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Abstract

We show, under the assumption that factoring is hard, that a
model of PV exists in which the polynomial hierarchy does not col-
lapse to the linear hierarchy; that a model of S1

2 exists in which NP
is not in the second level of the linear hierarchy; and that a model
of S1

2 exists in which the polynomial hierarchy collapses to the linear
hierarchy and in which the strict version of PH does not collapse to a
finite level.

Our methods are model-theoretic. We use the assumption about
factoring to get a model in which the weak pigeonhole principle fails
in a certain way, and then work with this failure to obtain our results.

One of the main goals of the research into fragments of bounded arithmetic

is to understand which relations between computational complexity classes
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are consistent with these theories. The fundamental question in this area is

whether the polynomial hierarchy can be infinite in a model of full bounded

arithmetic. But it makes sense to study what weak theories of arithmetic

can say about the other important questions from complexity theory which

can be meaningfully stated in this setting, especially since many of these

questions are interrelated.

In this paper, we consider the problem of whether the polynomial hier-

archy PH is equal to the linear time hierarchy LinH. This is a long-standing

open problem about which little is known, other than the immediate corollar-

ies of the time hierarchy theorem: a given level of the polynomial hierarchy

properly contains the corresponding level of the linear hierarchy, and conse-

quently LinH must be infinite if the two hierarchies are equal.

Under the general assumption that factoring is hard, in the sense that

factoring of products of two primes is not possible in probabilistic polynomial

time, we prove that:

(1) it is consistent with PV that NP is not contained in LinH,

(2) it is consistent with S1
2 that NP is not contained in the second level of

LinH, but

(3) it is also consistent with S1
2 that all of PH is contained in LinH.

Hence, the question whether PH = LinH is independent of PV. Additionally,

the containment of PH in LinH can be extended to a nonstandard variant of

PH, which implies by a typical diagonalization argument that

(4) (the strict, or prenex, version of) PH is infinite consistently with S1
2.

This proof of this last result bears a strong resemblance to an old theorem

of Paris and Wilkie ([PW85]) on the ∆0 hierarchy in I∆0. Nevertheless, the

result seems interesting because it shows that the hardness of one specific

problem from a low level of the polynomial hierarchy (i.e. factoring) may

imply the separation of all levels of PH (with parameters) — albeit only in

a model of the weak theory S1
2.

Our methods are model-theoretic and rely on an analysis of which versions

of the weak pigeonhole principle (WPHP) for polynomial time functions or
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NP multifunctions hold in a given ground model. To obtain results (1) and

(2), we use our assumption about factoring to get a model in which the

surjective version of WPHP holds but the injective version fails. Similar uses

of hardness assumptions from cryptography appear in [Tha02] and [CT06].

The proofs of (3) and (4) are based on the observation that if any version of

WPHP fails and the model satisfies a sufficient amount of induction, then,

by a modification of an argument in [Tha02], quantifiers over large elements

of the model can be translated into quantifiers over smaller elements of the

model. The result (4) may actually be stated in a stronger way than above:

S1
2 plus the negation of a relatively strong form of WPHP for Σb

1 relations

proves that the strict version of the polynomial hierarchy does not collapse.

The paper is organized in the following way. After introducing the nec-

essary definitions and notation, and a discussion of variants of WPHP, we

prove a simplified version of (1) in section 1, the full version of (1) in section

2, (2) in section 3, (3) in section 4, and (4) in section 5. The final section 6

contains some additional remarks.

Definitions and notation. We assume that the reader is familiar with the

basic notions and results of bounded arithmetic as presented in e.g. [Bus86],

[Kra95]. In particular, we assume familiarity with the meaning of the symbols

#, PV, Sn
2 , Tn

2 , Σb
n and Πb

n and with notions such as “sharply bounded

formula”, “length induction”, etc.

L2 denotes the usual language of bounded arithmetic, with the symbols

0, 1, ≤, +, ×, #, | · |, and b ·
2
c. The language L1 is L2 without the smash

function symbol #, so that functions definable by L1-terms grow no faster

than polynomials and increase the length of the arguments at most linearly.

“Bounded formulae”, or Σb
∞ formulae, are bounded formulae of L2. “Linearly

bounded formulae” are the bounded formulae of L1.

In the standard model of arithmetic, bounded formulae define exactly

the relations in PH, while linearly bounded formulae define the relations in

LinH. For this reason, in a nonstandard model of some arithmetical theory it

is natural to identify PH with the sets definable by bounded formulae (with

parameters from the model), and LinH with the sets definable by linearly

bounded formulae (also with parameters). Thus, the precise formulation of
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the question whether PH is contained in LinH in a given model is whether

each relation on the model definable by a bounded formula is also definable by

a linearly bounded formula, with parameters. Note that if parameters were

not allowed, then PH ⊆ LinH in a model would have to imply PH ⊆ LinH

in the real world.

We will normally work with the strict, or prenex, version of Σb
n, which we

denote Σ̂b
n. A Σ̂b

n formula has the form

∃y1<t1 ∀y2<t2 . . . Qyn<tn ψ,

where ψ is sharply bounded. In the standard model, both Σb
n and Σ̂b

n formu-

lae define predicates from the n-th level of PH (in particular, Σ̂b
1 formulae

correspond to NP).

LPV is the usual language of the theory PV, with a function symbol for

each polynomial time function (in particular, LPV contains L2). We will

often also use PV as a name for this language. A PV formula is an open

formula of LPV. Note that each sharply bounded formula is equivalent in PV

to a PV formula. Σ̂b
n(PV) is the class of formulae defined analogously to Σ̂b

n,

but in the larger language LPV (similarly for the non-strict version Σb
n(PV)).

Sn
2 (PV) is the theory axiomatized by PV plus the length induction scheme

for Σ̂b
n(PV) formulae. Sn

2 (PV) is conservative over Sn
2 , and we will often write

“Sn
2”, “Σ̂b

n”, etc., when in fact we mean “Sn
2 (PV)”, “Σ̂b

n(PV)”, etc.

For technical reasons, we use a slight redefinition of the usual smash

function: x#y is 2|x−1|·|y−1|. In this way, we always have 2α#2β = 2α·β. The

notation #ca is shorthand for a# . . .#a, where a appears c times.

If a is an element of a model, aN denotes the cut given by the standard

powers of a, while #Na represents the cut consisting of numbers less than

#ka for some standard k. Also, we often identify a with the initial segment

[0, a) of numbers less than a, so that e.g. an “injection from b into a” is

simply an injection from [0, b) into [0, a).

A bar, as in x̄, indicates a tuple, and x̄ < y means that all the elements

of x̄ are smaller than y.

Some useful facts about WPHP. We consider three basic versions of

the weak pigeonhole principle. For a < b, the injective principle iWPHPb
a(f)

4



states that the function f is not an injection from b into a. The surjective

principle sWPHPa
b (f) states that f is not a surjection from a onto b. The

multifunction principle mWPHPb
a(R), introduced in [MPW02], states that R

is not the graph of a injective multifunction from b into a.

We shall be particularly interested in the following schemes: iWPHP(PV),

which is the scheme ∀x iWPHPx2

x (f), where f ranges over PV functions;

sWPHP(PV), which is ∀x sWPHPx
x2(f) for f ∈ PV; and mWPHP(Σb

1), which

is a common strengthening of the previous two, given by ∀xmWPHPx2

x (R)

for R ∈ Σb
1. All three schemes allow parameters in the definitions of f or R.

In addition, we will also consider a parameter-free version of sWPHP(PV).

This version is equivalent to sWPHP(PV) in S1
2 ([Tha02]), but may be strictly

weaker in PV.

By [PWW88], WPHP for all ∆0 definable relations is provable in I∆0+Ω1.

By [MPW02], all three schemes mentioned in the previous paragraph are

provable in T2
2.

It was shown by Wilkie (published in [Kra95] and [Tha05]) that the Σb
1

consequences of S1
2 + sWPHP(PV) can be witnessed in probabilistic polyno-

mial time. On the other hand it was shown in [KP98], using Buss’ witnessing

theorem for S1
2, that if iWPHP(PV) is provable in S1

2 then the cryptosystem

RSA is not secure against polynomial time attack. These arguments can

be combined to show that S1
2 + sWPHP(PV) does not prove iWPHP(PV) if

RSA is secure against randomized polynomial time attack. This was recently

strengthened in [Jeř06] to: S1
2 + sWPHP(PV) does not prove iWPHP(PV)

if there is no randomized polynomial time algorithm for factoring. Unprov-

ability of iWPHP(PV) is also known to follow from the existence of a certain

kind of hashing function ([Kra01]). No analogous assumptions implying un-

provability of sWPHP(PV) are known.

An important technical property of weak pigeonhole principles is the pos-

sibility of amplifying their failure (see e.g. [Tha02]). Over PV, ¬iWPHPa2

a (PV)

implies ¬iWPHPb
a(PV) for any b > a. The only new parameter needed to de-

fine the amplified injection is b, and moreover, the additional parameter plays

just the role of a size bound, so it may be replaced by any parameter which

is at most polynomially smaller. In S1
2, a similar amplification is possible

for sWPHP(PV) and for mWPHP(Σb
1). It is open whether sWPHP(PV) can
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be amplified in PV, but evidence from relativized theories ([Jeř06]) suggests

that this is likely not to be the case.

1 NP and LinH in PV, a weak version

We start by proving a weak version of the statement that it is consistent

with PV that NP is not contained in LinH. The weakening is twofold: we

do not consider parameters and we exclude only provable equivalence in PV,

instead of equivalence in a model. The result below follows immediately from

Theorem 2.1, but we give the proof as a simple illustration of the main idea

used in the next two sections.

Theorem 1.1. If PV + sWPHP(PV) 6` iWPHP(PV), then there exists a Σ̂b
1

formula ϕ(x) which is not equivalent in PV to any linearly bounded formula

ψlin(x).

Proof. Assume PV + sWPHP(PV) 6` iWPHP(PV). Under this assumption

we can use amplification to get a model A � PV and an element a ∈ A such

that:

(i) A |= sWPHP(PV),

(ii) f(q, ·) is an injection from a#a into a, where f is a PV function symbol

and q is a parameter below a,

By (i) and compactness, moving to an elementary extension if necessary

we may also assume that there is some element b in A realizing the type

{b < a#a} + {∀x̄<a, g(x̄) 6= b : g ∈ PV}.

To see this, consider the finite fragment involving only the PV functions

g1, . . . , gm. Let r be the maximal arity of g1, . . . , gm. If every element < a#a

is the value of one of the functions gi on some tuple of parameters < a, then

we can define a polynomial time surjection from mar onto a#a, contradicting

sWPHP.

Now consider the following Σ̂b
1 formula ϕ(x, a, q):

∃w<a#a f(q, w) = x.
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Let ψlin(x, y, z) be any linearly bounded formula. We will show that

PV 6` ∀x, y, z (ϕ(x, y, z) ≡ ψlin(x, y, z)).

Define the model B to be the closure of [0, a) in A under all PV functions.

Now b ∈ [0, a#a)A \ B. Let b̂ be the unique element of [0, a) such that

b̂ = f(q, b).

Assume that in each model of PV, ϕ(x, y, z) is equivalent to ψlin(x, y, z).

We obtain a contradiction by analyzing the truth values of ϕ(b̂, a, q) and

ψlin(b̂, a, q) in A and B. The formula ψlin(b̂, a, q) must have the same value

in both models, since b, q < a and the models share [0, a), and hence also

[0, aN), as a common initial segment. Furthermore, ϕ(b̂, a, q) is clearly true in

A, as b ∈ [0, a#a)A. Finally, ϕ(b̂, a, q) must be false in B; otherwise the fact

that f(q, ·) is an injection would imply that b ∈ B, contrary to our choice of

b.

Corollary 1.2. If integer factoring is not possible in probabilistic polynomial

time, then PV does not prove that each Σ̂b
1 formula is equivalent to a linearly

bounded formula.

Remark. Note that the proof of Theorem 1.1 actually establishes something

stronger than the existence of a Σ̂b
1 formula ϕ which is not equivalent in PV

to any linearly bounded formula. In fact, the formula ϕ cannot be equivalent

in PV to any formula of the form

Q1y1<s1Q2y2<s2 . . . Qkyk<sk ψ,

where the Qi are quantifiers, the si are L1-terms, and ψ is a PV formula (and

not just an open L1-formula). This is because in the model B appearing in

the proof the interpretations of all PV function symbols are inherited from

the original model A.

2 NP and LinH in PV

The present section is devoted to a proof of the following result, which is a

considerable strengthening of Theorem 1.1:
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Theorem 2.1. If PV + sWPHP(PV) 6` iWPHP(PV), then there exists a

model of PV and a Σ̂b
1 formula ϕ(x) such that ϕ(x) is not equivalent in the

model to any linearly bounded formula ψlin(x, p) for any parameter p.

As before, assuming PV + sWPHP(PV) 6` iWPHP(PV) we can get a

model A � PV and an element a ∈ A such that:

(i) A � sWPHP(PV),

(ii) f(q, ·) is an injection from a#a into a, where f is a PV function symbol

and q is a parameter below a.

To make some calculations easier, it is not difficult to additionally ensure:

(iii) a = 2α where α = |a| − 1.

In any such model, the function f can be used to define a single PV func-

tion f̃ which is an injection from c#a into c for any c of the form a# . . .#a

(where # could occur a nonstandard number of times, although that case

will not be needed in this section).

To define f̃ , we observe that we can treat any element u of the model as a

sequence of numerals [u]i in base a notation and a sequence of numerals 〈u〉i
in base a#a notation. In other words, [u]i is the number < a consisting of

bits iα, . . . , (i+ 1)α− 1 of u, for i = 0, . . . , d |u|
α
e− 1, while 〈u〉i is the number

< a#a consisting of bits iα2, . . . , (i+ 1)α2 − 1 of u, for i = 0, . . . , d |u|
α2 e − 1 .

The function f̃ maps u to the unique element û such that d |û|
α
e = d |u|

α2 e and

[û]i = f(p, 〈u〉i) for all i < d |u|
α2 e.

Note that the definition of f̃ needs no parameters other than q and pos-

sibly a (if a cannot be accessed from q by a PV function). Note also that

f̃ coincides with f on [0, a#a). The only case in which f̃ can fail to be an

injection is if f maps a number different from 0 to 0. To avoid this we will

simply assume that f(0) = 0.

In our proof of Theorem 2.1 we will work with the Σ̂b
1 formula ϕ(x, a, q)

defined as:

∃w≤(a#a)xα ∀i<d|x|
α
e (f(q, 〈w〉i) = [x]i).

Thus, ϕ states that x is in the range of f̃ . The number (a#a)xα is an upper

bound on any w which could possibly be mapped by f̃ to x.
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Proof of Theorem 2.1. Let A be our model satisfying the conditions (i), (ii)

and (iii). Expand the language of PV by constant symbols for a, α, q and

countably many new constants c1, c2, . . .. Let T be the following theory in

the expanded language:

PV + {q < a = 2α} + {¬iWPHPa#a
a (f(q, ·))} + {#ka ≤ ck < #k+1a : k ≥ 1}

+{∀x̄<#ka, ck 6= g(x̄, ci1 , . . . , cil) : k ≥ 1, m ≥ 0,

g ∈ PV, ck not among ci1 , . . . , cil}.

We claim that T is finitely consistent. Consider a finite fragment T0 of

T involving only the constants c1, . . . , ck and PV functions g1, . . . , gm. We

will satisfy T0 by successively interpreting ck, . . . , c1 as suitable elements of

A. Let ck be any element of [#ka,#k+1a) which is not the value of any gi,

i = 1, . . . ,m, on any tuple of arguments from [0,#ka). Such an element must

exist, by the same argument from sWPHP(PV) as in the previous section.

Assuming ck, . . . , cl+1 have already been assigned interpretations, let cl be

any element of [#la,#l+1a) which is not the value of any gi, i = 1, . . . ,m, on

any tuple of arguments from [0,#la) with cl+1, . . . , ck allowed as parameters.

Again, the existence of such an element follows from sWPHP(PV) (with

parameters).

Now take any countable model of T and let B be the submodel given

by closing {a, q, c1, c2, . . .} under PV functions. T is still true in B, as it is

a universal theory. Note that the elements c1, c2, . . . in B enjoy a certain

independence property: for each k, ck is not contained in the PV-closure of

[0,#ka) ∪ {cl : l 6= k}.

Enumerate all pairs consisting of a parameter from B and a linearly

bounded formula in the variables x, y, z, t as (pk, ψ
lin
k )k≥1. We will now con-

struct a descending chain B = B0 ⊇ B1 ⊇ B2 . . . of substructures of B and

an increasing sequence 0 = m0 ≤ m1 ≤ m2 . . . of natural numbers with the

following properties, for k ≥ 1:

1. if pk ∈ Bk, then Bk � ∃x<#mka (ϕ(x, a, q) 6≡ ψlin
k (x, a, q, pk)),

2. if pk ∈ Bk, then pk < #mka,

3. the initial segment [0,#mk+1a) is the same in all models Bk,Bk+1, . . .,
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4. the elements cmk+1, cmk+2, . . . are contained in Bk.

If we succeed in constructing such sequences, the structure C =
⋂

k∈N Bk

will satisfy the requirements of the theorem. C is a model of PV since it

is the intersection of a chain of models of PV, which is a universal theory.

Furthermore, properties 1, 2, and 3, together with the fact that for x below

#mka the only possible witness w for the existential quantifier in ϕ(x, a, q)

is below #mk+1a, will ensure that for each choice of ψlin and p ∈ C,

C � ∃x (ϕ(x, a, q) 6≡ ψlin(x, a, q, p)),

hence also

C � ∃x ∃y ∃z (ϕ(x, y, z) 6≡ ψlin(x, y, z, p)).

We construct the sequences (Bk) and (mk) inductively. Assume B0, . . . ,Bk−1

and m0, . . . ,mk−1 have been chosen and consider (pk, ψ
lin
k ). If pk is not an

element of Bk−1, we have nothing to do: let Bk = Bk−1 and mk = mk−1. If

pk ∈ Bk−1, but there already is some x such that ϕ(x, a, q) is not equiva-

lent in Bk−1 to ψlin
k (x, a, q, pk), the only thing we need to do is preserve this

inequivalence: let Bk = Bk−1 and let mk be the least number greater than

mk−1 such that both x and pk are below #mka.

The final case is when pk ∈ Bk−1 and

Bk−1 � ∀x (ϕ(x, a, q) ≡ ψlin
k (x, a, q, pk)).

Choose mk to be any number strictly greater than mk−1 such that pk < #mka

and let Bk be the closure of [0,#mka)∪{cmk+1, cmk+2, . . .} in Bk−1 under PV

functions. Note that the elements cmk+1, cmk+2, . . . are contained in Bk−1 by

condition 4 for Bk−1, and that our choice of Bk and mk does not violate

conditions 2, 3, and 4. It remains to check that condition 1 is satisfied.

By condition 4 for Bk−1, we know that cmk
is an element of Bk−1, but by

the independence property of the cis, we also know that cmk
is not an element

of Bk. Let ĉmk
denote the image of cmk

under f̃ . Since ĉmk
< #mka, it must

be the case that ĉmk
is in Bk. By the injectivity of f̃ , ϕ(ĉmk

, a, q) must be true

in Bk−1 and false in Bk. On the other hand, ψlin
k (ĉmk

, a, q, pk) must have the

same truth value (true) in Bk−1 and Bk, because ĉmk
, a, q, pk < #mka and the

two models are the same on [0, (#mka)N). It follows that ϕ(ĉmk
, a, q) is not
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equivalent in Bk to ψlin
k (ĉmk

, a, q, pk), which completes the proof of condition

1 and of the whole theorem.

Remark. This result can be improved to get a final model C which also

satisfies a weak version of the surjective weak pigeonhole principle with pa-

rameters.

For each i, rather than introduce a single constant ci between #ia and

#i+1a, we introduce countably many constants c1i , c
2
i , . . . in this interval. As

above, we can use compactness to guarantee that each cji is outside the PV

closure of [0,#ia) ∪ {cj
′

i′ : (i′, j′) 6= (i, j)}.

When we construct our descending chain of models, it is enough to omit

at most one cji at each step. So we may assume that we have countably many

cji s left in each interval [#ia,#i+1a) in C and that these are all independent.

Now let γ = |a|2. We claim that for every d ∈ C and every PV function

g, with parameters, g is not a surjection in C from d onto dγ.

To see this, notice that if k is the largest number such that d ≤ #ka, then

#k+1a ≤ dγ. We may assume that the parameters for g are some numbers

below a together with a tuple c̄ of finitely many of the constants cji . So there

is some clk not included in c̄, and by construction clk is not in the range of g

on the domain [0, d).

3 NP and the second level of LinH in S1
2

It seems that the technique used to prove Theorem 2.1 cannot be extended

to S1
2. This is because all the models constructed in the proof of Theorem

2.1 satisfy ¬iWPHP(PV), while the proof of Theorem 4.1 in the next section

suggests that in S1
2 failure of any kind of WPHP for Σb

1 relations actually

leads to PH being equal to LinH. Nevertheless, it turns out that a limited

extension of Theorem 2.1 to S1
2 is possible. We prove a result which states

roughly that (under our general assumption about pigeonhole principles) it

is consistent with S1
2 that NP is not contained in the second level of the linear

time hierarchy.

Definition 3.1. A Σ̂lin
2 (PV) formula is a formula of the form

∃y1<s1 ∀y2<s2 ξ,
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where s1, s2 are L1-terms and ξ is a PV formula.

Theorem 3.2. If PV + sWPHP(PV) 6` iWPHP(PV), then there exists a

model of S1
2 and a Σ̂b

1 formula ϕ(x) such that ϕ(x) is not equivalent in the

model to any Σ̂lin
2 (PV) formula ψlin(x, p) for any parameter p.

We will use the function f̃ and the Σ̂b
1 formula ϕ(x, a, q) from the previous

section. The main tool needed to prove Theorem 3.2 is the following lemma:

Lemma 3.3. Let T be PV + sWPHP(PV) + ¬iWPHPa#a
a (f(q, ·)). Assume

A is a countable model of T . Let p ∈ A and let ψlin(x, y, z, t) be a Σ̂lin
2 (PV)

formula,

ψlin(x, y, z, t) = ∃u1<s1 ∀u2<s2 ξ(x, y, z, t, u1, u2).

Then there exists a countable B �Σ̂b
1
A with B � S1

2 + T and x ∈ B such that

one of the following holds in B:

(a) ϕ(x, a, q) is false and ψlin(x, a, q, p) is true, or

(b) ϕ(x, a, q) is true, ψlin(x, a, q, p) is false, and there is a PV function h

(with a parameter from B) which for each given u1 < s1 outputs some

u2 < s2 such that ¬ξ(x, a, q, p, u1, u2).

Theorem 3.2 follows from the lemma by a straightforward chain construc-

tion. Given a countable A � PV satisfying (i), (ii) and (iii) from the previous

section, we can iterate Lemma 3.3 countably many times, once for each choice

of a Σ̂lin
2 (PV) formula and a parameter p ∈ A. Note that by Σ̂b

1-elementarity,

if at some point we have a witness of type (a) or (b) that ϕ is not equivalent

to a given Σ̂lin
2 (PV) formula with a given parameter, then it will remain such

a witness in successive steps of the iteration. This is clear in case (a), since

the truth of a Σ̂lin
2 (PV) formula is preserved upwards under Σ̂b

1-elementary

extensions. In case (b), we can use the function h to express the falsity of

the Σ̂lin
2 (PV) formula in a Π̂b

1 way (for each u1, h outputs a u2 such that ¬ξ
holds), so it will be preserved as well.

Taking the union of the chain of models obtained during the iteration, we

will get a countable model A∗ �Σ̂b
1
A which satisfies ¬iWPHPa#a

a (f(q, ·)) and
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in which ϕ(x, a, q) is not equivalent to any Σ̂lin
2 (PV) formula ψlin(x, a, q, p)

for any p ∈ A. Moreover, A∗ satisfies S1
2 and sWPHP(PV), which can

be seen as follows. S1
2 is ∀∃bool(Σ̂b

1)-axiomatizable, so it is preserved in

unions of Σ̂b
1-elementary chains. The parameter-free version of sWPHP(PV)

is ∀∃Π̂b
1-axiomatizable, hence also true in A∗, and it is known that in S1

2

parameter-free sWPHP(PV) implies full sWPHP(PV) [Tha02].

Now let A0 be a countable model of PV satisfying conditions (i), (ii) and

(iii), and for each n ∈ N, let An+1 = (An)∗. It is not difficult to check that

the model
⋃

n∈N An satisfies the thesis of Theorem 3.2.

Thus, to show that Theorem 3.2 is true it remains to prove Lemma 3.3. In

the proof, we will use the following theorem, adapted from Zambella [Zam96]:

Theorem 3.4. Every countable model A of PV has a Σ̂b
1-elementary ex-

tension to a cofinal countable model B � S1
2 with the following “witnessing

property”: for each PV formula ξ(x, y, p) there is a PV function g and a

parameter q such that

B � ∀x<u ∃y ξ(x, y, p) → ∀x<u ξ(x, g(x, u, p, q), p).

Proof. We sketch how the proof, as presented in section 7.6 of [Kra95], can be

modified to give cofinality. Add names for all elements of A to the language

and take a new set of constant symbols {cb : b ∈ A} indexed by elements

of A. Let T0 be the universal diagram of A together with {cb < b : b ∈ A}.

Enumerate all sentences of the form ∀x < u ∃y ξ(x, y) in the expanded lan-

guage, with all the new constant symbols. We construct a chain (Tn) of

universal theories, beginning with T0. Suppose we consider the sentence

∀x<u ∃y ξ(x, y) at stage n in the construction. If Tn ` ∀x<u ∃y ξ(x, y) we

put Tn+1 = Tn, otherwise we put Tn+1 = Tn ∪ {cb < u ∧ ∀y ¬ξ(cb, y)} where

b > u and cb has not appeared yet (except in T0). We eventually obtain a

model of the universal theory
⋃

n∈N Tn, and our model B is the substructure

formed by closing A and the new constant symbols under all PV functions.

By the construction, none of the new constants is above A.

Proof of Lemma 3.3. Let A satisfy the assumptions of the lemma. Extend

A cofinally and Σ̂b
1-elementarily to a model A′ � S1

2 with the witnessing

property of Theorem 3.4. Then A′ is also a model of T : the failure of the
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injective WPHP is preserved by Σ̂b
1-elementarity. By cofinality and S1

2 in A′,

in order to show that A′ � sWPHP(PV) it is enough to check that in A′

there is no parameter-free PV surjection from c to c2 for any c from A. But

in A for any function from c to c2 there is an element outside its range, and

this is preserved in A′ by Σ̂b
1-elementarity.

Now there are three cases to consider.

Case 1. There exists some x ∈ A′ such that ϕ(x, a, q) is false and

ψlin(x, a, q, p) is true. In this case we simply take B to be A′. Clearly,

(a) holds.

Case 2. Case 1 does not hold, but there exists some x ∈ A′ such that

ϕ(x, a, q) is true and ψlin(x, a, q, p) is false. Then by the witnessing property

we can guarantee that (b) holds in A′. Again we take B to be A′.

Case 3. For each x ∈ A′, ϕ(x, a, q) is equivalent to ψlin(x, a, q, p). We

would like to apply the by now familiar argument. Unfortunately, we have

to be careful, since there is no guarantee that a structure obtained by taking

the PV-closure of an initial segment will satisfy sWPHP(PV).

By compactness and sWPHP(PV) in A′, we may move to an elementary

extension A′′ of A′ which contains: an element b > A of the form a# . . .#a;

a number d > #Nb; some e < d4 which is not the value of any PV function

without parameters on any argument below d2; and some w < b#a which

is not the value of any PV function with parameters d, e on any tuple of

arguments from below b.

Consider the closure C of [0, b)∪{d, e} in A′′ under PV functions. This is

a Σb
∞-elementary extension of A′, and therefore a Σ̂b

1-elementary extension of

A. Moreover, we can apply our standard argument. If we let ŵ = f̃(w), then

ϕ(ŵ, a, q) is true in A′′, hence ψlin(ŵ, a, q, p) is true in A′′ (by our equivalence

assumption) and so must also be true in C. But ϕ(ŵ, a, q) is false in C, so

(a) holds.

To complete the proof, extend C Σ̂b
1-elementarily to a model D of S1

2 and

let B be the cut in D determined by #Nb. We now need to show that B
has the properties required by the lemma. Certainly, B is a Σ̂b

1-elementary

extension of A to a model of S1
2 + ¬iWPHPa#a

a (f(q, ·)). Also certainly, (a)

holds in B since it did in C. It remains to verify that B � sWPHP(PV).

Otherwise, for some c ∈ B there is a PV function g which maps c onto c2.
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By S1
2, we may assume that the definition of g does not use any parameters.

Since c is contained in #Nb and is thus smaller than d, the function g can

be modified in D to yield a surjection g̃ from c onto d4. S1
2 is enough to

perform such an amplification, and the only parameter needed to define g̃

is, say, d as a size bound. But this means that if we treat the parameter as

part of the argument, g̃ is a surjective map in D from cd to d4. This is a

contradiction, since D contains the element e < d4 which is not the value of

any PV function on an argument below d2.

4 Collapsing PH to LinH

Theorem 4.1. If S1
2 6` mWPHP(Σb

1), then there exists a model of S1
2 and a

parameter p such that every bounded formula ϕ(x) is equivalent in the model

to some linearly bounded formula ϕlin(x, p).

To prove the theorem, assume that S1
2 6` mWPHP(Σb

1). This means that

there exists a countable model A � S1
2 containing an element a = 2α such

that the Σb
1 formula ζ(x, y) defines an injective multifunction from a#a into

a. The formula ζ may involve a parameter q, but we may assume w.l.o.g.

that q < a and that all quantifiers in ζ are bounded by at most a#a. By

abuse of notation, we will also refer to the multifunction itself as ζ. We may

also assume that A contains the element b = #ca and the element #3ca for

some small nonstandard c. Note that b is also equal to aαc−1
.

Fix such a model A for the remainder of this section and let B be the

(proper) cut #Na in A. We will show that in B, each bounded formula is

equivalent to a linearly bounded formula with parameters a#a, c, and q. Our

argument will be based on a construction analogous to the one in [Tha02],

which was in turn inspired by [PWW88].

We will show ζ can be used to code each element u < b, hence, in partic-

ular, each element of B, as a (possibly non-unique) element û < a. In this

way, statements about elements of B can be translated into statements about

their codes. Moreover, the coding can be defined by a linearly bounded for-

mula, which will allow us to perform the translation of bounded into linearly

bounded formulae required to obtain Theorem 4.1.
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As in earlier sections, we think of each element u ∈ A as a sequence of

numerals [u]i in base a notation. If u < b, then this sequence will have length

at most αc−1. Intuitively, we would like to treat the number û < a as a code

for u if there exists an α-branching labelled tree of depth c − 1 with the

root labelled by û, the αc−1 leaves labelled by the [u]is in the correct order,

and such that if the sons of some node are labelled by numerals together

representing a number z < a#a, then the node itself is labelled by some

y < a such that ζ(z) = y.

The natural definition of this coding requires an existential quantifier

for the tree, i.e. essentially for a sequence of numerals of length 1 + α +

. . . + αc−1, or αc−1
α−1

. This object will typically be larger than b, so there

is no hope of referring to it by a linearly bounded formula in B. The way

around this obstacle is to speak not about the entire tree, but about the

individual branches, requiring each of them to end in the appropriate digit of

u. More formally, let [[û]]i = x be the following formula (i is understood to

be a sequence (i1, . . . , ic−1), where each ij is smaller than α; such a sequence

determines a branch in an α-branching tree of depth c− 1):

∃w = (w0, . . . , wc−1), ∀j<c (wj < a) ∧ w0 = û ∧ wc−1 = x

∧ ∀j<c− 1∃z<a#a (ζ(z) = wj ∧ [z]ij+1
= wj+1).

The intended sense of the formula [[û]]i = x is that in the coding tree with

û at the root there is a labelling of the branch given by i, and the leaf at

the end of that branch is labelled by x. Let code(û, u), “û is a code for

u”, be ∀i < αc−1 ([[û]]i = [u]i). Thus, code(û, u) states that each branch of

the coding tree with û in the root ends in a leaf labelled by the appropriate

numeral of u. Finally, let C(û), “û is a code”, be ∀i<αc−1 ∃x<a [[û]]i = x.

An equivalent formula is obtained by simply deleting the conjunct wc−1 = [u]i
in code(û, u).

Note that all three formulae are linearly bounded, assuming a#a and c

are treated as parameters. In fact, code(û, u) is the only one which may refer

at all to objects larger than a#a (we are assuming that c is much smaller

than α, so the number ac needed to bound w is much smaller than a#a).

Moreover, all three are (non-strict) Σb
1 formulae with parameters in A, which

means they can be used in arguments by length induction. We now prove a
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lemma which states that our coding apparatus works as it should.

Lemma 4.2. Let [[û]]i = x, code(û, u), C(û) be as above. Then the following

hold in A:

(a) for each u < b, there exists some (not necessarily unique) û < a such

that code(û, u);

(b) for each y < a such that C(y) and each sequence i, there is exactly one

x < a such that [[y]]i = x;

(c) for each y < a such that C(y), there is exactly one u < b such that

code(y, u).

Proof. To prove part (a), one may show that each u < b is coded in the

intuitive sense, i.e. that there is a labelled tree with leaves labelled by suc-

cessive numerals of u and all branches labelled as required. Obviously, any

element û which is in the root of some such tree will also satisfy code(û, u).

The existence of a coding tree is proved inductively level by level. The base

step is for the leaves, which are simply numerals of u. In the inductive step,

we assume that there is a correct labelling for levels j + 1, . . . , c − 1 of a

potential coding tree and we need to extend the labelling to level j. We label

the nodes on level j also inductively, say from left to right, and the inductive

step consists in simply choosing some value of ζ on the number represented

by the labels of the sons of a given node.

In part (b), the existence condition follows from the definition of the

formula C(y). Now assume that [[y]]i = x and [[y]]i = x′, and that w and w′

are the respective witnessing strings. Then induction on j < c shows that

wj = w′
j for each j: w0 and w′

0 are both equal to y, while the inductive step

uses the injectivity of ζ. Since wc−1 = x and w′
c−1 = x′, we obtain that

x = x′.

In part (c), existence is an easy consequence of the definition of C(y) and

(non-strict) Σb
1 replacement. Uniqueness follows from part (b).

The following is the main technical lemma needed in this and the next

section:
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Lemma 4.3. Let ψ(x1, . . . , xn) be an L2-formula with all quantifiers bounded

by b and with all function symbols appearing as relations (i.e. exclusively in

atomic formulae of the form y1 + y2 = y3, y1#y2 = y3, etc., where y1, y2, y3

are variables). Then there exists a linearly bounded formula ψ̃, with free

variables x̂1, . . . , x̂n and a#a, c, q as parameters, with the following property:

for any u1, . . . , un < b and any û1, . . . ûn such that code(ûi, ui) for each i,

ψ(u1, . . . , un) is equivalent in A to ψ̃(û1, . . . ûn, a#a, c, q).

Proof. The translation required to obtain the lemma was essentially pre-

sented in the proof of Theorem 3.7 in [Tha02]. In that paper, it was assumed

that b = #la where l is standard, but this does not have a significant in-

fluence on the translation. An additional difference between our translation

and that of [Tha02] is that we are not concerned about quantifier complex-

ity, so there is no need to have a separate translation for sharply bounded

quantifiers.

The translation is defined by induction on the structure of the formula,

with the step for atomic formulae requiring the most effort. The details are

straightforward but somewhat tedious to describe, so we only sketch a few

cases.

If ψ is x < y, then ψ̃ is (omitting some existential quantifiers):

∃i<αc−1 ([[x̂]]i < [[ŷ]]i ∧ ∀i<j<αc−1 [[x̂]]j = [[ŷ]]j).

A similar, simpler, translation is needed for x = y.

To translate x + y = z, we think of computing the sum of x and y in

base a. To express this in terms of x̂, ŷ, and ẑ, we need to introduce an

existential quantifier for an auxiliary number w < a coding the values of

the carry function appearing during the computation, and then state that

the relations between [[x]]i, [[y]]i, [[w]]i−1 and [[z]]i, [[w]]i are as required.

The case of multiplication is similar except that here the auxiliary object we

need to encode has to be some form of multiplication table, i.e. a number

whose length in base a notation is roughly quadratic in c. The translation

in [Tha02] uses two such tables, each consisting of (2αc + 1)α2c numerals.

The value (2αc + 1)α2c is smaller than 3α3c, so we may use the fact that

#3ca exists to define a separate new encoding of numbers consisting of up to

3c numerals, completely analogously to the encoding described above, and
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then state that the numerals encoded by x̂, ŷ, ẑ (in the old encoding) and the

entries in the multiplication tables (in the new encoding) are related as they

should be. Note that since we already have a#a, c as parameters and since

a3c is much smaller than a#a, the definition of the new encoding does not

require any new parameters.

Once addition and multiplication are translated, the cases of the remain-

ing function symbols |x| = y, x#y = z and bx
2
c = y are relatively unprob-

lematic.

Finally, if ψ is ∃x0<bχ(x0, x1, . . . , xn), then ψ̃ is:

∃x̂0<a (C(x̂0) ∧ χ̃(x̂0, x̂1, . . . , x̂n, a#a, c, q)).

The case of the universal quantifier is handled similarly.

The correctness of the translation is proved inductively in a straightfor-

ward way. (Non-strict) Σb
1 length induction is needed for the atomic formulae;

the inductive step for the quantifiers uses Lemma 4.2.

Once we have Lemma 4.3, the rest of the proof of Theorem 4.1 is straight-

forward. Let ϕ(x) be any bounded formula. Form ϕb(x) by first “unwinding”

all terms in ϕ so that all function symbols appear as relations, which will lead

to the introduction of some new quantifiers, and then relativizing all quan-

tifiers to b. The resulting formula is equivalent to ϕ(x) for all arguments

from B. By Lemma 4.3, there is a linearly bounded formula ϕ̃b(x, a#a, c, q)

(which no longer has b as a parameter) such that ϕb(u) is equivalent to

ϕ̃b(û, a#a, c, q) for any u < b and any û coding u. Let ϕlin(x, a#a, c, q) be:

∃x̂<a (code(x̂, x) ∧ ϕ̃b(x̂, a#a, c, q)).

This is a linearly bounded formula with parameters a#a, c, q. Moreover, it

must be equivalent to ϕ(x) in B, since every element of B has a code below a

by Lemma 4.2 part (a). As ϕ(x) was arbitrary, Theorem 4.1 is now proved.

5 Failure of WPHP implies non-collapse of

the polynomial hierarchy

Theorem 5.1. S1
2 + ¬mWPHP(Σb

1) proves that the strict version of PH

does not collapse, even allowing parameters. That is, for each model A of
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S1
2 +¬mWPHP(Σb

1) and each natural number m, there is a bounded formula

ϕ(x) which is not equivalent in A to any Σ̂b
m formula ψ(x, p) for any choice

of a parameter p ∈ A.

Corollary 5.2. If factoring is not in probabilistic polynomial time, then there

is a model of S1
2 + sWPHP(PV) in which the strict version of PH does not

collapse, even allowing parameters. The same holds in a model of S1
2 if RSA

is secure against deterministic polynomial time attack.

The remainder of this section contains a proof of Theorem 5.1. The proof

is by diagonalization and is based on a similar argument for I∆0 from [PW85].

We will also employ the machinery of the previous section, especially Lemma

4.3.

Suppose that the theorem is not true, i.e. that there exists a number m

and a model A � S1
2 + ¬mWPHP(Σb

1) in which each bounded formula is

equivalent to a Σ̂b
m formula with some parameter.

By compactness and a standard argument based on amplifying the failure

of mWPHP, we may pass to an elementary extension A′ of A which contains

the following: a number a = 2α such that a > A and there is a Σb
1 injective

multifunction ζ from a#a into a; a number t > #Na; a number b of the form

#ca such that b > #Nt; and the number #3ca. Let B be the initial segment

#Na in A′. Note that the relation between A′ and B is exactly as between

A and B in the previous section.

Since A′ � A, it remains true in both A′ and B that each bounded

formula φ is equivalent to a Σ̂b
m formula with a parameter pφ from A. We

will now show that this leads to a contradiction.

Since t > B, there is a universal Σ̂b
m formula Um such that for all x, y ∈ B

and all Σ̂b
m formulae ψ, ψ(x, y) is equivalent to Um(x, (pψq, y), t).

Um is bounded, so for x, y ∈ B and for standard ψ the quantifiers in

Um(x, (pψq, y), t) range only over numbers well below b, by our choice of

b. Therefore, we may equivalently present Um(x, (pψq, y), t) in a form to

which Lemma 4.3 is applicable. As a result, for all x, y ∈ B and all ψ,

Um(x, (pψq, y), t) is equivalent to U lin
m (x, (pψq, y), t̂, a#a, c, q), where t̂ is a

number below a coding t and U lin
m is a linearly bounded formula.

A linearly bounded formula is, in particular, a bounded formula. It

follows that ¬U lin
m (x, x, t̂, a#a, c, q) must be equivalent in B to a Σ̂b

m for-
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mula with parameters t̂, a#a, c, q, and pU , or more briefly, to a Σ̂b
m formula

ϕ(x, p) where p is some parameter from B. Consider ϕ((pϕq, p), p). By

the properties of Um, this is equivalent to Um((pϕq, p), (pϕq, p), t), hence to

U lin
m ((pϕq, p), (pϕq, p), t̂, a#a, c, q), hence to ¬ϕ((pϕq, p), p). This is a con-

tradiction, which completes the proof of Theorem 5.1.

6 Concluding remarks

All of our main theorems require the assumption that some version of the

weak pigeonhole principle is unprovable in S1
2 (since the unprovability of

iWPHP(PV) in PV+sWPHP(PV) is actually equivalent to its unprovability

in S1
2 +sWPHP(PV)). Thus, it might be interesting to look for other natural

and plausible statements from cryptography or proof complexity, perhaps

weaker than the ones about factoring or RSA, which would imply some such

unprovability result. It also seems worthwile to search for a natural compu-

tational assumption which would imply that some variant of WPHP for Σb
1

relations is not provable in S2
2. By Theorem 5.1, such an assumption would

allow us to conclude that it is consistent with S2
2 that the strict version of

PH does not collapse.

It should also be noted that all of our results (formulated in terms of

unprovability of WPHP) relativize to higher levels of the bounded arithmetic

hierarchy. Thus, if Tn
2 plus the surjective WPHP for �p

n+1 functions does not

prove the injective WPHP for �p
n+1 functions, then Tn

2 does not prove that

Σp
n+1 is contained in LinH, and Sn+1

2 does not prove that Σp
n+1 is contained

in the (n + 2)-nd level of LinH; if Sn+1
2 does not prove mWPHP(Σb

n+1),

then Sn+1
2 does not prove that PH is not contained in LinH; finally, Sn+1

2 +

¬mWPHP(Σb
n+1) implies that the strict version of PH does not collapse.

Unlike the case of n = 0 and factoring, for higher n no natural compu-

tational assumptions implying the unprovability of appropriate versions of

WPHP are known. Nevertheless, it seems plausible that iWPHP(�p
n+1) is

unprovable in Tn
2 + sWPHP(�p

n+1). If this is indeed the case for all n, then

the question whether LinH = PH is independent of each finite fragment of

bounded arithmetic.
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