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We prove three switching lemmas, for random restrictions for which vari-
ables are set independently; for random restrictions where variables are set
in blocks (both due to H̊astad [3]); and for a distribution appropriate for
the bijective pigeonhole principle [2, 4]. The proofs are based on Beame’s
version [1] of Razborov’s proof of the switching lemma in [5], except using
families of weighted restrictions rather than families of restrictions which
are all the same size. This follows a suggestion of Beame in [1]. The re-
sult is something between H̊astad’s and Razborov’s methods of proof. We
use probabilistic arguments rather than counting ones, in a similar way to
H̊astad, but rather than doing induction on the terms in our formula with
an inductive hypothesis involving conditional probability, as H̊astad does,
we explicitly build one function to bound the probabilities for the whole
formula.

1 A restriction which sets variables independently

Let F be an r-DNF, that is, a disjunction of conjunctions (which we will
usually call “terms”) where each conjunction has size r or less. Suppose the
variables in F come from a set X of size n.

Fix a probability p. Define a distribution R of partial restrictions to
the variables by choosing a restriction ρ as follows: independently for each
x ∈ X, set x to 0 with probability 1−p

2 ; to 1 with probability 1−p
2 ; or to ∗

(meaning “leave it unset”) with probability p.
The weight |ρ| of a restriction ρ ∈ R is its probability of being chosen

from R. So if ρ has exactly a many 1s, b many 0s and c many ∗s, then the
weight of ρ is (1−p

2 )a+bpc. The weight |S| of a set of restrictions S ⊆ R is the
probability that a random restriction from R belongs to S, or, equivalently,
the sum of the weights of the restrictions in S.
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The canonical tree T (F, ρ) is defined by the following decision procedure:
Look through F for a term C such that C �ρ 6≡ 0. If there is no such term,
then halt and output “0”. Otherwise let C1 be the first such term. Let β1

list the variables that appear starred in C1 �ρ. Query all these variables in
order, and let the assignment π1 be given by the replies. If ρπ1 satisfies C1

(or if β1 was empty and C1 was already satisfied in ρ) halt and output “1”.
Otherwise repeat this step starting with ρπ1 in place of ρ, looking for a term
C2 which is the first such that C2 �ρπ1 6≡ 0 etc., until we run out of terms.

Note that this tree correctly decides F � ρ, in that if π is given by the
answers along a branch in the tree, then the label at the end of the branch
(called the “output” above) is the value of F �ρπ.

Lemma 1 Fix a number s > 0. Let S be the set of restrictions ρ in R
for which T (F, ρ) has height s or greater. Then |S| ≤ (9pr)s (assuming
p < 1/9).

Proof We will bound the weight of S by defining an injection from S into
a set of small weight (roughly speaking) and then arguing about how this
map changes weights. So let ρ ∈ S and let π be the first path in T (F, ρ)
with length s or greater.

Let C1, . . . , Ck, β1, . . . , βk and π1, . . . , πk be the terms, unset variables
and assignments to them encountered along π, as far as the sth query in π,
from the construction of T (F, ρ). It may be that the sth query in π occurred
in the middle of querying the variables βk, in which case we trim βk and πk

to only include the variables mentioned in the first s queries in π.
For each i = 1, . . . , k let σi be the (unique) assignment to βi which is

consistent with Ci � ρπ1 . . . πi−1 (for i < k, this will actually satisfy Ci �
ρπ1 . . . πi−1). Note that the βis are all disjoint so that ρσ1 . . . σk is a well-
defined restriction. Let σ be σ1 . . . σk.

We will code each βi as a string β′
i of |βi| numbers, each less than 2r, by

recording, for each variable in βi, its location in Ci (a number less than r)
and whether it is the last variable in βi (one bit). We will code the whole
tuple β1, . . . , βk as the concatenation β′ = β′

1 . . . β′
k of these strings. So over

S there are (2r)s possible different strings β′.
We will code each πi simply as a string π′

i of |βi| bits, one for each variable
in βi. π′ will be the concatenation π′

1 . . . π′
k. So there are 2s possible strings

π′.
We now define a map θ : S → R× (2r)s × 2s by

θ : ρ 7→ (ρσ, β′, π′).

We claim that this is an injection. To see this, suppose we are given
(ρσ, β′, π′). We may recover ρ as follows: First, we can easily recover all
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strings β′
i and π′

i. Now let C ′
1 be the first term in F such that C ′

1 �ρσ 6≡ 0.
C ′

1 cannot come before C1, and by construction C1 is not falsified by ρσ.
So we must have C ′

1 = C1. From β′
1 and C1 we can recover β1, and from

this and π′
1 we can recover π1. σ1 and π1 were assignments to the same

variables, so we can construct a restriction ρσ[π1/σ1] = ρπ1σ2 . . . σk. Let C ′
2

be the first term in F such that C ′
2 � ρπ1σ2 . . . σk 6≡ 0. Then as above, C ′

2

must equal C2, and we can recover β2 and π2 and carry on in the same way.
Once we have recovered all the βis we know exactly what changed between
ρ and ρσ and can recover ρ.

Now temporarily fix some values of β′ and π′ and let Sβ′,π′ be the subset
of S consisting of all ρs to which θ assigns these values.

Restricted to Sβ′,π′ , the first component θ1 : ρ 7→ ρσ of θ is an injection
Sβ′,π′ → R, so the weight |θ1[Sβ′,π′ ]| of its image is the sum of the individual
weights |θ1(ρ)| over all ρ ∈ Sβ′,π′ . But ρσ sets exactly s variables that were
unset in ρ, so |ρσ| = p−s(1−p

2 )s|ρ|. Hence

|θ1[Sβ′,π′ ]| =
(

1− p

2p

)s

|Sβ′,π′ |.

But θ1[Sβ′,π′ ] is a subset of R so has weight ≤ 1, so |Sβ′,π′ | ≤ ( 2p
1−p)s.

Finally S is the union of the sets Sβ′,π′ over all possible strings β′, π′. So

|S| ≤ (2r)s2s

(
2p

1− p

)s

=
(

8pr

1− p

)s

giving the result. �

2 A restriction which sets variables in blocks

Let F be an r-DNF in variables X, as above. Suppose that X is partitioned
into a family B of disjoint blocks. We assume there is some fixed ordering
on the variables in each block.

Fix probabilities p and q (in the usual application we may take p = q,
but it is useful to keep them separate to keep track of what is happening
in the proof). Define a distribution R of partial restrictions by choosing
a restriction ρ in two stages, as follows: First, independently for each x ∈
X, set x to 1 with probability 1 − p, otherwise leaving it starred. Then,
independently for each block B ∈ B (ignoring any blocks which are already
set to all 1), with probability 1 − q set all starred variables in B to 0 (in
which case we call B a 0-block), otherwise leaving them all starred (in which
case we call B a ∗-block).

The weight of a restriction ρ is the product of the weights of its blocks. If
a block has a many 1s and b > 0 many non-1s, its weight is (1−p)apb(1− q)
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if it is a 0-block and (1−p)apbq if it is a ∗-block. If a block is all 1s (in which
case the terms 0-block and ∗-block become meaningless) then its weight is
(1−p)|B| (although in applications there are unlikely to be any such blocks).

The restriction g(ρ) extends ρ further: for each ∗-block in ρ, it sets every
starred variable, except for the first one, to be 1.

The canonical tree T (F, ρ) is defined by the following decision procedure:
Look through F for a term C such that C �ρ 6≡ 0. If there is no such term,
then halt and output “0”. Otherwise let C1 be the first such term. Let β1

list the blocks B such that a starred variable from B appears in C1 �ρ, in the
order in which they appear. For B ∈ β1, query the single starred variable
in B � g(ρ), regardless of whether or not this is the variable appearing in
C1 � ρ. Let π1 be the complete assignment to all the blocks in β1 given by
g(ρ) together with all the replies to the queries. That is, under ρπ1 each
block B ∈ β1 will be set to 1 everywhere, except that the variable that was
queried may be set to either 0 or 1, depending on the reply. If ρπ1 satisfies
C1 (or if C1 was already satisfied in ρ) halt and output “1”. Otherwise
repeat this step starting with ρπ1 in place of ρ, etc.

Note that along any branch in the tree no block is queried more than
once, and that the moment a block is queried all variables in that block are
given a 0 or 1 value.

The tree T (F, ρ) correctly decides F � g(ρ), in that if π is given by the
answers along a branch in the tree, then the label at the end of the branch
is the value of F �g(ρ)π.

Lemma 2 Fix a number s > 0. Let S be the set of restrictions ρ in R
for which T (F, ρ) has height s or greater. Then |S| ≤ (13qr)s (assuming
p < 1/2r and q < 1/13).

Proof The proof is similar to the proof of the previous lemma. Let ρ ∈ S

and let π be the first path in T (F, ρ) with length s or greater.
Let C1, . . . , Ck, β1, . . . , βk and π1, . . . , πk be the terms, blocks and as-

signments encountered along π, as far as the sth query in π, from the con-
struction of T (F, ρ). If necessary, trim βk and πk to only include the blocks
mentioned in the first s queries in π.

For i = 1, . . . , k let γi list the starred variables from the blocks in βi

which appear positively in Ci �ρπ1 . . . πi−1.
For i = 1, . . . , k let σi be the following assignment. For each block

B ∈ βi, σi sets every starred (under ρ) variable in B that appears positively
in Ci � π1 . . . πi−1 to 1, and sets all remaining starred variables in B to
0. Note that this is consistent with Ci � π1 . . . πi−1, and also that σi sets
exactly the same variables as πi does, so that the different σis are disjoint
and ρσ1 . . . σk is a well-defined restriction. Let σ be σ1 . . . σk.
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As before, we will code β1, . . . , βk as a string β′ = β′
1 . . . β′

k, by recording
the location of the first starred variable from a block. There are (2r)s

possible strings β′.
As before, we will code π1, . . . , πk as a string π′ = π′

1 . . . π′
k of s bits.

We will code each γi as a string γ′
i of r bits, one for each literal in Ci,

recording whether that literal is in γi. We code the whole tuple γ1, . . . , γk

as the concatenation γ′ = γ′
1 . . . γ′

k of these strings. There are at most 2rs

many possible γ′s.
We define θ : S → R× (2r)s × 2s × 2rs by

θ : ρ 7→ (ρσ, β′, π′, γ′).

To see that this is an injection, suppose we are given (ρσ, β′, π′, γ′). We
can recover C1 and β1 just as in the previous lemma, and from C1 and γ′

1 we
can recover γ1. But now for each block B ∈ β1, γ1 tells us exactly what we
changed to go from ρ�B to ρσ1 �B. We can undo the changes, and recover
ρ�B, by setting all variables in B mentioned in γ1 to ∗ and setting all 0s in
ρσ1 �B to ∗. Then we can recover π1 �B by setting all but the first ∗ to 1
and setting the first ∗ according to π′

1. Then we continue for the rest of the
terms, similarly to the previous lemma.

Now temporarily fix some values of β′, π′ and γ′ and let Sβ′,π′,γ′ be the
subset of S consisting of all ρs to which θ assigns these values. Let θ1 be as
before, and suppose that γ′ records m many variables in total.

For ρ ∈ Sβ′,π′,γ′ , going from ρ to ρσ changes m many non-1s into 1s,
which increases the weight by a factor of (1−p

p )m. It also changes s many
∗-blocks, each one being changed into either a 0-block, increasing the weight
by a factor of 1−q

q , or into an all-1 block, increasing the weight by a factor
of 1

q . So the total increase is ≥ (1−p
p )m(1−q

q )s. Hence

|Sβ′,π′,γ′ | ≤
(

p

1− p

)m (
q

1− q

)s

.

For ρ ∈ S there are at most rs variables that could be recorded in γ′. So we
can calculate

|Sβ′,π′ | =
∑
γ′

|Sβ′,π′,γ′ | =
rs∑

m=0

∑
|γ′|=m

|Sβ′,π′,γ′ |

≤
rs∑

m=0

(
rs

m

) (
p

1− p

)m (
q

1− q

)s

=
(

1 +
p

1− p

)rs (
q

1− q

)s

≤ e
prs
1−p

(
q

1− q

)s
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≤
(

3q

1− q

)s

where the last inequality holds if p < 1
2r .

Finally

|S| ≤ (2r)s2s

(
3q

1− q

)s

=
(

12qr

1− q

)s

giving the result. Clearly the constant could be improved by putting some
more conditions on p and q. �

3 A restriction for the pigeonhole principle

Let F be an r-DNF in variables P = {pxy : x ∈ n+1, y ∈ n}, where we take
pxy to express that “pigeon x goes to hole y”.

Fix a probability q. Define a distribution R of partial injections of n+1
into n by choosing a partial injection ρ as follows: choose the range of ρ by
putting each hole into the range independently at random with probability
(1 − q), then choose uniformly at random from all possible injections from
the set of pigeons into this range (we do this “backwards” to exclude the
possibility of having to find holes for n + 1 pigeons). If ρ sets exactly m

pigeons, then the weight of ρ is (1− q)mqn+1−m (n+1−m)!
(n+1)! .

We will identify a partial injection ρ with the partial assignment to the
variables P in which, for each pigeon x which is sent to a hole y by ρ: pxy

is set to true, pxy′ is set to false for each y′ 6= y, and px′y is set to false for
each x′ 6= x.

To define the canonical tree T (F, ρ) for F with respect to such a ρ, we
first pre-process F . For each term in F we replace each negative literal ¬pxy

with the disjunction
∨

y′ 6=y pxy and then distribute out so that the formula
is once again an r-DNF (which may now possibly be nr times larger). We
then remove any term which asserts that two pigeons go to one hole or that
one pigeon goes to two holes. We call our new r-DNF F ′.

The tree will again be given by a decision procedure. This time the
queries are not to the values of propositional variables. Instead we can
either name a pigeon and query which hole it goes to, or name a hole and
query which pigeon goes to it. We may assume that the replies always form
a partial injection (assume that the tree halts in some error state if a branch
becomes so long that there are no free holes or pigeons available to reply to
a query).

Now look for the first term C in F ′ such that C � ρ 6= 0. If there is no
such term, halt and output “0”. Otherwise let C1 be the first such term. Let
β1 list the literals pxy that appear in C1 �ρ. For each such pxy, query which
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hole pigeon x goes to, and then query which pigeon goes to hole y. Let π1

be the partial injection given by the replies to these queries. As before, if
ρπ1 satisfies C1 halt and output “1”, and otherwise repeat this step starting
with ρπ1 in place of ρ, etc.

Let π be a branch in the tree, which we will identify with the partial
injection given by the replies along that branch. If π ends with the output
“1” at the leaf, then by construction π must satisfy some term C ′ in F ′ and
hence must also satisfy the term C in F from which C arose. Conversely,
if π ends with the output “0”, then there is no extension of π to a partial
injection α which satisfies any term C in F . For suppose such an α and C

existed. Then α would also satisfy some term C ′ in F ′ arising from C; but
then C ′ �ρ cannot be 0, contradicting the construction of the tree.

Lemma 3 Fix a number s > 0. Let the probability q be chosen so that
128r2n3q4 < 1 (the constant here could easily be improved). Let S be the set
of partial injections ρ ∈ R for which T (F, ρ) has height s or greater. Then
the weight |S| is exponentially small in s.

Proof Let l = 2qn. By the Chernoff bound, for all but an exponentially
small (in n) number of exceptions, every ρ ∈ S leaves fewer than l pigeons
and l holes unset. Hence we may assume in what follows that every ρ ∈ S

has this property.
Let ρ ∈ S and let π be the first path in T (F, ρ) with length s or greater.
Let C1, . . . , Ck, β1, . . . , βk and π1, . . . , πk be the terms, literals and replies

encountered along π, as far as the sth query in π, from the construction of
T (F, ρ). If necessary, trim βk and πk to only include the blocks mentioned
in the first s queries in π.

For each i = 1, . . . , k let σi be the partial injection which is specified by
the literals in βi. Note that every pigeon and hole in σi also occurs in πi,
because in the tree we query both the pigeons and the holes occurring in
βi. Hence for j > i, σi is consistent with σj , because the pigeons and holes
occurring in σj are disjoint from those in πi and hence disjoint from those in
σi (recall that βj lists the literals pxy in Cj �ρπ1 . . . πj−1). Let σ be σ1 . . . σk.

As before, we will code β1, . . . , βk as a string β′ = β′
1 . . . β′

k, by recording
the locations of the literals βi in each term Ci. There are (2r)s possible
strings β′.

Let A and B be respectively the set of pigeons and the set of holes left
unset in ρσ. We know that |A|, |B| ≤ l. We will code πi as follows. For each
pxy in βi, pigeon x was queried in the branch π and was either assigned to
hole y or to some hole y′ 6= y. In the second case, such a y′ must be in B

because from this point onwards, neither the tree nor σ can assign any other
pigeon to hole y′. Hence we may code which hole was assigned using a single
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bit and a number less than l. Similarly hole y was assigned either pigeon
x or some pigeon from A, and we code this in a similar way. Let π′

i be the
string coding all replies in πi in this way, and let π′ be the concatenation
π′

1 . . . π′
k. There are (2l)s possible strings π′.

We define θ : S → R× (2r)s × (2l)s by

θ : ρ 7→ (ρσ, β′, π′).

This is an injection, for suppose we are given (ρσ, β′, π′). We know A and
B immediately. We can recover C1 and β1 as before, and from β1, A and B

we can recover π1. Then we continue as before.
Now temporarily fix some values of β′ and π′ and let Sβ′,π′ be the subset

of S to which θ assigns these values. Let θ1 be as before.
For ρ ∈ Sβ′,π′ , going from ρ to ρσ sets at least s/2 more pigeons. Adding

one more pigeon to a partial injection of size m changes its weight by a
factor of 1−q

q
1

n+1−m . In our case n − m is always smaller than l, so the
factor is at least 1−q

ql . Hence the total increase is at least (1−q
ql )s/2, and

thus |Sβ′,π′ | ≤ ( ql
1−q )s/2 which we can bound by (2ql)s/2 if we assume that

q < 1/2.
Finally, recalling that l = 2qn, we have

|S| ≤ (2r)s(2l)s(2ql)s/2 = (4r2 · 16q2n2 · 2q2n)s/2

= (128r2n3q4)s/2,

which gives the result. �
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