MINIMAL ACYCLIC DOMINATING SETS AND CUT-VERTICES

VLADMIR SAMODIVKIN, Sofia

(Received April 7, 2004)

Abstract. The paper studies minimal acyclic dominating sets, acyclic domination number and upper acyclic domination number in graphs having cut-vertices.

Keywords: cut-vertex, dominating set, minimal acyclic dominating set, acyclic domination number, upper acyclic domination number

MSC 2000: 05C69, 05C40

For the graph theory terminology not presented here, we follow Haynes et al. [3]. All our graphs are finite and undirected with no loops or multiple edges. We denote the vertex set and the edge set of a graph G by V(G) and E(G), respectively. The subgraph induced by $S \subseteq V(G)$ is denoted by $\langle S, G \rangle$. For any vertex v of G its open neighborhood N(v,G) is $\{x \in V(G); vx \in E(G)\}$ and its closed neighborhood N[v,G] is $N(v,G) \cup \{v\}$. For a set $S \subseteq V(G)$ its open neighborhood N(S,G) is $\bigcup N(v,G)$, its closed neighborhood N[S,G] is $N(S,G) \cup S$. A subset of vertices A in a graph G is said to be acyclic if $\langle A, G \rangle$ contains no cycles. Note that the property of being acyclic is a hereditary property, that is, any subset of an acyclic set is itself acyclic. A dominating set in a graph G is a set of vertices D such that every vertex of G is either in D or is adjacent to an element of D. A dominating set D is a minimal dominating set if no proper subset $D' \subset D$ is a dominating set. The set of all minimal dominating sets of a graph G is denoted by MDS(G). The domination number $\gamma(G)$ of a graph G is the minimum cardinality taken over all dominating sets of G. The literature on this subject has been surveyed and detailed in the two books by Haynes et al. [4], [5].

A given graph invariant can often be combined with another graph theoretical property P. Harary and Haynes [3] defined the *conditional domination number* $\gamma(G:P)$ as the smallest cardinality of a dominating set $S\subseteq V(G)$ such that the

subgraph $\langle S, G \rangle$ induced by S has property P. One of the many possible properties imposed on S is:

 $P_{\rm ad}$: $\langle S, G \rangle$ has no cycles.

The conditional domination number $\gamma(G:P_{\mathrm{ad}})$ is called the *acyclic domination* number and is denoted by $\gamma_{\mathrm{a}}(G)$. The concept of acyclic domination in graphs was introduced by Hedetniemi et al. [6]. An acyclic dominating set D is a minimal acyclic dominating set if no proper subset $D' \subset D$ is an acyclic dominating set. The upper acyclic domination number $\Gamma_{\mathrm{a}}(G)$ is the maximum cardinality of a minimal acyclic dominating set of G. The set of all minimal acyclic dominating sets of a graph G is denoted by $\mathrm{MD_aS}(G)$. For every vertex x of a graph G let $\mathrm{MD_aS}(x,G) = \{D \in \mathrm{MD_aS}(G); x \in D\}$.

Let us introduce the following assumption

(*) a graph H is the union of two connected graphs H_1 and H_2 having exactly one common vertex x and $|V(H_i)| \ge 2$ for i = 1, 2.

In this paper we deal with minimal acyclic dominating sets, acyclic domination number and upper acyclic domination number in graphs having cut-vertices. Observe that domination and some of its variations in graphs having cut-vertices has been the topic of several studies—see for example [1, 7, 5 Chapter 16].

1. Minimal acyclic dominating sets

In this section we begin an investigation of minimal acyclic dominating sets in graphs having cut-vertices.

The following lemma will be used in the sequel, without specific reference.

Lemma A [5, Lemma 2.1]. For any graph G, $MD_aS(G) \subseteq MDS(G)$.

Theorem 1.1. Let H_1, H_2 and H be graphs satisfying (*). Let $M \in \mathrm{MD_aS}(x, H)$ and $M_j = M \cap V(H_j)$, j = 1, 2. Then one of the following holds:

- (i) $M_j \in \mathrm{MD_aS}(x, H_j)$ for j = 1, 2;
- (ii) there are l and m such that $\{l, m\} = \{1, 2\}$, $M_l \in \mathrm{MD_aS}(x, H_l)$, and $M_m \{x\}$ is the unique subset of M_m which belongs to $\mathrm{MD_aS}(H_m)$.

Proof. Since $x \in M$ then M_j is an acyclic dominating set of H_j , j=1,2. Let there be $i \in \{1,2\}$ such that $M_i \not\in \mathrm{MD_aS}(x,H)$. Suppose $M_j \not\in \mathrm{MD_aS}(x,H_j)$ for j=1,2. Then there is a vertex $u_1 \in M_1$ and a vertex $u_2 \in M_2$ such that $M_j - \{u_j\}$ is an acyclic dominating set of H_j , j=1,2. Hence $(M_1 - \{u_1\}) \cup (M_2 - \{u_2\}) = M - (\{u_1\} \cup \{u_2\})$ is an acyclic dominating set of H—a contradiction. So, without loss of generality let $M_1 \not\in \mathrm{MD_aS}(x,H_1)$ and $M_2 \in \mathrm{MD_aS}(x,H_2)$. Hence there is a

vertex $u \in M_1$ such that $M_1 - \{u\}$ is an acyclic dominating set of H_1 . If $u \neq x$ then $M - \{u\}$ is an acyclic dominating set of H, which is a contradiction. Hence u = x and $M_1 - \{x\}$ is an acyclic dominating set of H_1 . Suppose $M_1 - \{x\} \notin \mathrm{MD_aS}(H_1)$. Then there is a vertex $w \in M_1 - \{x\}$ such that $M_1 - \{x, w\}$ is an acyclic dominating set of H_1 . But then $M - \{w\}$ is an acyclic dominating set of H—a contradiction. Therefore $M_1 - \{x\} \in \mathrm{MD_aS}(H_1)$. Let $v \in M_1 - \{x\}$. Suppose $M_1 - \{v\}$ is an acyclic dominating set of H—a contradiction.

Theorem 1.2. Let H_1, H_2 and H be graphs satisfying (*). Let $M \in \mathrm{MD_aS}(H)$, $x \notin M$ and $M_j = M \cap V(H_j)$, j = 1, 2. Then one of the following holds:

- (i) $M_j \in \mathrm{MD_aS}(H_j)$ for j = 1, 2;
- (ii) there are l and m such that $\{l, m\} = \{1, 2\}$, $M_l \in \mathrm{MD_aS}(H_l)$, $M_m \in \mathrm{MD_aS}(H_m x)$ and M_m is no dominating set in H_m .

Proof. Clearly, there is $i \in \{1,2\}$ such that M_i is an acyclic dominating set of H_i . Without loss of generality let i=1. Suppose $M_1 \notin \mathrm{MD_aS}(H_1)$. Then there is $u \in M_1$ such that $M_1 - \{u\}$ is an acyclic dominating set of H_1 and then $M - \{u\}$ is an acyclic dominating set of G—a contradiction. So $M_1 \in \mathrm{MD_aS}(H_1)$. Analogously, if M_2 is an acyclic dominating set of H_2 , then $M_2 \in \mathrm{MD_aS}(G_2)$. Now, let M_2 be not an acyclic dominating set of H_2 . Then M_2 is an acyclic dominating set of $H_2 - x$. Suppose $M_2 \notin \mathrm{MD_aS}(H_2 - x)$. Then there is $v \in M_2$ such that $M_2 - \{v\}$ is an acyclic dominating set of $H_2 - x$ and hence $M - \{v\}$ is an acyclic dominating set of $H_2 - x$ and hence $M - \{v\}$ is an acyclic dominating set of $H_2 - x$ and hence $M - \{v\}$ is an acyclic dominating set of $H_2 - x$.

Theorem 1.3. Let H_1, H_2 and H be graphs satisfying (*). Let $M_j \in \mathrm{MD_aS}(H_j)$ for j = 1, 2 and $x \notin M_1 \cup M_2$. Then one of the following holds:

- (i) $M_1 \cup M_2 \in MD_aS(H)$;
- (ii) there are $l \in \{1, 2\}$ and $u \in V(H_l)$ such that $\{u\} = N(x, H_l) \cap M_l$, $M_l \{u\} \in MD_aS(H_l x)$ and $(M_1 \cup M_2) \{u\} \in MD_aS(H)$.

Proof. Let $M=M_1\cup M_2$. Then M is an acyclic dominating set of H. Suppose $M\not\in \mathrm{MD_aS}(H)$. Hence, there is a vertex $u\in M$ such that $M-\{u\}$ is an acyclic dominating set of H. Without loss of generality let $u\in V(H_1)$. Then $M_1-\{u\}$ is no acyclic dominating set of H_1 and hence $M_1-\{u\}$ is an acyclic dominating set of H_1-x . Therefore $\{u\}=N(x,H_1)\cap M_1$. Suppose $M_1-\{u\}\not\in \mathrm{MD_aS}(H_1-x)$. Then there is a vertex $v\in M_1-\{u\}$ such that $M_1-\{u,v\}$ is an acyclic dominating set of H_1-x . Hence $M_1-\{v\}$ is an acyclic dominating set of H_1 —a contradiction. So $M_1-\{u\}\in \mathrm{MD_aS}(H_1-x)$. Suppose $M-\{u\}\not\in \mathrm{MD_aS}(H)$. Hence there is a vertex $w,w\in M-\{u\}$ that $M-\{u,w\}$ is an acyclic dominating set of H. If $w\in V(H_1)$,

then $M_1 - \{u, w\}$ is an acyclic dominating set of $H_1 - x$ —a contradiction. Therefore $w \in V(H_2)$ and then $M_2 - \{w\}$ is an acyclic dominating set of H_2 —a contradiction. So $M - \{u\} \in \mathrm{MD_aS}(H)$.

Theorem 1.4. Let H_1, H_2 and H be graphs satisfying (*). Let $M_j \in \mathrm{MD_aS}(x, H_j)$ for j = 1, 2. Then $M_1 \cup M_2 \in \mathrm{MD_aS}(x, H)$.

Proof. Let $M=M_1\cup M_2$. Obviously M is an acyclic dominating set of H. Suppose $M\not\in \mathrm{MD_aS}(H)$. Then there is a vertex $u\in M$ such that $M-\{u\}$ is an acyclic dominating set of H. First, let $u\neq x$ and without loss of generality let $u\in V(H_1)-\{x\}$. Then $M_1-\{u\}$ is an acyclic dominating set of H_1 —a contradiction. Secondly, let u=x. Now, there is $i\in\{1,2\}$ such that $M_i-\{x\}$ is an acyclic dominating set of H_i , which is a contradiction. So $M\in\mathrm{MD_aS}(H)$ and since $x\in M$ we have $M\in\mathrm{MD_aS}(x,H)$.

Theorem 1.5. Let H_1, H_2 and H be graphs satisfying (*). Let $M_1 \in \mathrm{MD_aS}(x, H_1)$, $M_2 \in \mathrm{MD_aS}(H_2)$, $x \notin M_2$ and $M = M_1 \cup M_2$. Then one of the following holds:

- (i) $M \in MD_aS(H)$;
- (ii) $M_1 \{x\} \in MD_aS(H_1 x) \text{ and } M \{x\} \in MD_aS(H);$
- (iii) there is $U \subseteq M_2$ such that $(M_2 U) \cup \{x\} \in MD_aS(H_2)$ and $M U \in MD_aS(H)$;
- (iv) no subset of M is an acyclic dominating set of H.

Let $M \notin \mathrm{MD_aS}(H)$ and let there exist $M_3 \subset M$ such that $M_3 \in$ Proof. $MD_aS(H)$. First, let $x \notin M_3$. Then $M_1 - \{x\}$ is an acyclic dominating set of $H_1 - x$. Suppose $M_1 - \{x\} \notin \mathrm{MD_aS}(H_1 - x)$. Now, there is a vertex $v \in M_1 - \{x\}$ that $M_1 - \{x, v\}$ is an acyclic dominating set of $H_1 - x$. Hence $M_1 - \{v\}$ is an acyclic dominating set of H_1 —a contradiction. So, $M_1 - \{x\} \in MD_aS(H_1 - x)$ and $M - \{x\}$ is an acyclic dominating set of H. Now, suppose $M - \{x\} \notin \mathrm{MD_aS}(H)$. Then there is a vertex $w \in M - \{x\}$ such that $M - \{x, w\}$ is an acyclic dominating set of H. If $w \in V(H_1)$ then $M_1 - \{x, w\}$ is an acyclic dominating set of $H_1 - x$ —a contradiction. If $w \in V(H_2)$, then $M_2 - \{w\}$ is an acyclic dominating set of H_2 —a contradiction. So $M - \{x\} \in \mathrm{MD_aS}(H)$. Secondly, let $x \in M_3$. Let $U = M - M_3$. If there is $u \in U \cap M_1$, then $M_1 - \{u\}$ is an acyclic dominating set of H_1 —a contradiction. Hence, $U \subseteq M_2$. Then $(M_2 - U) \cup \{x\} = M_3 \cap V(H_2)$ is an acyclic dominating set of H_2 . Since M is no minimal acyclic dominating set of H we have $U \neq \emptyset$ and hence $M_2 - U$ is no dominating set of H_2 . If there is $v \in M_2 - U$ such that $(M_2 - (U \cup \{v\}) \cup \{x\})$ is an acyclic dominating set of H_2 then $M_3 - \{v\}$ is an acyclic dominating set of H—a contradiction. Hence $(M_2 - U) \cup \{x\}$ is a minimal acyclic dominating set of H_2 . \square In this section we present some results concerning the acyclic domination number and the upper acyclic domination number of graphs having cut-vertices.

Let $\mu(G)$ be a numerical invariant of a graph G defined in such a way that it is the minimum or maximum number of vertices of a set $S \subseteq V(G)$ with a given property P. A set with the property P and with $\mu(G)$ vertices in G is called a μ -set of G. Fricke et al. [2] define a vertex v of a graph G to be

- (i) μ -good, if v belongs to some μ -set of G and
- (ii) μ -bad, if v belongs to no μ -set of G.

Theorem 2.1. Let H_1, H_2 and H be graphs satisfying (*).

- 1. Let x be a $\Gamma_{\rm a}$ -good vertex of a graph H. Then $\Gamma_{\rm a}(H) \leqslant \Gamma_{\rm a}(H_1) + \Gamma_{\rm a}(H_2)$. If $\Gamma_{\rm a}(H) = \Gamma_{\rm a}(H_1) + \Gamma_{\rm a}(H_2)$, M is a $\Gamma_{\rm a}$ -set of H and $x \in M$, then there are l and m such that $\{l,m\} = \{1,2\}$, $M \cap V(H_l)$ is a $\Gamma_{\rm a}$ -set of H_l and $M \cap V(H_m) \{x\}$ is a $\Gamma_{\rm a}$ -set of H_m .
- 2. Let x be a $\Gamma_{\rm a}$ -good vertex of graphs H_1 and H_2 . Then $\Gamma_{\rm a}(H_1) + \Gamma_{\rm a}(H_2) 1 \leqslant \Gamma_{\rm a}(H)$. If $\Gamma_{\rm a}(H_1) + \Gamma_{\rm a}(H_2) 1 = \Gamma_{\rm a}(H)$, M_j is a $\Gamma_{\rm a}$ -set of H_j , j = 1, 2 and $\{x\} = M_1 \cap M_2$ then $M_1 \cup M_2$ is a $\Gamma_{\rm a}$ -set of H.
- 3. Let x be a Γ_a -bad vertex of a H_1 and H_2 . Then $\Gamma_a(H) \geqslant \Gamma_a(H_1) + \Gamma_a(H_2) 1$. If $\Gamma_a(H) = \Gamma_a(H_1) + \Gamma_a(H_2) 1$ and M_j is a Γ_a -set of H_j , j = 1, 2 then there are $l \in \{1, 2\}$ and $u \in V(H_l)$ such that $\{u\} = N(x, H_l) \cap M_l$ and $M_1 \cup M_2 \{u\}$ is a Γ_a -set of H.
- 4. Let x be a Γ_a -bad vertex of H. Then $\Gamma_a(H) \leq \max\{\Gamma_a(H_1) + \Gamma_a(H_2), \Gamma_a(H_1 x) + \Gamma_a(H_2), \Gamma_a(H_1) + \Gamma_a(H_2 x)\}$.
- Proof. 1. Let M be a $\Gamma_{\rm a}$ -set of $H, \, x \in M$ and $M \cap V(H_j) = M_j, \, j = 1, 2$. Case $M_j \in {\rm MD_aS}(x,H_j), j = 1, 2$: Then $\Gamma_{\rm a}(H) = |M| = |M_1| + |M_2| - 1 \leqslant \Gamma_{\rm a}(H_1) + \Gamma_{\rm a}(H_2) - 1$.

Case there are l,m such that $\{l,m\}=\{1,2\}, M_l\in \mathrm{MD_aS}(x,H_l)$ and $M_m-\{x\}\in \mathrm{MD_aS}(H_m)$: We have $\Gamma_\mathrm{a}(H)=|M|=|M_l|+|M_m-\{x\}|\leqslant \Gamma_\mathrm{a}(H_l)+\Gamma_\mathrm{a}(H_m)$. If $\Gamma_\mathrm{a}(H)=\Gamma_\mathrm{a}(H_1)+\Gamma_\mathrm{a}(H_2)$, then $|M_l|=\Gamma_\mathrm{a}(H_l)$ and $|M_m-\{x\}|=\Gamma_\mathrm{a}(H_m)$. Hence M_l is a Γ_a -set of H_l and $M_m-\{x\}$ is a Γ_a -set of H_m .

There are no other possibilities because of Theorem 1.1.

- 2. Let M_j be a $\Gamma_{\rm a}$ -set of H_j , j=1,2 and $\{x\}=M_1\cap M_2$. It follows from Theorem 1.4 that $M_1\cup M_2\in {\rm MD_aS}(x,H)$. Hence $\Gamma_{\rm a}(H)\geqslant |M_1\cup M_2|=|M_1|+|M_2|-1=\Gamma_{\rm a}(H_1)+\Gamma_{\rm a}(H_2)-1$. If $\Gamma_{\rm a}(H)=\Gamma_{\rm a}(H_1)+\Gamma_{\rm a}(H_2)-1$ then $|M_1\cup M_2|=\Gamma_{\rm a}(H)$. Hence $M_1\cup M_2$ is a $\Gamma_{\rm a}$ -set of H.
- 3. Let M_j be a Γ_a -set of H_j , j=1,2 and $M=M_1\cup M_2$. If $M\in \mathrm{MD_aS}(H)$ then $\Gamma_a(H)\geqslant |M|=|M_1|+|M_2|=\Gamma_a(H_1)+\Gamma_a(H_2)$. Otherwise it follows from

Theorem 1.3 that there are $l \in \{1, 2\}$ and $u \in V(H_l)$ such that $\{u\} = N(x, H_l) \cap M_l$ and $M - \{u\} \in \mathrm{MD_aS}(H)$. Hence $\Gamma_{\mathrm{a}}(H) \geqslant |M - \{u\}| = |M_1| + |M_2| - 1 = \Gamma_{\mathrm{a}}(H_1) + \Gamma_{\mathrm{a}}(H_2) - 1$. If $\Gamma_{\mathrm{a}}(H) = \Gamma_{\mathrm{a}}(H_1) + \Gamma_{\mathrm{a}}(H_2) - 1$ then $|M - \{u\}| = \Gamma_{\mathrm{a}}(H)$. Hence $M - \{u\}$ is a Γ_{a} -set of H.

4. Let M be a $\Gamma_{\rm a}$ -set of H and $M_j = M \cap V(H_j), j = 1, 2$. If $M_j \in {\rm MD_aS}(H_j), j = 1, 2$ then $\Gamma_{\rm a}(H) = |M| = |M_1| + |M_2| \leqslant \Gamma_{\rm a}(H_1) + \Gamma_{\rm a}(H_2)$. Otherwise it follows from Theorem 1.2 that $M_l \in {\rm MD_aS}(H_l)$ and $M_m \in {\rm MD_aS}(H_m - x)$ for some l, m such that $\{l, m\} = \{1, 2\}$. Hence $\Gamma_{\rm a}(H) = |M| = |M_l| + |M_m| \leqslant \Gamma_{\rm a}(H_l) + \Gamma_{\rm a}(H_m - x)$. \square

Theorem 2.2. Let G be a graph of order at least two. Then for each vertex $v \in V(G)$ we have $\gamma_{\rm a}(G) - 1 \le \gamma_{\rm a}(G - v) \le |V(G)| - 1$. If $v \in V(G)$ and $\gamma_{\rm a}(G) - 1 = \gamma_{\rm a}(G - v)$ then

- (i) v is a γ_a -good vertex of the graph G;
- (ii) if v is not isolated and $u \in N(v, G)$ then u is a γ_a -bad vertex of the graph G v.

Proof. Clearly $\gamma_{\mathbf{a}}(G-v) \leqslant |V(G-v)| = |V(G)|-1$. Assume $\gamma_{\mathbf{a}}(G-v) < \gamma_{\mathbf{a}}(G)$. Then for an arbitrary $\gamma_{\mathbf{a}}$ -set M of the graph G-v we have $N[M,G]=V(G)-\{v\}$ and then $N(v,G)\cap M=\emptyset$. Hence $M\cup\{v\}$ is an acyclic dominating set of G and then $\gamma_{\mathbf{a}}(G)\leqslant |M\cup\{v\}|=|M|+1=\gamma_{\mathbf{a}}(G-v)+1\leqslant \gamma_{\mathbf{a}}(G)$. Therefore $\gamma_{\mathbf{a}}(G)-1=\gamma_{\mathbf{a}}(G-v)$ and $M\cup\{v\}$ is a $\gamma_{\mathbf{a}}$ -set of G. Hence v is a $\gamma_{\mathbf{a}}$ -good vertex of G. Since $N(v,G)\cap M=\emptyset$ we conclude that each vertex belonging to N(v,G) is a $\gamma_{\mathbf{a}}$ -bad vertex of G. \square

Theorem 2.3. Let H_1, H_2 and H be graphs satisfying (*). Then

- 1. $\gamma_{a}(H) \geqslant \gamma_{a}(H_{1}) + \gamma_{a}(H_{2}) 1$.
- 2. Let x be a γ_a -bad vertex of the graph H, $\gamma_a(H) = \gamma_a(H_1) + \gamma_a(H_2) 1$ and let M be a γ_a -set of H. Then there are l, m such that $\{l, m\} = \{1, 2\}$, $M \cap V(H_l)$ is a γ_a -set of H_l , $M \cap V(H_m)$ is a γ_a -set of $H_m x$ and $\gamma_a(H_m x) = \gamma_a(H_m) 1$.
- 3. Let x be a γ_a -good vertex of H, $\gamma_a(H) = \gamma_a(H_1) + \gamma_a(H_2) 1$, let M be a γ_a -set of H and $x \in M$. Then $M \cap V(H_j)$ is a γ_a -set of H_j , j = 1, 2.
- 4. Let x be a γ_a -good vertex of graphs H_1 and H_2 . Then $\gamma_a(H) = \gamma_a(H_1) + \gamma_a(H_2) 1$. If M_j is a γ_a -set of H_j , j = 1, 2 and $\{x\} = M_1 \cap M_2$ then $M_1 \cup M_2$ is a γ_a -set of the graph H.
- 5. Let x be a γ_a -bad vertex of graphs H_1 and H_2 . Then $\gamma_a(H) = \gamma_a(H_1) + \gamma_a(H_2)$. If M_j is a γ_a -set of H_j , j = 1, 2 then $M_1 \cup M_2$ is a γ_a -set of H.

Proof. 1: Let M be a γ_a -set of H and $M_i = M \cap V(H_i)$, i = 1, 2.

Case $x \notin M$: If $M_j \in \mathrm{MD_aS}(H_j)$ for j=1,2 then $\gamma_\mathrm{a}(H) = |M| = |M_1| + |M_2| \geqslant \gamma_\mathrm{a}(H_1) + \gamma_\mathrm{a}(H_2)$. Otherwise it follows by Theorem 1.2 that there are l,m such that $\{l,m\} = \{1,2\}, M_l \in \mathrm{MD_aS}(H_l)$ and $M_m \in \mathrm{MD_aS}(H_m - x)$. Hence

 $\gamma_{\rm a}(H) = |M| = |M_l| + |M_m| \geqslant \gamma_{\rm a}(H_l) + \gamma_{\rm a}(H_m - x).$ Now, Theorem 2.2 yields $\gamma_{\rm a}(H) \geqslant \gamma_{\rm a}(H_1) + \gamma_{\rm a}(H_2) - 1.$

Case $x \in M$ and $M_j \in MD_aS(H_j)$, j = 1, 2: It follows that $\gamma_a(H) = |M| = |M_1| + |M_2| - 1 \ge \gamma_a(H_1) + \gamma_a(H_2) - 1$.

Case $x \in M$ and there are l, m such that $\{l, m\} = \{1, 2\}, M_l \in \mathrm{MD_aS}(H_l)$ and $M_m - \{x\} \in \mathrm{MD_aS}(H_m)$: We have $\gamma_{\mathrm{a}}(H) = |M| = |M_l| + |M_m - \{x\}| \geqslant \gamma_{\mathrm{a}}(H_l) + \gamma_{\mathrm{a}}(H_m)$.

There are no other possibilities because of Theorem 1.1.

- 2: Let $M \cap V(H_i) = M_i$, i = 1, 2. From the proof of 1 we have that there are l, m such that $\{l, m\} = \{1, 2\}$, $M_l \in \mathrm{MD_aS}(H_l)$, $M_m \in \mathrm{MD_aS}(H_m x)$, $|M_l| = \gamma_{\mathrm{a}}(H_l)$ and $|M_m| = \gamma_{\mathrm{a}}(H_m x) = \gamma_{\mathrm{a}}(H_m) 1$. Hence the result follows.
- 3: It follows from the proof of 1 that $M \cap V(H_i) \in MD_aS(H_i)$ and $|M \cap V(H_i)| = \gamma_a(H_i)$ for i = 1, 2. Hence $M \cap V(H_i)$ is a γ_a -set of H_i , i = 1, 2.
- 4: Let M_j be a $\gamma_{\rm a}$ -set of H_j , j=1,2 and $\{x\}=M_1\cap M_2$. It follows from Theorem 1.4 that $M_1\cup M_2\in {\rm MD_aS}(H)$. Hence $\gamma_{\rm a}(H)\leqslant |M_1\cup M_2|=|M_1|+|M_2|-1=\gamma_{\rm a}(H_1)+\gamma_{\rm a}(H_2)-1$. Now from 1 we have that $\gamma_{\rm a}(H)=\gamma_{\rm a}(H_1)+\gamma_{\rm a}(H_2)-1$. Then $|M_1\cup M_2|=\gamma_{\rm a}(H)$. Therefore $M_1\cup M_2$ is a $\gamma_{\rm a}$ -set of H.
- 5: Suppose $\gamma_{\mathbf{a}}(H) = \gamma_{\mathbf{a}}(H_1) + \gamma_{\mathbf{a}}(H_2) 1$. If x is a $\gamma_{\mathbf{a}}$ -bad vertex of H then by 2 there exists $m \in \{1,2\}$ such that $\gamma_{\mathbf{a}}(H_m x) = \gamma_{\mathbf{a}}(H_m) 1$. Hence by Theorem 2.2 x is a $\gamma_{\mathbf{a}}$ -good vertex of H_m —a contradiction. If x is a $\gamma_{\mathbf{a}}$ -good vertex of H, M is a $\gamma_{\mathbf{a}}$ -set of H and $x \in M$ then by 3 we have $M \cap V(H_s)$ is a $\gamma_{\mathbf{a}}$ -set of H_s , s = 1, 2. But then x is a $\gamma_{\mathbf{a}}$ -good vertex of H_s , s = 1, 2, which is a contradiction.

Hence $\gamma_{\mathbf{a}}(H) \geqslant \gamma_{\mathbf{a}}(H_1) + \gamma_{\mathbf{a}}(H_2)$.

Let M_j be a γ_a -set of H_j , j = 1, 2 and $M = M_1 \cup M_2$.

Case there are $l \in \{1,2\}$ and $u \in V(H_l)$ such that $\{u\} = N(x,H_l) \cap M_l$, $M_l - \{u\} \in \mathrm{MD_aS}(H_l - x)$ and $M - \{u\} \in \mathrm{MD_aS}(H)$: Let $\{m\} = \{1,2\} - \{l\}$. Hence $\gamma_{\mathrm{a}}(H) \leqslant |M - \{u\}| = |M_l - \{u\}| + |M_m| = |M_l| - 1 + |M_m| = \gamma_{\mathrm{a}}(H_1) + \gamma_{\mathrm{a}}(H_2) - 1$, which is a contradiction.

Case $M \in \mathrm{MD_aS}(H)$: Then $\gamma_\mathrm{a}(H_1) + \gamma_\mathrm{a}(H_2) \leqslant \gamma_\mathrm{a}(H) \leqslant |M| = |M_1| + |M_2| = \gamma_\mathrm{a}(H_1) + \gamma_\mathrm{a}(H_2)$. Hence $\gamma_\mathrm{a}(H) = \gamma_\mathrm{a}(H_1) + \gamma_\mathrm{a}(H_2)$ and then $|M| = \gamma_\mathrm{a}(H)$. Therefore M is a γ_a -set of H.

The result now follows because of Theorem 1.3.

Remark 2.4. In [1] Brigham, Chinn and Dutton obtained that, in the above notation, $\gamma(H_1) + \gamma(H_2) \ge \gamma(H) \ge \gamma(H_1) + \gamma(H_2) - 1$.

Observe that if m is a positive integer then there exists a graph H (in the above notation) such that $m = \gamma_{\mathbf{a}}(H) - \gamma_{\mathbf{a}}(H_1) - \gamma_{\mathbf{a}}(H_2)$. Indeed, let n and p be integers, $m+1 \leq n \leq p$, $V(H) = \{x, y, z; a_1, \ldots, a_{m+1}; b_1, \ldots, b_n; c_1, \ldots, c_p\}$, $E(H) = \{xy, xz, yz; xa_1, \ldots, xa_{m+1}; yb_1, \ldots, yb_n; zc_1, \ldots, zc_p\}$, $H_1 = \langle \{x; a_1, \ldots, a_{m+1}\}, H \rangle$

and $H_2 = \langle \{x, y, z; b_1, \dots, b_n; c_1, \dots, c_p\}, H \rangle$. Then $\gamma_{\mathbf{a}}(H) = 3 + m$, $\gamma_{\mathbf{a}}(H_1) = 1$ and $\gamma_{\mathbf{a}}(H_2) = 2$. Hence $m = \gamma_{\mathbf{a}}(H) - \gamma_{\mathbf{a}}(H_1) - \gamma_{\mathbf{a}}(H_2)$.

Theorem 2.5. Let G be a connected graph with blocks G_1, G_2, \ldots, G_n . Then $\gamma_{\mathbf{a}}(G) \geqslant \sum_{i=1}^{n} \gamma_{\mathbf{a}}(G_i) - n + 1$.

Proof. We proceed by induction on the number of blocks n. The statement is immediate if n=1. Let the blocks of G be $G_1,G_2,\ldots,G_n,G_{n+1}$ and without loss of generality let G_{n+1} contain only one cut-vertex of G. Hence Theorem 2.3 implies that $\gamma_{\mathbf{a}}(G) \geqslant \gamma_{\mathbf{a}}(G_{n+1}) + \gamma_{\mathbf{a}}(Q) - 1$ where $Q = \left\langle \bigcup_{i=1}^n V(G_i), G \right\rangle$. The result now follows from the inductive hypothesis.

References

- [1] R. C. Brigham, P. Z. Chinn, R. D. Dutton: Vertex domination-critical graphs. Networks 18 (1988), 173–179.
- [2] G. H. Fricke, T. W. Haynes, S. M. Hedetniemi, S. T. Hedetniemi, R. C. Laskar: Excellent trees. Bull. Inst. Comb. Appl. 34 (2002), 27–38.
- [3] F. Harary, T. W. Haynes: Conditional graph theory IV: Dominating sets. Util. Math. 48 (1995), 179–192.
- [4] T. W. Haynes, S. T. Hedetniemi, P. J. Slater: Fundamentals of Domination in Graphs. Marcel Dekker, New York, 1998.
- [5] T. W. Haynes, S. T. Hedetniemi, P. J. Slater (eds.): Domination in Graphs—Advanced Topics. Marcel Dekker, New York, 1998.
- [6] S. M. Hedetniemi, S. T. Hedetniemi, D. F. Rall: Acyclic domination. Discrete Math. 222 (2000), 151–165.
- [7] P. D. Vestergaard, B. Zelinka: Cut-vertices and domination in graphs. Math. Bohem. 120 (1995), 135–143.

Author's address: Vladimir Samodivkin, Department of Mathematics, University of Architecture, Civil Engineering and Geodesy, Hristo Smirnenski 1 Blv., 1046 Sofia, Bulgaria, e-mail: vlsam_fte@uacg.bg.