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Abstract

We show that the bounded arithmetic theory V0 does not prove
that the polynomial time hierarchy collapses to the linear time hierar-
chy (without parameters). The result follows from a lower bound for
bounded depth circuits computing prefix parity, where the circuits are
allowed some auxiliary input; we derive this from a theorem of Ajtai.

1 Introduction

One approach to problems of structural complexity is to look at their be-
haviour in theories of bounded arithmetic. This allows us to consider how
complexity classes behave in models not unreasonably different from the
real world, and to study what logical resources are necessary to answer
complexity-theoretic questions. The most important problem in this area is
whether there is a model of full bounded arithmetic in which the polynomial
hierarchy does not collapse to a finite level, see e.g. [7].

In the present paper we deal with the problem of the relation between
the linear and polynomial time hierarchies, and look at it in the weak two-
sorted theory V0, which can be thought of as a subtheory of S1

2. V0 is
strong enough to prove the basic properties of AC0 circuits, but weak enough
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that we can use lower bounds on the strength of AC0 circuits to obtain
unconditional independence results. We show the existence of a model of
V0 in which a set in the second level Σp

2 of the polynomial time hierarchy
is not contained in the (parameter free) linear time hierarchy. Our result
uses a simple model-theoretic construction and the following circuit bound:
a bounded depth, polynomial size circuit can compute the prefix parities of
only an exponentially small fraction of n-bit inputs X, even if it has access
to some auxiliary input strings of length n

1
4 which may depend on X. Here

the “prefix parity of X” is the string whose ith bit is the parity of bits
1, . . . , i of X.

In the next section we explain how complexity classes are defined in
nonstandard models of arithmetic and describe the theory V0 and some of
its simple properties; in Section 3 we prove our main result, assuming the
lower bound, and discuss some extensions and some limitations of it; and in
Section 4 we prove the lower bound, as a corollary of an old theorem of Ajtai
about the fraction of input strings for which a bounded depth, polynomial
size circuit correctly computes the parity bit.

An earlier version of this paper appeared as [5].

This paper continues work in [6] where we show, under a cryptographic
assumption, that some important statements about structural complexity
theory are not provable in the bounded arithmetic theories S1

2 and PV. Our
assumption is that there is no probabilistic polynomial time algorithm for
factoring. This guarantees the existence of a model of S1

2 in which the
injective weak pigeonhole principle fails for a polynomial time function f

(that is, f is an injection from n2 to n for some n) but in which the surjective
weak pigeonhole principle holds for all polynomial time functions (that is,
for any n and any polynomial time g, g is not a surjection from n to n2).
We use this to construct, amongst other things, a model of PV in which the
polynomial time hierarchy does not collapse to the linear time hierarchy,
where we allow parameters in the definition of these hierarchies.

Here we use the same basic technique as [6], which is to take a model of
some theory and close an initial segment of it (and possibly a few elements
more) under a certain set of functions (there PV, here FAC0). This gives a
new model in which formulas whose quantifiers only range over the common
initial segment keep their truth values unchanged, but in which some formu-
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las with bigger quantifiers will change their truth values. The present work
has the advantage that it does not use any assumptions. It has two main
disadvantages, besides the obvious one that V0 is a weaker theory than PV.

The first is that our result holds for the parameter-free versions of the
hierarchies, while it seems that the natural definition of the hierarchies in
nonstandard models would allow parameters – we say more about this below.
We deal with parameters in [6] essentially by iterating our basic step and
using a union-of-chains construction. A similar approach does not appear
to be possible here, at least using our circuit lower bound.

The second disadvantage is related to properties of the set in the poly-
nomial hierarchy which is not provably in the linear time hierarchy. In the
present case, this set is rather artificial — for example, it is empty in the
standard model, and even in nonstandard models of stronger bounded arith-
metic theories. Additionally, it is from the second level Σp

2 of the polynomial
time hierarchy, where the set in [6] is in NP. The definition of that NP set
depends on having a function f in a model of PV which defines an injection
from the set of numbers of length n2 (in binary notation) into the set of
numbers of length n. By the non-provability of the relativized pigeonhole
principle in I∆0 we know that there are models of V0 in which there is a
definable injection from some n + 1 to n, giving an injection from strings
of length n + 1 to strings of length n. But this is too small a difference
between domain and range, and in the absence of the ability to iterate func-
tions polynomially many times (available in PV, but not in V0) there seems
to be no way of amplifying it. Of course the existence of a model of V0

with a definable injection from n2 to n is equivalent to an old open problem,
about the provability of the relativized weak pigeonhole principle in I∆0.
The existence of a definable injection between strings of these two lengths,
instead of just between the numbers, is an interesting question in its own
right and may be an easier version of this open problem.

2 Definitions

Most of the definitions below are based on [2]. We make some small changes
to make our presentation simpler, replacing the symbol ≤ with < and
changing the definition of |X| slightly (this will require corresponding small
changes to the axioms of V 0, which we will not give details of).
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We work in a language L2
A of two-sorted arithmetic. We will write vari-

ables of the number or “first-order” sort as i, j, k, . . . and variables of the
finite set or “second-order” sort (which we will usually think of as binary
strings) as X,Y, Z, . . .. The language consists of the function and predicate
symbols {0, 1,+, ·, | |,∈, <,=}. Here +, ·, < only apply to the number sort.
|X| is the largest number in the set X, or 0 if X is empty. If we think of X
as a string then |X| will be the length of X, which will consist of the |X|
bits X(1) . . . X(|X|), where X(i) is 1 if i− 1 ∈ X and is 0 otherwise.

A ΣB
0 formula is a formula in this language in which the only quantifiers

are bounded number quantifiers, that is, quantifiers of the form ∀i < t or
∃i<t where t is a number term (not containing i). Here a number term is
one taking a value of the number sort; it is allowed to contain subterms of
the form |X|.

A polynomially bounded string quantifier is of the form ∀X (|X| < t→
. . .) or ∃X (|X| < t ∧ . . .) where t is a number term (not containing the
variable X). We will write these as ∀X<t and ∃X<t . A linearly bounded
string quantifier is defined in the same way, with the important difference
that the bounding term t is not allowed to contain multiplication.

For i ∈ N, the ΣB
i formulas consist of i alternations of blocks of polyno-

mially bounded string quantifiers, beginning with an existential quantifier,
followed by a ΣB

0 formula. The ΣLIN
i or “linear” formulas are defined simi-

larly, but with linearly bounded string quantifiers. ΠB
i and ΠLIN

i are defined
dually. ΣB

∞ and ΣLIN
∞ are the unions of the respective sets of formulas over

all i ∈ N.
It is straightforward to see that for i ≥ 1 the sets of strings definable in

the standard model by ΣB
i formulas are exactly the sets from the ith level Σp

i

of the polynomial hierarchy. Similarly the sets of strings definable by ΣLIN
∞

formulas are exactly the sets from the linear hierarchy [8, 4] – the linear
hierarchy is not defined so robustly, so we do not seem to have the level-
by-level correspondence. Hence in a nonstandard model of an arithmetical
theory in this language we can identify the polynomial hierarchy with the
ΣB
∞ definable sets of strings and the linear hierarchy with the ΣLIN

∞ sets of
strings.

It seems natural to allow parameters to be used in defining these sets,
firstly because this captures the idea of limiting the time bounds of our
Turing machines to the standard polynomials, while letting the input and
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the code of the machine range over the whole model; secondly because if
there is a model in which the polynomial hierarchy is contained in the linear
hierarchy without parameters, then we must have this containment already
in the standard model. However we are not currently able to prove our
result for V0 in the version with parameters.

V0 is a theory of bounded arithmetic in our two-sorted language L2
A,

based on a theory of Zambella [9]. For a complete introduction see [2]. V0

consists of a set 2-BASIC of axioms fixing the basic properties of its language
and the following comprehension axiom for each ΣB

0 formula φ, possibly with
parameters:

∃Z<j ∀i<j (i ∈ Z ↔ φ(i)).

Notice that together with the properties of the | | function, this gives induc-
tion for ΣB

0 formulas. In fact, V0 is conservative over I∆0.
Let φ(i, X̄) be any ΣB

0 formula, with a free number variable i, some free
string variables X̄, and no other free variables. Let t(X̄) be any number-
valued term. Then φ and t naturally give rise to a function Fφ,t: the output
of Fφ,t on input X̄ is the string of length t(X̄) whose bits are given by the
values of φ(i, X̄) for i = 1 to t(X̄). We call the functions defined in this
way the uniform FAC0 functions. They correspond to the string functions
defined by uniform families of polynomial size, bounded depth circuits.

Now let M = (N,M) be a model of V0, where N is the set of number
elements and M the set of string elements. For any S ⊆ M , let T ⊆ M

be the closure in M of S under all uniform FAC0 functions and let U be
the set of lengths of strings from T . Then (U, T ) is a model of V0; closure
under the uniform FAC0 functions is exactly what is needed to guarantee
that comprehension holds.

3 Main theorem

We first state our lemma about small bounded depth circuits. The proof is
postponed until the next section.

Lemma 1. Let k ∈ N. Let (Cn) be a family of polynomial-size, bounded
depth circuits where each circuit has as input one string X of length n2 and
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k many auxiliary input strings, each of length
√
n, and each circuit has as

output a string Y of length n2.
Then for all sufficiently large n, for all but a fraction of at most 2−

√
n

input strings X, Cn fails to output the prefix parity of X for any choice of
auxiliary strings.

Let φ(A) be the formula “for some X with |X| = |A|4, there is no prefix
parity Y of X”. This is ΣB

2 , since we can express “Y is the prefix parity of
X” in a ΣB

0 way as

|Y | = |X| ∧ Y (1) ≡ X(1) ∧ ∀i< |X| (Y (i+ 1) ≡ Y (i)⊕X(i+ 1)),

where we use X(i) to mean the ith bit of the string X.

Theorem 2. There is a model of V0 in which φ(A) is not equivalent to any
formula ψ(A) in ΣLIN

∞ without parameters.

Proof. It is enough to show that the theory

V0 + {∃A¬(φ(A) ↔ ψ(A)) : ψ ∈ ΣLIN
∞ }

is finitely satisfiable. So suppose for a contradiction that we have finitely
many linear formulas ψ1, . . . , ψm with

V0 `
∨
i

∀A, φ(A) ↔ ψi(A).

We define a theory Γ with new constant symbols U1, . . . , Um+1 and
n1, . . . , nm+1. For each i = 1, . . . ,m+ 1, each k ∈ N and each FAC0 function
F , Γ contains the sentence “|U i| = n2

i and for all auxiliary strings Z1, . . . , Zk,
each of length

√
ni, the output of F (U i, Z̄) is not the prefix parity of U i”.

Γ also contains “ni+1 > n4
i ” for each i = 1, . . . ,m.

To see that Γ is finitely satisfiable in N, consider any k ∈ N and any finite
number of FAC0 functions. By the bound on any single FAC0 function given
by the lemma, for all sufficiently large n1 there is a string U1 of length n2

1

such that none of our finitely many functions can calculate the prefix parity
of U1, for any choice of auxiliary input. Pick such an n1 and U1, then find
n2 > n4

1 and a string U2 with the same property, and so on.
Let M be a model of Γ together with the theory of true arithmetic in

our language L2
A. For each i, let Mi be the model of V0 given by taking the
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closure in M of the set {strings of length ≤ √
ni} ∪ {U i} under all FAC0

functions in M, as in the previous section.
For each i, by our assumption φ must be equivalent in Mi to some ψt.

Since we have more models than we have linear formulas ψ, by the pigeonhole
principle there must be two models Mi and Mj , with i < j, in both of which
φ is equivalent to the same ψt.

Now let A be the string consisting of
√
ni many 1s. ψt(A) must have the

same truth value in Mi as in Mj , since it only talks about strings whose
lengths are linear in |A| and about numbers polynomial in |A|, and these
are the same in Mi and Mj (since, for r ∈ N, numbers less than |A|r can
be thought of as r-tuples of numbers less than |A|).

However φ(A) is false in Mj , since nj ≥ n4
i so Mj is the same as M

for all strings of length |A|4 and thus contains a prefix parity for every such
string. But φ(A) is true in Mi, since U i is in Mi but, by construction, the
unique prefix parity (in M) of U i is not in Mi.

Hence φ(A) cannot be equivalent to ψt(A) in both Mi and Mj , which
gives a contradiction.

The proof also shows that there exists a model in which our formula φ
is not equivalent to any parameter-free ΣB

1 formula. Any ΣB
1 formula ψ(A)

true in Mi, with ψ parameter-free, must also be true in Mj because any
witness X in Mi also exists in Mj , and the number elements of the two
models are the same up to polynomials in |A|, so X satisfies the same ΣB

0

formulas in Mj as in Mi and hence remains a witness.
By modifying the argument slightly, we can show that V0 does not prove

that the polynomial hierarchy collapses to the quadratic time hierarchy, or
to any time hierarchy given by polynomials of fixed degree d: replace the
exponent 4 by 4d in the definition of φ and in the proof, and change the
other details accordingly.

It is natural to ask whether our argument can be applied in any theory
beyond V0. Obviously, it has to fail in all theories which prove the totality
of prefix parity, such as VTC0 or PV – although, as discussed in the intro-
duction, we can obtain our result for PV by a different method under the
assumption that factoring is hard. A more severe limitation is that it fails for
V0 + ΣB

1 -replacement, even though this theory is ∀ΣB
1 -conservative over V0
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[9] and so does not prove the totality of prefix parity. Here ΣB
1 -replacement

is the scheme
∀i<n∃X φ(i,X) → ∃W ∀i<nφ(i,Wi)

for all ΣB
1 formulas φ, where we assume some way of encoding a sequence

of strings via a single string W .
The reason the argument fails here is that in V0 + ΣB

1 -replacement, the
initial segment of numbers n such that all strings of length n have prefix
parities is closed under multiplication. To see this, let X be a string of
length n2. If we think of X as a sequence of n pieces each of length n, then
by replacement and the existence of prefix parities for strings of length n

there is a string Y made up of a sequence of pieces Y1, . . . , Yn where each
piece Yi is the prefix parity of the corresponding piece of X. Let U be the
prefix parity of the string Y1(n) . . . Yn(n). Then the string W of length n2,
defined by W (ni+ j) := U(i)⊕Yi+1(j), where U(0) is 0, is the prefix parity
of X.

Thus, in the presence of replacement the formula φ(A) becomes linearly
bounded: it is equivalent to “for some X with |X| = |A|, there is no prefix
parity of X.”

To the best of the authors’ knowledge, the question whether V0 + ΣB
1 -

replacement proves that the polynomial hierarchy is equal to the linear hi-
erarchy is open. At present, we do not even have a negative answer under
a computational assumption, as the argument for PV from [6] also leads
to failure of replacement. The method of [6] can be used to show that
under appropriately stronger assumptions, equality of the two hierarchies
is unprovable in even stronger theories, such as T1

2, and hence a fortiori
in V0 + ΣB

1 -replacement. Unfortunately, these stronger assumptions, which
concern unprovability of versions of the weak pigeonhole principle, no longer
have an obviously computational character.

4 The circuit lower bound

It remains to give the proof of Lemma 1. In the calculations in this section
we use the vertical lines |δ| to mean the absolute value of a real number δ.

Theorem 3 (Ajtai [1]). Let (Cn) be a polynomial size family of bounded
depth circuits, where each Cn has n input bits. Let Pn be the fraction of
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input strings X of length n for which the output bit of Cn is the parity of
X. Then for any ε > 0, for all sufficiently large n,

|Pn − 1
2 | < 2−n1−ε

.

Note that by the nonuniformity of this result the bound n can be chosen
so as to depend only on ε and the depth d and size exponent r of the circuit
family. Otherwise for arbitrarily large n there would exist some circuit Dn

of depth d and size nr with distance from 1
2 greater than 2−n1−ε

. These
circuits would thus define a family (Dn) violating the theorem.

It is also worth noting that our argument appears to need Ajtai’s strong
bound on the advantage away from 1

2 here. The bounds that can be obtained
from H̊astad’s method of switching lemmas do not seem to be strong enough.
See Chapter 8 of [3].

Now consider a polynomial size family (Cn) of bounded depth circuits,
where the nth circuit takes n2 input bits and has n output bits. We think
of the input as a n×n binary matrix X̄ with rows X1, . . . , Xn. We imagine
the circuit as attempting to output a “parity vector”, the ith entry of which
is the parity of the vector Xi. We will write Ci

n for the subcircuit which, on
input X̄, calculates bit i of the circuit’s output.

We will show that the circuit outputs the correct parity vector with an
appropriately small probability.

Lemma 4. Take any ε > 0. Fix n sufficiently large. We omit the subscript
n in what follows.

For k ≤ n let P k be the probability, over input matrices X̄, that Ci(X̄) =
parity(Xi) for every i ≤ k. Then

|P k − 1
2k | < 2 · 2−n1−ε

.

Proof. Let d be the depth and r the size exponent of the circuit family (Cn).
We take the n given by Theorem 3 with parameters ε, d + 4 and r + 1; all
the circuits in the proof will be of this size or smaller. Let δ = 2−n1−ε

.
The proof is by induction. The base case, k = 1, follows from Theorem 3

and an averaging argument. Suppose that, for a random matrix X̄, C1(X̄) =
parity(X1) with probability more than 1

2 +δ. Then there must be some fixed
vectors Z2, . . . , Zn such that if we take a random n-bit vector X1 and give C1

the matrix with rows X1, Z2, . . . , Zn as input, then C1 outputs the correct
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parity of X1 with probability more than 1
2 + δ, which is impossible. The

same argument works if the probability over X̄ is less than 1
2 − δ.

Suppose the lemma is true for k. Say that P k = 1
2k +α, where |α| < 2δ.

We will calculate P k+1.
First let Pr(Ck+1(X̄) = parity(Xk+1)) = 1

2 + β. By averaging, |β| < δ.
Now consider the following function f , which takes as input a matrix

X̄ and tries to output the parity of Xk+1. If C1(X̄), . . . , Ck(X̄) correctly
output the parities of X1, . . . , Xk, then f outputs Ck+1(X̄). Otherwise f
outputs ¬Ck+1(X̄). Let Pr(f(X̄) = parity(Xk+1)) = 1

2 + γ.
We claim that |γ| < δ. Otherwise, again by our averaging argument,

there are some fixed values of Z1, . . . , Zk, Zk+2, . . . , Zn for the rows other
than k + 1 over which, for a random row Xk+1, f correctly calculates
parity(Xk+1) with too high (or too low) a probability. This allows us to
violate Theorem 3 by defining a bounded depth circuit for parity(Xk+1) as
follows. Take C1, . . . , Cn and hardwire in Z1, . . . , Zk, Zk+2, . . . , Zn as the
appropriate rows of the input. At the bottom of the circuit, check whether
C1, . . . , Ck compute the parities of Z1, . . . , Zk correctly (since these strings
are fixed, we can hardwire in their parities); if so, output the output of Ck+1;
otherwise output the inverse of Ck+1. This construction adds no more than
four levels to depth of the circuit Cn and no more than 2n nodes to the
size. This completes the proof of our claim, since we chose n large enough
to work for circuits of this depth and size.

Now for a random matrix X̄, f is correct in precisely two cases:

1. C1, . . . , Ck are all correct and Ck+1 is correct. The probability of this
is P k+1.

2. C1, . . . , Ck are not all correct and Ck+1 is not correct. The probability
of this is

1− Pr(C1, . . . , Ck all correct)− Pr(Ck+1 correct) + P k+1

= 1− ( 1
2k + α)− (1

2 + β) + P k+1.

Now we can equate our two expressions for Pr(f is correct) to get

1
2 + γ = P k+1 + 1− ( 1

2k + α)− (1
2 + β) + P k+1
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and hence

P k+1 = 1
2( 1

2k + α+ β + γ).

But |α| < 2δ and |β|, |γ| < δ. So the advantage of P k+1 away from 1
2k+1

is smaller than 2δ, as required.

Proof of Lemma 1. First observe that from a small bounded depth circuit
computing prefix parities of strings of length n2, we can easily produce a
small bounded depth circuit computing parity vectors of n×n matrices. So,
using Lemma 4 with a suitable ε, for large n the circuit Cn with any fixed
auxiliary inputs will successfully calculate the prefix parity for at most a

fraction 2−n
2
3 of inputs X. There are only 2k

√
n possible choices of auxiliary

strings, hence there are no more than a fraction 2−n
2
3 ·2k

√
n ≤ 2−

√
n of inputs

X for which there is at least one auxiliary string which helps to compute
the prefix parity of X.
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