ∀z<t φ(u, v, z), provably in PV. In a

model of PV, let s be the history of a correct computation of M on some

input u. First observe that s contains a correct computation w of P on

input u, with output v. If the reply to the query “∀z < t φ(u, v, z)” was

“yes” then, by correctness, the output v of M is the desired witness. If the

reply was “no”, then either there was an inconsistency in the binary search

or s contains a computation of Q on (u, z, w, v) for some counterexample z.

By correctness, this implies that s contains some ouput x of Q such that

H(u, z, w, v, x). But this now contradicts (∗), since we have H(u, z, w, v, x),

CompP (u, v, w) and ¬φ(u, v, z). �

4 A uniform collapse

In [26] we strengthened the “no gap” theorem of [10] and showed in partic-

ular that if, in a relativized world, T k2 (α) ` GIk+1(α) for some k ∈ N then

T k2 (α) ` GIi(α) for all i ∈ N with i ≥ k. The purpose of this section is

to show that the constructions used to show this result are uniform enough

that it can be extended up to non-constant values of i. The argument is dif-

ficult to do in a purely first-order way since this would involve talking about

formulas of non-standard quantifier depth, so instead we use a mixture of

propositional and first-order logic, using bounded arithmetic as a tool to ar-

gue about families of propositional proofs. Unfortunately the presentation

becomes rather technical, but the only really important thing happening is

the analysis of the growth rate of the objects involved.

GIm(a) is a propositional contradiction, defined below. It is a straightfor-

ward translation of the first order sentence “GIm fails for games, strategies

and reductions G,U, V,W at a”. We want GIm(a) to be a narrow CNF,
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that is, one in which every disjunction has size polynomial in |a|, so we will

translate functions as bit-graphs rather than graphs.

For simplicity we will restrict ourselves to powers of 2 for a, so a is 2n

for some n. We also only consider GIm(a) for values of m less than |a|. The

propositional variables in GIm(a) are then:

1. Gix1...xm for all i, x1, . . . , xm < a, expressing whether Player B wins

game Gi with the play x1, . . . , xm;

2. U rjx1x3...xj−1
for all even 1 ≤ j ≤ m, all x1, x3, . . . , xj−1 < a and all

r < n, expressing the rth bit of the move played at turn j by player B

in strategy U , in response to player A playing x1, x3, . . . , xj−1 so far;

3. V r
jx2x4...xj−1

for all odd 1 ≤ j ≤ m, all x2, x4, . . . , xj−1 < a and all

r < n, expressing the rth bit of the move played at turn j by player A

in strategy V , in response to player B playing x2, x4, . . . , xj−1 so far;

4. W r
ijz1...zj

for all i < a− 1, all 1 ≤ j ≤ m and all z1, . . . , zj , expressing

the rth bit of the jth function in the game-reduction Wi, on inputs

z1, . . . , zj .

We will call these respectively variables in G, U , V or W .

For readability, in the next definition we will write clauses as implications

rather than disjunctions. For variables expressing the bit graphs of functions

we will write, for example, (U2x1 = y) as shorthand for
∧
r<n U

r
2x1

= δr where

δr is 0 or 1 depending on the rth bit of y.

Definition 8 For even m, GIm(a) is the CNF consisting of the following

three groups of clauses.

1. For each x1, . . . , xm < a, the clause

(U2x1 = x2)∧ (U4x1x3 = x4)∧ . . .∧ (Umx1...xm−1 = xm)→ G0x1...xm .

These express that U is a winning strategy for player B in G0.

2. For each x1, . . . , xm < a, the clause

(V1 = x1)∧(V3x2 = x3)∧. . .∧(V(m−1)x2...xm−2
= xm−1)→ ¬G(a−1)x1...xm .

These express that V is a winning strategy for player A in Ga−1.

3. For each x1, . . . , xm, y1, . . . , ym < a and each i < a− 1, the clause

(Wi1y1 = x1) ∧ (Wi2y1x2 = y2) ∧ . . . ∧ (Wimy1x2...xm = ym)

∧ Gix1...xm → G(i+1)y1...ym .

These express that Wi is a reduction of Gi+1 to Gi.

11



For odd m the formula is similar, but the first two groups of clauses are

changed to reflect that A now has the final move in all games, and the

clauses in the third group become

(Wi1y1 = x1) ∧ (Wi2y1x2 = y2) ∧ . . . ∧ (Wimy1x2...ym = xm)

∧ Gix1...xm → G(i+1)y1...ym .

Observe that there are no more than a2m+1 clauses and that the maximum

size of a clause is nm+ 2.

Definition 9 GI4,m(a) is the set of cedents obtained by taking GI4(a) and

replacing, for all i, x1, . . . , x4 < a, each occurrence of the literal Gix1...x4 with

the formula∧
y1

∨
y2

. . . G′ix1...x4y1...ym

and each occurrence of the literal ¬Gix1...x4 with the formula∨
y1

∧
y2

. . .¬G′ix1...x4y1...ym

where the connectives range over [0, a) and we are using a new set of propo-

sitional variables G′ix1...x4y1...ym for i, x1, . . . , x4, y1, . . . , ym < a. GI4,m(a) is

a propositional contradiction, since GI4(a) is.

We need to argue about exponentially large (in |a|) propositional for-

mulas, derivations and assignments. To do this, it is convenient to think of

these things as coded by second-order objects (in the form of exponentially

long strings of bits) and to allow second-order constants and variables to ap-

pear in our bounded arithmetic formulas. So long as we only use universal

quantification over these variables, and avoid any second-order quantifiers

in induction hypotheses, we may treat these new objects exactly like oracles

(except that unlike oracles, they have a size bound). So from now on assume

that our theories are relativized with as many oracles X,Y, . . . as we need,

to be used in this way. We will also make use of one conventional oracle

α, coding a family of PK0
1 refutations (see the paragraph before Lemma

11). We will continue to write the theories as, for example, PV rather than

PV(α,X, Y, . . . ).

We will say that a second-order object Y is given by a polynomial time

machine A(X̄, a, p̄), where a is a size parameter and X̄ stands for a tuple

of second-order variables or oracles, if there is a function f(X̄, a, p̄, j) which

takes the parameters a, p̄, j as inputs, has oracle access to X̄, runs in time

polynomial in |a|, and outputs the jth bit of Y .

12



Below, propositional formulas and derivations are formalized as in [26],

except that the functions and relations involved will now sometimes be coded

by second-order objects. The size of a propositional derivation means the

size of the second-order object coding it; in particular this is a bound on

both the number of cedents in the derivation and on the number of names

for formulas occuring in it. Similarly the size of a CNF is a bound on the

number of clauses and the number of literals in it.

Lemma 10 GI4,m(a) is shortly derivable from GIm+4(a) in PK0
m+1 (with a

natural renaming of variables from G′ to G, which we will not say any more

about). In fact, there is a polynomial time machine F such that provably in

PV, for all a and all m < |a|, F (a,m) is a PK0
m+1 derivation of GI4,m(a)

from GIm+4(a) of size quasipolynomial in a. �

Suppose that for some c ∈ N there is a family of PK0
1 refutations of

GI4(a) of size 2|a|
c
. Let I(α, a) be a machine that recovers a sequence of

second-order objects that have been coded into an oracle α, and let T be

the theory

PV + ∀a[I(α, a) is a PK0
1 refutation of GI4(a) of size 2|a|

c
].

We will not use the assumption about the existence of a family of refutations

until the end of this section, but we are stating it now so that we have a

suitable exponent c available for the definition of T .

Lemma 11 There is a polynomial time machine A such that provably in T ,

for all a and all m < |a|, A(α, a,m) is a PK0
m+1 refutation of GIm+4(a) of

size quasipolynomial in a.

Proof Let Π be the quasipolynomial size PK0
1 refutation of GI4(a) guar-

anteed to exist by T . The first step is to change Π into a PK0
m+1 refutation

of GI4,m(a), as follows.

For each formula φ appearing in a cedent in Π, if φ is a literal in U , V

or W , leave it unchanged. If φ is a literal of the form Gix1...x4 or ¬Gix1...x4 ,

replace φ with a level m conjunction or disjunction respectively, as in Defi-

nition 9. Now suppose that φ is a conjunction of literals l1, . . . , lm. Replace

φ with a level m + 1 conjunction, defined as follows (recall that in a PK0

proof all formulas in a conjunction must be disjunctions of the same level):

if lj is a literal in U , V or W , simply make lj into a level m disjunction by

padding. If lj is a literal of the form ¬Gix1...x4 , replace lj with the level m

disjunction from Definition 9. If lj is a literal of the form Gix1...x4 , replace

lj with the set of conjuncts

{
∨
y2

∧
y3

. . . {G′ix1...x4y1...ym} : y1 < a},
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where the curly brackets around {G′ix1...x4y1...ym} are meant to indicate that

the literal has been padded up by one level so that each formula in this set

is a level m disjunction.

Call this new object Π′. Π′ is something like a PK0
m+1 refutation of

GI4,m(a), except that the cedents do not follow from each other by valid

PK0
m+1 rules. But we can add in quasipolynomially many new cedents to

make it a valid PK0
m+1 refutation. For example, a resolution step

Γ, Gix1...x4 Γ, ¬Gix1...x4
Γ

in Π will turn into this in Π′:

Γ,
∧
y1

∨
y2
. . . G′ix1...x4y1...ym Γ,

∨
y1

∧
y2
. . .¬G′ix1...x4y1...ym

Γ
.

This looks like an application of a Πm-cut rule, which is not available in

PK0
m+1. However, using the methods of the proof of Theorem 21 of [26], we

can simulate this rule in PK0
m+1 by adding at most O(am) new cedents to

Π′.

Our new refutation is defined locally in a simple way using the local

properties of Π, and in particular can be defined in polynomial time from

the oracle α and the parameters. We combine it with the derivation from

Lemma 10 to get the desired refutation of GIm+4(a). �

Definition 12 For m < |a|, 1−Ref(PK0
m)(a) is a propositional contradic-

tion, of size quasipolynomial in a, expressing that there is a narrow CNF

formula which is both satisfiable and refutable in PK0
m. Formally, it has

seven sets of propositional variables F , A, Q, R, S, T and f and states that

1. F codes a CNF of size < a in which each clause has size at most |a|;

2. (Q,R, S, T, f) code a PK0
m refutation of F , of size a;

3. A is a satisfying assignment to F .

This is a propositional translation of the negation of the 1−Ref(PK0
k)

principle of [26], except that here we give explicit bounds to the size of

the clauses and of the refutation in terms of a, so that we have one fixed

quasipolynomial bound on the size of the propositional formula.

Lemma 13 There is a polynomial time machine B such that provably in

PV, for all a, all m < |a| and all second-order objects X, if X is a satisfying

assignment to 1−Ref(PK0
m)(a) then B(X, a,m) is a satisfying assignment

to GIm+2(a).
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Proof This is shown for constant m ∈ N in the proof of Theorem 4 of [26].

The same construction works for general m < |a|. �

Lemma 14 There is a polynomial time machine C and a constant d ∈ N
such that provably in T , for all a, all m < |a| and all second-order vari-

ables X, if X is a satisfying assignment to GIm+4(a) then C(X, a,m) is a

satisfying assignment to GIm+3(2|a|
d
).

Proof By Lemma 11 there is d ∈ N such that A(α, a,m) is a PK0
m+1

refutation of GIm+4(a) of size 2|a|
d
. We also have a satisfying assignment X

to GIm+4(a), and we may assume that GIm+4(a) is of size < 2|a|
d

and that

its clauses are of size < |a|d. This is exactly what we need to define from

α and X a satisfying assignment to 1−Ref(PK0
m+1)(2|a|

d
), and from this by

Lemma 13 we can define a satisfying assignment to GIm+3(2|a|
d
). �

Recall that T 3
3 is the theory T 3

2 together with the axiom that 22||x||
2

exists

for all x [3].

Lemma 15 Provably in the theory

T 3
3 + ∀a[I(α, a) is a PK0

1 refutation of GI4(a) of size 2|a|
c
],

for all a and all second-order X, X is not a satisfying assignment to GI|||a|||(a).

Proof We will write γ for |||a|||. Suppose X satisfies GIγ(a). Then we can

apply Lemma 14 to get

C(X, a, γ − 4) satisfies GIγ−1(2|a|
d
),

and then again to get

C(C(X, a, γ − 4), 2|a|
d
, γ − 5) satisfies GIγ−2(2|a|

d2

),

and so on. If we can formalize repeating this step γ−3 times as an induction,

we will have shown a contradiction, since GI3 is provable in T 3
3 .

Let M = 2|a|
dγ

. Then M is a bound on the largest parameters we will

need in the induction, and since |a|dγ < |a|2dγ = |a|||a||d , M is guaranteed to

exist in T 3
3 . Now let D be the machine which iterates C, that is, such that

D(X, a, 0) = X and D(X, a, i+ 1) = C(D(X, a, i), 2|a|
di

, γ− 4− i). We want

to estimate the time bound on D.

Let f(Y, b,m, j) be the polynomial time function, with time bound |b|e
for e ∈ N, which calculates the jth bit of C(Y, b,m). In our induction the

parameter b will always be less than M , so the maximum time to calculate
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f is |M |e. Calculating a bit of D(X, a, i) requires calling f recursively, once

for each node of a tree of depth i and fan-out < |M |e, so for i < γ we can

bound the time taken by |M |eγ < |a|eγ||a||d < |a|||a||d+1
. Hence the function

to calculate bits of D is definable in our theory.

Therefore we can write our inductive hypothesis

D(X, a, i) satisfies GIγ−i(2
|a|di )

as a Π̂b
1 formula. Induction on i up to γ − 3 completes the proof. �

Theorem 16 Suppose that for some c ∈ N there is a family of PK0
1 refuta-

tion of GI4(a) of size 2|a|
c
. Then for some s ∈ N, there is a family of PK0

1

refutations of GI|||a|||(a) of size 22||a||
s

.

Proof By Lemma 15 and Parikh’s theorem, there is a term t (with a

22||a||
O(1)

growth rate) such that

T 3
3 ` ∀X,∀b<t(a) (I(α, b) is a PK0

1 refutation of GI4(b) of size 2|b|
c
)

→ (X is not a satisfying assignment to GI|||a|||(a)).

Hence by doing some rearrangement and using the Paris-Wilkie translation

of first-order into propositional proofs (in the form of Theorem 21 of [26]),

for some s ∈ N there is a family πa of 22||a||
s

-size PK0
1 refutations of the set

of cedents Ea ∪ Fa, where Ea is the propositional translation of

∀b<t(a) (I(α, b) is a PK0
1 refutation of GI4(b) of size 2|b|

c
)

and Fa is the translation of

(X is a satisfying assignment to GI|||a|||(a))

(both of these are Π̂b
1). Here Ea has propositional atoms translating the bits

of the oracle α. Fa has atoms translating the second-order variable X, and

we may set up the translation so that it is isomorphic to GI|||a|||(a) .

By the assumption that short PK0
1 refutations of GI4(a) exist, we know

that there is an assignment to the oracle α which satisfies Ea, for every a.

Under this assignment each πa collapses immediately to a refutation of Fa,

and hence a refutation of GI|||a|||(a). �

Theorem 17 Suppose that there is no size 22||a||
O(1)

constant-depth refu-

tation of GI|||a|||(a). Then the narrow CNFs refutable in polynomial (or

quasipolynomial) size and constant depth form a strict hierarchy with depth.

In particular, for each k ∈ N the narrow CNF family GIk+3 has polynomial-

size refutations in PKk+1 but no quasipolynomial-size refutations in PKk (or

in Res(log) in the case k = 0).
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Proof Firstly, by the constructions in Theorem 21 of [26], any PKk refu-

tation of GIj(a) can be made into a PK0
k refutation that is at most quasi-

polynomially larger, and vice versa.

Secondly, in Theorem 16, GI4(a) and PK0
1 could be replaced with GIk+3(a)

and PK0
k for any constant k ∈ N greater than 1, and the same argument

would still go through.

Finally, if there is a quasipolynomial-size Res(log) refutation of GI3(a)

then by Theorem 8 of [26] there is a quasipolynomial-size PK0
1 refutation of

GI4(a), to which Theorem 16 applies. �

A possible approach to a low-level separation using GI|||a|||(a) may come

from a proposal in [16]. There, Kraj́ıček defines the isomorphism-chain

principle: let L be a first-order language and let Φ and Ψ be two Σ1
1 L-

sentences that cannot be satisfied simultaneously in any finite L-structure.

Then for any numbers m,n and any chain C1, . . . , Cm of finite L-structures

with the universe [n], it cannot be the case that C1 |= Φ, Cm |= Ψ, and Ci
is isomorphic to Ci+1 for each i = 1, . . . ,m−1. Kraj́ıček poses the following

question: if this principle has small constant-depth proofs, does it follow that

there is a family of small constant-depth circuits that separate L-structures

satisfying Φ from those satisfying Ψ? The intuition behind this is that the

existence of such circuits would allow a very natural constant-depth proof

of the principle, by induction along the chain.

If we take L to consist of a single k-ary relation defining a k-turn game,

and take Φ to be “Player B has a winning strategy” and Ψ to be “Player A

has a winning strategy”, then such a restricted version of the isomorphism-

chain principle becomes a special case of GIk. We can alter the principle

to deal with games with a non-constant number of turns by considering

three-sorted structures with a number sort, an index sort and a sequence

sort, each of an appropriate size (rather than a single-sorted structure on

a universe [n]), and adding relations to the language and putting suitable

axioms into Ψ and Φ to allow us to talk about indexed sequences of numbers.

We take the language to include a relation G expressing whether a sequence

of numbers is a win for A or B, and take Φ and Ψ to express that respectively

B or A has a winning strategy, as above. Then, if there is a small constant-

depth proof of GI|||a|||(a), it follows that there is also such a proof of such an

instance of chain-isomorphism. If the answer to the question posed in [16],

suitably altered, is “yes”, then this implies that there is a small constant-

depth circuit which decides whether A or B has a winning strategy. This is

impossible as these represent Sipser functions of non-constant depth [27, 14].
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