130 (2005) MATHEMATICA BOHEMICA No.1, 81-88

MINIMAL ACYCLIC DOMINATING SETS AND CUT-VERTICES

VLADMIR SAMODIVKIN, Sofia

(Received April 7, 2004)

Abstract. The paper studies minimal acyclic dominating sets, acyclic domination number
and upper acyclic domination number in graphs having cut-vertices.

Keywords: cut-vertex, dominating set, minimal acyclic dominating set, acyclic domina-
tion number, upper acyclic domination number

MSC 2000: 05C69, 05C40

For the graph theory terminology not presented here, we follow Haynes et al. [3].
All our graphs are finite and undirected with no loops or multiple edges. We denote
the vertex set and the edge set of a graph G by V(G) and E(G), respectively. The
subgraph induced by S C V(G) is denoted by (S,G). For any vertex v of G its
open neighborhood N(v,G) is {x € V(G); vz € E(G)} and its closed neighborhood
N[v,G] is N(v,G) U {v}. For a set S C V(G) its open neighborhood N(S,G) is

U N(v,G), its closed neighborhood N[S,G]is N(S,G)US. A subset of vertices A
veS
in a graph G is said to be acyclic if (A, G) contains no cycles. Note that the property

of being acyclic is a hereditary property, that is, any subset of an acyclic set is itself
acyclic. A dominating set in a graph G is a set of vertices D such that every vertex
of GG is either in D or is adjacent to an element of D. A dominating set D is a
minimal dominating set if no proper subset D’ C D is a dominating set. The set of
all minimal dominating sets of a graph G is denoted by MDS(G). The domination
number v(G) of a graph G is the minimum cardinality taken over all dominating
sets of G. The literature on this subject has been surveyed and detailed in the two
books by Haynes et al. [4], [5].

A given graph invariant can often be combined with another graph theoretical
property P. Harary and Haynes [3] defined the conditional domination number
(G : P) as the smallest cardinality of a dominating set S C V(G) such that the
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subgraph (S, G) induced by S has property P. One of the many possible properties
imposed on S is:

P,a: (S, G) has no cycles.

The conditional domination number (G : P,q) is called the acyclic domination
number and is denoted by v,(G). The concept of acyclic domination in graphs was
introduced by Hedetniemi et al. [6]. An acyclic dominating set D is a minimal acyclic
dominating set if no proper subset D’ C D is an acyclic dominating set. The upper
acyclic domination number T'y(G) is the maximum cardinality of a minimal acyclic
dominating set of G. The set of all minimal acyclic dominating sets of a graph G
is denoted by MD,S(G). For every vertex x of a graph G let MD,S(z,G) = {D €
MD,S(G); x € D}.

Let us introduce the following assumption

(x) a graph H is the union of two connected graphs H; and H> having exactly one
common vertex z and |V (H;)| > 2 for i = 1,2.

In this paper we deal with minimal acyclic dominating sets, acyclic domination
number and upper acyclic domination number in graphs having cut-vertices. Observe
that domination and some of its variations in graphs having cut-vertices has been
the topic of several studies—see for example [1, 7, 5 Chapter 16].

1. MINIMAL ACYCLIC DOMINATING SETS

In this section we begin an investigation of minimal acyclic dominating sets in
graphs having cut-vertices.
The following lemma will be used in the sequel, without specific reference.

Lemma A [5, Lemma 2.1]. For any graph G, MD,S(G) C MDS(G).

Theorem 1.1. Let Hy, Hy and H be graphs satistying (x). Let M € MD,S(z, H)
and M; = M NV(H;), j =1,2. Then one of the following holds:
(i) M; € MD,S(z, H;) for j = 1,2;
(ii) there are ! and m such that {I,m} = {1,2}, M; € MD,S(z, H;), and M,,, — {z}
is the unique subset of M,, which belongs to MD,S(H,,).

Proof. Since x € M then M, is an acyclic dominating set of H;, j =1,2. Let
there be i € {1,2} such that M; ¢ MD,S(z, H). Suppose M; ¢ MD,S(z, H;) for
j =1,2. Then there is a vertex u; € M; and a vertex us € M» such that M; — {u;}
is an acyclic dominating set of H;, j = 1,2. Hence (M7 — {u1}) U (M2 — {uz}) =
M — ({u1} U {usz}) is an acyclic dominating set of H—a contradiction. So, without
loss of generality let My ¢ MD,S(x, H;) and My € MD,S(x, H2). Hence there is a
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vertex u € M; such that M; — {u} is an acyclic dominating set of Hy. If u # x then
M — {u} is an acyclic dominating set of H, which is a contradiction. Hence u = x
and M; — {z} is an acyclic dominating set of Hy. Suppose M; — {z} & MD,S(H;).
Then there is a vertex w € M — {«} such that M; — {x, w} is an acyclic dominating
set of Hy. But then M — {w} is an acyclic dominating set of H—a contradiction.
Therefore M7 — {x} € MD,S(H;). Let v € M; — {z}. Suppose M7 — {v} is an
acyclic dominating set of Hy. Then M — {v} is an acyclic dominating set of H—a
contradiction. g

Theorem 1.2. Let Hy, Hy and H be graphs satistying (). Let M € MD,S(H),
x ¢ M and M; = M NV(Hj), j =1,2. Then one of the following holds:
(i) M; € MD,S(H,) for j =1,2;
(ii) there are | and m such that {l,m} = {1,2}, M; € MD,S(H;), M,, €
MD,S(H,, — x) and M,, is no dominating set in H,,.

Proof. Clearly, there is i € {1,2} such that M; is an acyclic dominating set of
H;. Without loss of generality let i = 1. Suppose M, ¢ MD,S(H;). Then there is
u € M such that M; — {u} is an acyclic dominating set of Hy and then M — {u} is
an acyclic dominating set of G—a contradiction. So M; € MD,S(H1). Analogously,
if M> is an acyclic dominating set of Ha, then My € MD,S(G>). Now, let M> be not
an acyclic dominating set of Ho. Then Ms is an acyclic dominating set of Hy — x.
Suppose My & MD,S(Hs — ). Then there is v € My such that Ms —{v} is an acyclic
dominating set of Hy — x and hence M — {v} is an acyclic dominating set of H—a
contradiction. O

Theorem 1.3. Let Hy, H, and H be graphs satisfying (x). Let M; € MD,S(H,)
for j =1,2 and x ¢ My U M. Then one of the following holds:
(i) My UM, € MD,S(H);
(ii) there arel € {1,2} and v € V(H;) such that {u} = N(x, H;)) " M;, M; — {u} €
MD,S(H; — z) and (M7 U Ms) — {u} € MD,S(H).

Proof. Let M = M;UMs;. Then M is an acyclic dominating set of H. Suppose
M ¢ MD,S(H). Hence, there is a vertex u € M such that M — {u} is an acyclic
dominating set of H. Without loss of generality let w € V(H;). Then M7 — {u} is
no acyclic dominating set of H; and hence M; — {u} is an acyclic dominating set of
H, —x. Therefore {u} = N(z, H;) N M;. Suppose My —{u} ¢ MD,S(H; — ). Then
there is a vertex v € My — {u} such that M; — {u,v} is an acyclic dominating set
of Hy — z. Hence M7 — {v} is an acyclic dominating set of H;—a contradiction. So
My, —{u} € MD,S(H; — z). Suppose M — {u} ¢ MD,S(H). Hence there is a vertex
w, w € M — {u} that M — {u,w} is an acyclic dominating set of H. If w € V(H;),
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then M7 — {u,w} is an acyclic dominating set of H; — z—a contradiction. Therefore
w € V(Hz) and then My — {w} is an acyclic dominating set of Hy—a contradiction.
So M — {u} € MD,S(H). O

Theorem 1.4. Let Hy, Hy and H be graphs satisfying (x). Let M; € MD,S
(x,Hj) for j =1,2. Then My U My € MD,S(z, H).

Proof. Let M = M; U M,. Obviously M is an acyclic dominating set of
H. Suppose M ¢ MD,S(H). Then there is a vertex v € M such that M — {u}
is an acyclic dominating set of H. First, let © # x and without loss of generality
let w € V(Hy) — {«z} . Then M; — {u} is an acyclic dominating set of H;—a
contradiction. Secondly, let u = . Now, there is ¢ € {1, 2} such that M; — {z} is an
acyclic dominating set of H;, which is a contradiction. So M € MD,S(H) and since
x € M we have M € MD,S(z, H). O

Theorem 1.5. Let Hy, Hy and H be graphs satisfying (x). Let M; € MD,S
(z,Hy), My € MD,S(Hz2), x &€ My and M = M; U My. Then one of the following
holds:

(i) M € MD,S(H);

(ii) My — {2} € MD,S(H; — 2) and M — {z} € MD,S(H);
(iii) thereisU C My such that (Ma—U)U{z} € MD,S(Hsz) and M —U € MD,S(H);
(iv) no subset of M is an acyclic dominating set of H.

Proof. Let M ¢ MD,S(H) and let there exist M3 C M such that Mz €
MD,S(H). First, let x ¢ Ms. Then M; — {z} is an acyclic dominating set of Hy — x.
Suppose M1 — {z} ¢ MD,S(H; — x). Now, there is a vertex v € M; — {2} that
My — {z,v} is an acyclic dominating set of H; — 2. Hence M; — {v} is an acyclic
dominating set of H;—a contradiction. So, M1 — {z} € MD,S(H; —z) and M — {z}
is an acyclic dominating set of H. Now, suppose M — {z} € MD,S(H). Then there
is a vertex w € M — {z} such that M — {z,w} is an acyclic dominating set of H. If
w € V(Hy) then M7 — {x,w} is an acyclic dominating set of H; —2—a contradiction.
If w € V(H3), then My —{w} is an acyclic dominating set of Hy—a contradiction. So
M —{z} € MD,S(H). Secondly, let x € M3. Let U = M —Ms. If thereis u € UNMjy,
then M; — {u} is an acyclic dominating set of H;—a contradiction. Hence, U C Ms.
Then (My — U) U {z} = M3 NV (Hs) is an acyclic dominating set of Hs. Since M
is no minimal acyclic dominating set of H we have U # () and hence My — U is no
dominating set of Ha. If there is v € My — U such that (Ms — (U U {v}) U {z} is
an acyclic dominating set of Ho then M5 — {v} is an acyclic dominating set of H—a
contradiction. Hence (Ms —U) U {z} is a minimal acyclic dominating set of Hy. O
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2. I'4-SETS AND 7,-SETS

In this section we present some results concerning the acyclic domination number
and the upper acyclic domination number of graphs having cut-vertices.

Let 11(G) be a numerical invariant of a graph G defined in such a way that it is the
minimum or maximum number of vertices of a set S C V(G) with a given property
P. A set with the property P and with u(G) vertices in G is called a p-set of G.
Fricke et al. [2] define a vertex v of a graph G to be

(i) p-good, if v belongs to some p-set of G and
(ii) p-bad, if v belongs to no u-set of G.

Theorem 2.1. Let Hy, H» and H be graphs satisfying (x).

1. Let x be a I',-good vertex of a graph H. Then T'y(H) < Ta(Hy) + Tu(Ho). If
Tu(H) =Ta\(Hy)+Tu(Hs), M is aTy-set of H and x € M, then there are | and m
such that {I,m} = {1,2}, M NV (H;) is a T'y-set of H and M NV (H,) —{z} is a
T',-set of H,,.

2. Let « be a T',-good vertex of graphs Hy and Hy. Then T',(Hq) +Ta(Hs) — 1 <
To(H). IfT.(H1) +Ta(Hy) =1 = Tu(H), Mj is a I'a-set of H;, j = 1,2 and
{x} = My N My then My U M> is a T»-set of H.

3. Let x be a I'y-bad vertex of a Hy and Hy. ThenT',(H) > T',(H1) +Ta(H2) — 1.
IfT.(H) =Ta(H1) + Ta(H2) — 1 and M; is a T'a-set of H;, j = 1,2 then there are
l € {1,2} and v € V(H;) such that {u} = N(x, H)) N M; and M; U My — {u} is a
T',-set of H.

4. Let x be a T'y-bad vertex of H. Then I'y(H) < max{T',(H1) +Ta(H2),Ta(Hy —
z) + La(H2), Ta(Hr) + Ta(H2 — )}

Proof. 1. Let M beaT,setof H,x € M and MNV(H;)=M;, j=1,2.

Case M; € MD,S(z,H;),j = 1,2: Then To(H) = |M| = |My| + [M] — 1 <
Pa(Hi) + Da(H2) — 1.

C ase there are [, m such that {I,m} = {1,2}, M; € MD,S(z, H;) and M,,,—{z} €
MD,S(H,,): We have T'y(H) = |M| = | M| + |M,, — {a}| < Ta(H;) + To(Hp). If
T.(H) =T.(H1) + Ta(Hs), then |M;| = T.(H;) and |M,, — {z}| = Ta(H,,). Hence
M is a T'y-set of H; and M,, — {z} is a T'y-set of H,,.

There are no other possibilities because of Theorem 1.1.

2. Let M; be a I'y-set of H;, j = 1,2 and {z} = M7 N M. It follows from
Theorem 1.4 that M;UM, € MD,S(x, H). Hence I'y(H) > |M1UMs| = |My|+|M2|—
1 = To(Hy) +Ta(Hs) — 1. ¥ TW(H) = Ta(H1) + Ta(Hs) — 1 then |My U Ma| = T (H).
Hence M7 U Ms is a I'y-set of H.

3. Let M, be a I'y-set of H;, j = 1,2 and M = M; U M. If M € MD,S(H)
then T'y(H) > |M| = |M1| + |Ma| = Ta(H1) 4+ Ta(Hz). Otherwise it follows from
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Theorem 1.3 that there are [ € {1,2} and u € V/(H;) such that {u} = N(z, H)) N M,
and M — {u} € MD,S(H). Hence I',(H) > |M — {u}| = |Mi| + |M2] — 1 =
Fa(Hl) + Fa(H2) — 1. 1If Fa(H) = Fa(Hl) + Fa(HQ) — 1 then |M - {u}‘ = Fa(H)'
Hence M — {u} is a T'y-set of H.

4. Let M be a T'y-set of H and M; = M NV (Hj), j =1,2. If M; € MD,S(H,),
j=1,2then I',(H) = |M| = |Mi| + |M2| < Ta(H1) + Ta(Hz2). Otherwise it follows
from Theorem 1.2 that M; € MD,S(H;) and M,,, € MD,S(H,,, —) for some [, m such
that {{,m} = {1,2}. Hence ',(H) = |M| = |Mj|+|Mp,| < Tu(H)+Ta(Hp—x). O

Theorem 2.2. Let G be a graph of order at least two. Then for each vertex
v € V(GQ) we have 7,(G) =1 < 72(G—v) < [V(G)| - 1. Ifv € V(G) and 7,(G) —1 =
Ya(G — v) then
(i) v is a ya-good vertex of the graph G;
(i) ifv is not isolated and v € N(v,G) then u is a v,-bad vertex of the graph G —v.

Proof. Clearly 7.(G—v) < [V(G—v)| = |[V(G)|—1. Assume 7,(G—v) < 7.(G).
Then for an arbitrary v,-set M of the graph G — v we have N[M,G] = V(G) — {v}
and then N (v, G)NM = (). Hence M U{v} is an acyclic dominating set of G and then
Ya(G) < [MU{v}| = [M]+1 = 72(G—v)+1 < 7a(G). Therefore 7,(G)—1 = 7.(G—v)
and MU{v} is a y,-set of G. Hence v is a y,-good vertex of G. Since N (v, G)NM = {)
we conclude that each vertex belonging to N (v, G) is a y,-bad vertex of G —v. O

Theorem 2.3. Let Hy, Hy and H be graphs satisfying (x). Then

1. ’Va(H) z ’Ya(Hl) +7a(H2) -1

2. Let © be a v,-bad vertex of the graph H, v,(H) = va(H1) + va(H2) — 1 and let
M be a ~y,-set of H. Then there are [, m such that {I,m} = {1,2}, M NV (H;) is a
~Ya-set of Hy, M NV (H,,) is a vya-set of Hy, — x and va(H,, — ) = va(Hp) — 1.

3. Let x be a y,-good vertex of H, v,(H) = va(H1) +va(H2) — 1, let M be a v,-set
of H and x € M. Then M NV (H;) is a ya-set of Hj, j =1, 2.

4. Let © be a 7,-good vertex of graphs Hy and Hy. Then ~,(H) = ~va.(H1) +
vVa(H2) — 1. If M; is a ya-set of H;, j = 1,2 and {z} = M7 N My then M; UM, is a
~Ya-set of the graph H.

5. Let x be a y,-bad vertex of graphs Hy and Hy. Then v,(H) = va(H1) 4 va(Ha).
If M; is a y,-set of H;, j = 1,2 then My U M> is a 7y,-set of H.

Proof. 1: Let M be a y,-set of H and M; = M NV (H;),i=1,2.

Case x ¢ M: If M; € MD,S(H;) for j = 1,2 then v,(H) = |M| = |M] +
|Ma| 2 va(H1) + va(Hz2). Otherwise it follows by Theorem 1.2 that there are I, m
such that {I,m} = {1,2}, M; € MD,S(H;) and M,, € MD,S(H,, — z). Hence
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Vo(H) = M| = |M| + |Mw| = va(Hi) + Ya(Hym — ). Now, Theorem 2.2 yields
’Ya(H) P 'Ya(Hl) + ’Ya(HQ) -1

Case z € M and M; € MD,S(H;), j = 1,2: It follows that v.(H) = |M| =
|M1| + |M2| -1= 'Va(Hl) +7a(H2) -1

Case z € M and there are [,m such that {{,m} = {1,2}, M; € MD,S(H,)
and M,, — {z} € MD,S(H,,): We have y.(H) = |M| = |M;| + |M, — {z}] >
Ya(Hi) + Ya(Hm)-

There are no other possibilities because of Theorem 1.1.

2: Let M NV (H;) = M;, i = 1,2. From the proof of 1 we have that there are [, m
such that {l,m} = {1,2}, M; € MDaS(Hl), M,, € MDaS(Hm — l‘), |Ml| = 'Ya(Hl)
and |M,,| = Ya(Hy — ) = va(H,y,) — 1. Hence the result follows.

3: It follows from the proof of 1 that M NV (H;) € MD,S(H;) and |M NV (H;)| =
~Ya(H;) for i = 1,2. Hence M NV (H;) is a vy,-set of H;, i =1,2.

4: Let M; be a va-set of Hj, j = 1,2 and {z} = My N M,. It follows from
Theorem 1.4 that M7 UM; € MD,S(H). Hence v,(H) < |My U M| = | M|+ | M| —
1 =7va(H1) + va(H2) — 1. Now from 1 we have that v,(H) = va(H1) + 7a(H2) — 1.
Then |M7 U Ma| = va(H). Therefore My U My is a ~y,-set of H.

5: Suppose Ya(H) = va(H1) + 7a(H2) — 1. If x is a ,-bad vertex of H then by 2
there exists m € {1,2} such that v,(Hp,, — ) = va(Hy) — 1. Hence by Theorem 2.2
T is a y,-good vertex of H,,—a contradiction. If = is a y,-good vertex of H, M is
a Ya-set of H and € M then by 3 we have M NV (H,) is a ~y,-set of Hs, s = 1,2.
But then z is a v,-good vertex of Hy, s = 1,2, which is a contradiction.

Hence va(H) > va(H1) + 7a(H2).

Let M; be a ~y,-set of H;, j =1,2 and M = M; U Mo.

Case there are | € {1,2} and v € V(H;) such that {u} = N(z,H;) N M,
M;—{u} e MD,S(H; —x) and M —{u} € MD,S(H): Let {m} = {1,2} — {l}. Hence
a(H) < M = {u}] = [My — {0} + M| = [Mi] = 1+ [Myn] = 30 (H2) + 90 (Ha) — 1,
which is a contradiction.

Case M € MD,S(H): Then v,(Hi1) + va(H2) € 7a(H) < |M| = |M1| + | M| =
Ya(H1) +7va(Hz2). Hence vo(H) = va(H1) +7a(H2) and then |M| = ~,(H). Therefore
M is a y,-set of H.

The result now follows because of Theorem 1.3. O

Remark 2.4. In [1] Brigham, Chinn and Dutton obtained that, in the above
notation, y(Hy) + v(Hz) =2 v(H) > v(Hy) + v(Hz) — 1.

Observe that if m is a positive integer then there exists a graph H (in the above
notation) such that m = v,(H) — va(H1) — Va(H2). Indeed, let n and p be inte-
gers, m+ 1< n<p, V(H) ={z,y,2;01,...,Qm+1; b1, ..., bpsC1,...,¢p}, E(H) =
{zy,zz,yz;2a1, ..., 2Qmy1; Y01, ..., Ybps zer, .. 2¢pt, Hi = {zya1,. .. ami1}, H)
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and Hy = ({z,y,2;b1,...,bn;c1,...,¢p}, H). Then vo(H) =3+ m, va(H1) =1 and
Ya(H2) = 2. Hence m = vo(H) — va(H1) — va(Ha).

Theorem 2.5. Let G be a connected graph with blocks G1,Ga,...,G,. Then
Ya(G) = 'X:Jya(Gi) —n+1.

Proof. We proceed by induction on the number of blocks n. The statement is
immediate if n = 1. Let the blocks of G be G1,Ga,...,G,, G411 and without loss
of generality let G, 1 contain only one cut-vertex of G. Hence Theorem 2.3 implies

that 7a(G) = Ya(Gni1) + 7a(Q) — 1 where Q = <U V(Gi),G>. The result now
i=1
follows from the inductive hypothesis. O
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