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Abstract. In the paper we deal with the Kurzweil-Stieltjes integration of functions having
values in a Banach space X. We extend results obtained by Stefan Schwabik and complete
the theory so that it will be well applicable to prove results on the continuous dependence
of solutions to generalized linear differential equations in a Banach space. By Schwabik,
the integral fab d[F]g exists if F': [a,b] — L(X) has a bounded semi-variation on [a,b]
and ¢: [a,b] — X is regulated on [a,b]. We prove that this integral has sense also if F is
regulated on [a, b] and ¢ has a bounded semi-variation on [a, b]. Furthermore, the integration
by parts theorem is presented under the assumptions not covered by Schwabik (2001) and
Naralenkov (2004), and the substitution formula is proved.
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1. INTRODUCTION

It is known that integration processes based on Riemann type sums, such as
Kurzweil and McShane integrals, can be extended to Banach space-valued functions.
Among other contributions it is worth to highlight the monograph by Schwabik and
Ye [13], which studies these types of integrals and their connections e.g. with the
classical ones due to Bochner and Pettis.

Concerning integrals of Stieltjes type, Honig presented a quite complete study in
[4] dealing with the interior integral. In [8] and [11] Schwabik investigated some
fundamental properties of the Kurzweil-Stieltjes integral.
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The concepts of generalized (nonlinear) Kurzweil or Kurzweil-Stieltjes integrals in
a Banach space have been the background of several papers related to generalized
differential equations like e.g. [2], [3], [9] and [10].

In this paper we are dealing with the Kurzweil-Stieltjes integral. Our aim is to
supplement the existing knowledge by results needed for treating generalized linear
differential equations. In particular, we prove that if F': [a,b] — L(X) and g:
[a,b] — X, then the integral f; d[F)g exists provided F is regulated on [a,b] and g
has a bounded semi-variation on [a, b], and the integral f: Fd[g] exists provided F has
a bounded semi-variation and g is regulated. Furthermore, the integration by parts
theorem is presented under the assumptions not covered by those by Schwabik [11]
(see Theorems 10, 13, 15 and Corollary 14) or Naralenkov [6] (see Section 3). Finally,
the substitution formula is proved.

2. PRELIMINARIES

Throughout these notes X is a Banach space and L(X) is the Banach space of
bounded linear operators on X. By |[|-||x we denote the norm in X. Similarly, ||-||~(x)
denotes the usual operator norm in L(X).

Assume that —co < a < b < 400 and [a,b] denotes the corresponding closed
interval. A set D = {ag,a1,...,an} C [a,b] is said to be a division of [a, b] if

a=ap<a; <...<aq,=n>m

The set of all divisions of [a, b] is denoted by Dla, b].

A function f: [a,b] — X is called a finite step function on [a,b] if there exists
a division D = {ag,a1,...,am,} of [a,b] such that f is constant on every open
interval (oj_1,05), j =1,2,...,m.

For an arbitrary function f: [a,b] — X we set
[flloe = sup [If()llx
t€(a,b]

and

varg f= sup Z [ f(ey) = flaj-1)llx

DeDlab] ;=4

is the variation of f over [a,b]. If var’ f < oo we say that f is a function of bounded
variation on [a, b]. BV ([a,b], X) denotes the Banach space of functions f: [a,b] — X
of bounded variation on [a, b] equipped with the norm || f||pv = || f(a)| x + var’ f.
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For F': [a,b] — L(X) and a division D = {«ag,a1,...,q,} of the interval [a, b],

let
J

where the supremum is taken over all possible choices of y; € X, j = 1,2,...,m,
with ||y;||x < 1. Then

VYF, D) = sup{

Z[F(Oéj) — F(aj-1)ly;

(B) var’ (F) = sup{V(x, D); D € Dla,b]}

is said to be the semi-variation of F on [a,b], cf. e.g. [4]. Sometimes it is called also
the B-variation of F on [a,b] (with respect to the bilinear triple B = (L(X), X, X),
cf. e.g. [8]). Analogously, we can define the B-variation of a function f: [a,b] — X
using

V(f,D) = sup {

> Rlites) - sl b
=1 X
where the supremum is taken over all possible choices of operators F; € L(X) with
HFJHL(X) < 1, j = 1,2,. ..,m.

The set of all functions F: [a,b] — L(X) with (B)var’(F) < oo is denoted by
(B)BV ([a,b], L(X)). Analogously to BV ([a,b], X), (B)BV ([a,b], L(X)) is a Banach
space with respect to the norm

F € (B)BV ([a,b], L(X)) = | Fllsv = [|F(a) || cx) + (B) varg F

(cf. [12]).
A function f: [a,b] — X, is said to be regulated on [a,b] if for each t € [a,b) there
is f(t+) € X such that

lim [[f(s) = f(t+)[x =0

s—t+

and for each ¢ € (a,b] there is f(t—) € X such that
Tim [1£(s) = £(t)]1x = 0.

By G([a,b], X) we denote the set of all regulated functions f: [a,b] — X. For ¢ €
0,b), 5 € (a,] we put A*f(t) = f(t+) — £(t) and A~ f(s) = £(s) — f(s5—).

A function F': [a,b] — L(X) is B-regulated on [a,b] if for every x € X with
lz]lx < 1, the function ¢ € [a,b] — F(t)z is regulated. Similarly we say that
f: [a,b] = X is B-regulated on [a, b], if the function t € [a,b] — T f(t) is regulated
forall T € L(X) with ||T||z(x) < 1. The set of all (B)-regulated functions F': [a, b] —
L(X) is denoted by (B)G([a,b], L(X)).
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Recall that BV ([a,b], X) C (B)BV ([a,b], X) and
BV ([a,], X) C G([a,b], X) C (B)G([a,b], X)
while G([a,b], X) ¢ (B)BV ([a,b], X) (cf. e.g. [9, 1.5]). If dim X < oo, then obviously
BV([a,b], X) = (B)BV ([a,b],X) and G([a,b],X) = (B)G([a,b], X).

Moreover, it is known that regulated functions are uniform limits of finite step func-
tions (see [4, Theorem I1.3.1]).

Now, let us recall the definition and some crucial properties of the Kurzweil-
Stieltjes integral.

As usual, tagged systems P = (D,€) € Dla,b] x [a,b]™ where D = {ag, aq, ...,
am}, £ =(&1,8&,...,&m), are called partitions of [a,b] if

aj1 <& <oy forj=1,2,...,m.

The set of all partitions of [a, b] is denoted by P][a, b].

Furthermore, functions ¢: [a,b] — (0,00) are said to be gauges on [a,b]. Given
a gauge 0, the partition P = (D, &) with D = {ag,a1,...,am}, £ = (§&1,&2, ..., &m),
is 0-fine if

[ovj—1,05] C (& —6(&5), & +0(§5)) forj=1,2,...,m.

We remark that for an arbitrary gauge § on [a, b] there always exists a d-fine partition
of [a,b]. This is stated by the Cousin lemma (see [7, Lemma 1.4]).

For given functions F': [a,b] — L(X) and g: [a,b] — X and a partition P = (D, )
of [a,b], where D = {ag, 1, ...,am}, £ = (&1,...,&n), we define

m

S(F,dg,P) =Y F(&)lglay) — glaj-1)]
j=1
and .
S(dF,g,P) = [F(a;) = Fla;-1)]9(&)-
j=1

We say that I € X is the Kurzweil-Stieltjes integral (or shortly KS-integral) of F'
with respect to g on [a, b] and write

- /ade[g]
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if for every € > 0 there exists a gauge 0 on [a, b] such that
IS(F,dg, P) —I||x <e for all d-fine partitions P of [a,b].

Similarly, J € X is the KS-integral of g with respect to F' on [a, b] if for every e > 0
there exists a gauge d on [a, b] such that

IS(dF,g,P)— J||x <e for all §-fine partitions P of [a, b].

In this case we write J = ff d[Flg.

Analogously, if H: [a,b] — L(X), we define the integral f; Hd[Flg using sums of

the form
m

S(H,dF, g, P) = H(&)[F (o) = Flaj-1)]g(&))-

Jj=1

The KS-integral is linear and additive with respect to intervals. Basic results
concerning the KS-integral can be found in [8] and [15]. Obviously, if the Riemann-
Stieltjes integral (RS)]: Fdg] exists, then the KS-integral f; Fdlg] also exists and

/ " Falg] = (&S) / " pag)

Some further results needed later are summarized in the following assertions:

Proposition 2.1. Let F': [a,b] — L(X) and g: [a,b] — X.

(i) [8, Proposition 10] Let F' € (B)BV ([a,b], L(X)) and g: [a,b] — X be such that
fab d[F]g exists. Then

H [ o < ()t Pl

(ii) [8, Proposition 11] Let F € (B)BV([a,b], L(X)) and gy: [a,b] — X be such
that fab d[Fgy exists for alln € N and lim ||g,, — g|lcc = 0. Then

b b b
/d[F]g exists  and /d[F]g: lim d[Fgn.-

—
n—oo a

(iii) [8, Proposition 15] Let F € (B)BV([a,b], L(X)) N (B)G([a,b], L(X)) and let
g € G([a,b], X). Then fab d[Flg exists.
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(iv) [11, Theorem 13] Let F' € G([a,b],L(X)) N (B)BV ([a,b], L(X)) and let g €
BV ([a,b], X ). Then both the integrals f; Fd[g] and f; d[Flg exist, the sum

S ATF(nA - Y ATF(n)Ag(r)

ag<T<b a<t<b

converges in X and the equality

/ ' Falg) 1 / " alFlg

— F(h)g(b) — Fla)gla) — 3 A*F() + 3 ATFHA )

at<b a<t<b

is true.

3. MAIN RESULTS
In this section we will present our main results. First, we will prove some auxiliary
properties of the KS-integral which, in the case that X # R", are not available in

literature.

Lemma 3.1. (i) Let F € (B)BV([a,b],L(X)), g € G([a,b],X) be such that
f; Fd[g] exists. Then

(3.1) IS(F,dg, P)llx < 2[[F[lsvligllc  for each P € Pla,]

and

b
(3.2) \ / Fd[g1H <20 Flsvllglle.
a X

(ii) Let F € G(la,b], L(X)), g € (B)BV([a,b],X) be such that ff d[Fg exists.
Then

(3.3) IS(dF, g, P)||x < 2||F||sllgllsv for each P € Pla,b)

and

(3.9 |/ bd{F]gHX <2 Flllgllsy-
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Proof. It is easy to check that for an arbitrary partition P = (D, &) of [a, b]
with D = {ap, @1,...,am} and € = (§1,&2,...,&m), we have

S(F,dg, P)
— F(&)lg(n) — 9(a)] + F(&2)[g(az) — gla)] + ... + F(€n)[g(b) — glctm—1)
— F(b)g(b) - Fla)g(a)

= [F(&) = F(a)lg(a) = [F(&2) = g(&)] = . = [F(b) = F(&m)lg (D)
= F(b)g(b) - ) = Y [F (&) = F(&)]g(ay),
7=0

where £y = a and &,,+1 = b. Consequently,

[S(F,dg, Pl x
< (@0 + 1EOleolsle

]| P - PN gt
=0

To(anllx
= g(a;)
2P 1) — FE ey HX> lgllos

Jj=
<F@)Lx) + IEO) i) + (B) varg F)llgllse < 2[1Fsvlgllso,

< <||F<a>||L(X> IF®o0 +

ie. (3.1) is true.
Now, let an arbitrary € > 0 be given. By our assumptions there is a gauge ¢ on
[a, b] such that

b
HS(F, dg, P) — / Fd[g]H < ¢ whenever P is §-fine.
a X

Let Py be an arbitrary d-fine partition of [a,b]. Then by (3.1) we have

Since £ > 0 can be arbitrary, it follows that inequality (3.2) is true.

b b
/ Fd[g1H <HS<F,dgvpo>— / Fd[g]H T IS(F,dg, Po)llx
a X a X

<e+2||F)lsvgllo-

The proof of (3.3) and (3.4) can be obtained in a similar way. O
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Lemma 3.2. Let g : [a,b] — X be a finite step function. Then for any F' : [a,b] —
L(X) the integral f: Fd[g] exists.

Proof. One can check that g: [a,b] — L(X) is a finite step function if and
only if it is a finite linear combination of functions of the form
X[an‘](t)‘%v X[a,b](t)ga X[a](t)gv X[b](t)wa

where 7, 0 are some points from (a, b) and Z, g, Z, @ may be arbitrary elements of X.
Hence, by the linearity of the integral, it is sufficient to prove that the integral exists
for functions g of the form

X[a,r)1 % X[r0) T X[y X[p)Z,

where 7 € (a,b) and 7 € X.
Let 7 € (a,0), Z € X and g = TX[4,7]- Given € > 0 define

5(6) € ift =,
B fr—t| ift#T
Then for any d-fine partition P of [a,b], T is the tag and S(F,dg, P) = —F(7)Z.
Hence

b
/ Fdlg) = —F(7)i.
The proofs of the cases g = X[-,5%, g = X[ajZ and g = x[;T are analogous. O

The next theorem is the first main result of this paper. It supplements Schwabik’s
result in Prop. 2.1 (iii) and the results known for dim X < oo, see [14], [16], [17].

Theorem 3.3. (i) If F € G([a,b], L(X)), g € (B)BV([a,b], X), then the integral
fab d[F]g exists.

(ii) If F € (B)BV ([a, b}, L(X)), g € G([a,b], X), then the integral [ Fd[g] exists.

Proof. (i) Let Fy,: [a,b] — L(X), n € N, be a sequence of finite step functions
such that

lim [|F, — F|lco = 0.

Since F,, € BV ([a,b], L(X)) for each n € N, it follows from Proposition 2.1 (iii)
that for each n € N the integral f; d[F,]g exists. Moreover, these integrals define

a Cauchy sequence in the Banach space X. Indeed, given € > 0 there is ng € N such
that || F}, — F||eo < € for n > ng. Thus, using Lemma 3.1, we obtain

b
H / d[F, — Fm]gH < 2|Fn — Follsollgllsv < 4ellgllsv  for all m,n = nog.
a X
2
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Therefore there is I € X such that [ = lim f; d[F},]g. This implies that there exists
N € N such that N > ng and

b
| [ o] <
a X

Let 6 be a gauge on [a, b] such that
b
HS(dFN,g,P) —/ d[FN]gH < & whenever P is d-fine.
a p's

Having this in mind and using (3.3), for an arbitrary J-fine partition P of [a, b] we
get

b b
+sarvgr) - [Camws| 4| [ d[FN]g—IH
a X a X
<2F = Fnllocllglisv + 26 < 2e(llgllsv + 1),
which concludes the proof of the assertion (i).

The assertion (ii) can be proved by the same arguments using Lemma 3.2 instead
of Proposition 2.1. O

The following assertion is a direct consequence of Lemma 3.1 and Theorem 3.3.

Corollary 3.4. (i) Let g, g», € G([a,b], X), n €N, and lim ||gn, — g||cc = 0. Then
n—oo
for any F' € (B)BV ([a,b], L(X)), the integrals

b b
/Fd[g] and /Fd[gn], neN,

exist and

b b
lim Fdg, = / Fdg.
a a

n—oo

(ii) Let F,F, € G([a,b],L(X)),n € N, and lim ||F, — F|l«c = 0. Then for any
n—oo
g € (B)BV([a,b], X), the integrals

b b
/ d[Flg and / d[Fy,]g, n €N,
a a
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exist and
lim d g—/ d[F
n—oo

Thanks to Theorem 3.3, we are now also able to extend the Integration by Parts
Theorem by Schwabik (cf. Proposition 2.1 (iv) or [11, Theorem 10]) and the Substi-
tution Theorems by Federson (cf. [1, Theorems 11 and 12]) to the form suitable for
dealing with generalized differential equations in a Banach space as needed in our
forthcoming paper [5]. This will be the content of the rest of these notes.

Lemma 3.5. (i) If F € G([a,b],L(X)) and g € (B)BV ([a,b], X) N G([a,b], X),
then

35 | S atrmaten - 3 aFma- g()H < A F ol (B) var? g).

t€la,b) te(a,b)

(ii) If F € (B)BV (Ja,b], L(X)) N G([a,b], L(X)) and g € G([a,b], X), then

> ATFWAT) - Y ATFOAT0)| <48 v Flal
tela,b) te(a,b)

Proof. (i) Let F € G([a,b],L(X)) and g € (B)BV([a,b], X) N G([a,b],X). By
[11, Lemma 11] the series in (3.5) converge. It is known that the points of disconti-
nuities of a regulated function are at most countable (see [4, Corollary 1.3.2.b]). Let
{51} be the set of common points of discontinuity of the functions F' and g in (a,b),

SO we can write

Y OATEWATgt) - > ATF(H)Ag(t)

t€la,b) te(a,b)
— A*F(a)A* g(a) - A" F(B)A" (D)

+ i[A*F(sk)AJrg(sk) — AT F(sp)A™g(sk)]-

k=1

For n € N, define
S, =ATF(a)ATg(a) — A F(b)Ag(b)

+ f:[A+F(sk)A+g(sk) — AT F(sp)A™g(sk)]-
k=1

Let € > 0 and n € N be given and let {¢1,to,...,t,} C (a,b) be such that
{tl,tg,...,tn}:{81,82,...,Sn} and a<t; <ty <...<t, <b
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Then
S, = AT F(a)ATg(a) — A~ F(b)A™ g(b)

+) [ATF(t)ATg(tk) — ATF(tk) A g(t)].
k=1
Furthermore, for each k = 1,2,...,n, choose §; > 0 in such a way that

gt — ) — g(te—)llx < c

lg(tx + 6k) — g(tx+)llx < 8(n+ D[[F]

€
8(n+1)[[Fll’
and
[tk — Ok, tk + Ok) N {t1, b, ... tn} = {ti}.
Analogously, let dp > 0 be such that

€
a+dy <t1 and |[gla+d)—glat)|x < =—=—=—
81 Floo

and
€
b—¥8p >t, and |lg(b—)—g(b—do)||x < =——.
o ond (o) = g6 = d0)lx < g
Now, noting that
1A% Pl i) < 20 Fllse for ¢ € [a.b)

and
[ATF(#)||lx) <2[[F|loc for t € (a,b],

we can see that
|5l x

<2 F| (||g<a+> ~glatao)lx + 3 latet) — alti + (sk>|x)
k=1

+ HNF(G)[g(a +00) — gla)] + Y ATF () gt + 0) — g(tr)]

Lo (ug(b o) — b xS gt — 6) — g(tk—>||x)
k=1

‘ X

+ A POl - g0 - 0]+ Y- AP la(n) - ot~ )

k=1

,
<E+ ne +€+ ne
4 4n+1) "4 4n+1)

Cl A+F f,k
IOOH a+d) )]+ gty + k) — g(tk
Flloe)| 2772 ) Z M | )~ 9(te)]

(b)
2| Fllo

‘ X

¥ Q'F”‘”H 08) — g6 — 00 + 3" AT 1y g — 6
k=

<2 F

‘ X
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Summarizing, we have

ISullx
<+ 2P| S Plota-+ i)~ g(o) +Z%w<tk+5k> ~ao]
# 2o Sl ) — 90— 0] +Z STt — i~ 52|

< &+ 4 Fllo((B) val, g).
As £ > 0 can be arbitrarily small, we finally deduce that the estimate
I1Snllx < 4] Fllo((B) varg g)

is true for each n € N, wherefrom the desired estimate (3.5) follows.
(ii) Similarly we can proceed in the case F' € (B)BV ([a, b, L(X))NG([a,b], L(X))
and g € G([a,b], X).

Corollary 3.6 (Integration by parts). Let F' € (B)BV([a,b],L(X)) N G([a,}],

L(X)) and g € G([a,b],X) (or F € G([a,b],L(X)) and g € (B)BV([a,b],X; N
G(la,b], X)). Then both the integrals

/a "Fdlg and / IRl

exist and
b b
(3.6) / Fd[g] + / d[Flg
=F(b)g(b) — Fla)g(a) — Y ATF®)ATgt)+ > A F()A g(t)
at<b a<t<hb
holds.

Proof. a)Let F € (B)BV([a,b],L(X)) N G([a,b],L(X)) g € G([a,b],X) and
let {gn} be a sequence of finite step functions on [a, b] which tends uniformly to g on
[a, b]. Then by Proposition 2.1 (iv) we have

b b
(37) [ Falga)+ [ diFign - F0)0.0) + Fla)gno
== ) ATF®)ATg(t)+ > ATF({H)A gu(t)
ast<b a<t<b
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for any n € N. By Proposition 2.1(ii) and Corollary 3.4(i), the relation
b b
Jn ([ pdig]+ [ alFlg, - F00,0)+ Fla (o))
b b
— [ Fdigl+ [ diFlg - FO(0) + F@yg(a)

holds. Further, by Lemma 3.5 (ii) the estimate

S ATF()A*(g(t) C Y A FWA(glt) - gn<t>>H

a<t<b a<t<b X

< A((B) varg F)llg = gnllo

is true. Consequently,

nhf;o( > ATF)ATg(t) — Y ATF(t)A gt ))

at<b a<t<b

= Y ATFMATg(t) - > ATFH)A g(1).

at<b a<t<b

Summarizing, letting n — oo in (3.7) we obtain (3.6).
b) Similarly we can proceed if F' € G([a,b], L(X)) and g € BV ([a,b], X). O

Theorem 3.7 (Substitution Theorem). Asume that H € (B)BV([a,b], L(X)).
Let F: [a,b] — L(X) and let g: [a,b] — X be such that the integral ffd[F]g and at
least one of the integrals

/;H(t)dt[/atd[F]g}, /:Hd[F]

exist. Then also the other one has sense and the equality

(3.8) /:H(t)dtut d[F]g} = /:Hd[F]

holds.
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Proof. Put K(t f d[F])g for t € [a,b]. Let P = (D,§), where D =
{ag,a1,...,am}, E= (€ ,...,gm), be an arbitrary partition of [a, b]. Then

(3.9) ||S(H dF,g,P)— S(H,dK, P)| x

( Flag-lo6) - | alFl ) HX

H(¢ 1)) (i[F(ak) — Fan-1)]g(&k) — /::d[F]g> H

X

+HH(a>(zmak> o lote) - [ )|

k=1

(Here, analogously to the proof of Theorem 11 in [1], we made use of the relation
ZA B =S4, - 4 (23k> +A0(23k>
j=1

valid for arbitrary collections of operators A;, j =0,1,...,m, B;, j=1,2,...,m.)
Now, let an € > 0 be given, let . be a gauge on [a, b] such that

b
HS(dF,g7 P)— / d[F]gH < e for all §.-fine partitions P of [a, D]
a b's

and let P = (D,§), where D = {ap,1,...,am}, £ = (&1,...,&n), be an arbitrary
d.-fine partition of [a, b]. Then, by the Saks-Henstock lemma (cf. e.g. [8, Lemma 16]),

we have
S [Flen) — Flar_1)lg(ér) — /ak d[F]gH <e forj=12.. ..m
k=j Qp—1 X
Inserting this into (3.9), we get
|S(HAF, g, P) — S(H,dK, P)| x
< 2w - H(fjln(g D (P (o) = Flow-loles) - / dmg)>Hx

T ]H(a)(i[ﬂak)—ﬂakmg(fk)— / d[F1g>HX

k=1
< e((B)varl H) + ||H(a)|x),

wherefrom the proof immediately follows. O
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The last result of this paper provides a different version of the Substitution The-
orem not covered by Theorem 3.7 and which is also applicable to generalized dif-
ferential equations. On the one hand, it assumes H € G([a,b], L(X)) instead of
H € (B)BV ([a,b], L(X)). On the other hand, F' should be of bounded variation on
[a,b] and g bounded on [a, b].

Theorem 3.8 (Second Substitution Theorem). Assume F € BV([a,b], L(X)),
the function g: [a,b] — X is bounded and let the integral fabd[F]g exist. Then, for
each H € G([a,b], L(X)), both the integrals in (3.8) exist and the equality (3.8) is
true.

Proof. Step 1. First, we show that (3.8) holds for every finite step function
H: [a,b] = L(X).

By the linearity of the integral and since a finite step function H: [a,b] — L(X)
is a finite linear combination of functions of the form

X[(L,T](t)ﬁlv X[a,b](t)ﬁ% X[a](t)ﬁ37 X[b] (t)ﬁ47

where 7,0 € (a,b) and H; € L(X), i = 1,2,3,4, it is enough to justify (3.8) for
functions H of such a form.
Let 7 € (a,b), H € L(X), H = X[o-1(t)H and K(t) = [ d[Fg for t € [a,b].
Obviously,

(3.10) / HA[F|g = /aTHd[K] = ﬁ/{; d[Flg.

Let € > 0 be given and let

{6 ift =,
o(t) =

r—t| ifr<t<b.
Then for any d-fine partition P of [r,b] with
D ={apg,01,...,an} and &=(£&,%&...,&n)
we have & =g =7, a3 < 7+ ¢€ and

S(H,dF,g,P) = I;'[F(al) — F(1)]g(r) and S(H,dK,P)= H[K(a1)— K(7)].

As a result and as a consequence of the Hake theorem for KS-integrals (cf. e.g. [8,
Corollary 24]) we get

/ ’ Hd[Flg = HATF(r)g(r) and / ' HA[K] = HATK(r) = HATF(7)g(7),
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i.e. \ , .
/ Hd[F]g:/ HA[K] = HATF(1)g(7).

This together with (3.10) yields (3.8).

The proofs of the remaining cases H = X[T,b}ﬁ, H = X[a]ﬁ and H = X[b]ﬁ can be
done in a similar way.

Step 2. Next, notice that using arguments analogous to those from the proof
of the assertion (i) in Proposition 2.1, we can show that if F € BV ([a,b], L(X)),
H: [a,b] — L(X) and g: [a,b] — X are such that f;Hd[F]g exists, then the

estimate
|/ Al <

holds. As a consequence, the following assertion is true:
Let F € BV ([a,b], L(X)), Hyp: [a,b] = L(X) forn € N and let g: [a,b] — X be
bounded. Moreover, let f; H,d[F)g ezist for n € N and lim ||H,—H|o« = 0. Then

the integral
b
/ Hd[Flg

b b
lim H/ Hnd[F]g—/ Hd[F]gH =0.
n—oo a a X

Step 8. Let H € G([a,b], L(X)). Denote again K (¢ f d[F|]g for t € [a,b] and
consider the sequence H,,: [a,b] — L(X), n € N, of ﬁmte step functions such that
lim ||H,—Hl|« =0. As K € BV ([a,b], L(X)), by Proposition 2.1 (ii) and steps 1
n—oo

and 2 we have

/abH(t)dt[/:d[F]g] = /abHd[K] = nlln;o and[K]

= lim Hd g—/Hd

1 [|oc (varg F) gl

exists and

n—oo

ie., (3.8) is true. O
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