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Abstract. In the present note we characterize finite lattices which are isomorphic to the
congruence lattice of an abelian lattice ordered group.
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1. Introduction

Congruence lattices of lattices have been studied by a large number of authors (for
references until 1990 we recall Grätzer (cf. [4]); for the more recent papers cf., e.g.,

Ploščica, Tůma and Wehrung [8] and the references quoted there).
The famous Dilworth’s Theorem on the congurence lattice of lattices reads as

follows:

(A) Every finite distributive lattice D can be represented as the lattice of congru-

ence relations of a finite lattice L.

Grätzer [4] remarks that Dilworth never published this result and that (A) ap-
peared as an exercise (marked as difficult) in Birkhoff [1]; the first published proof

is in Grätzer and Schmidt [5].
In the present note we investigate the following analogous question: which finite

lattices are isomorphic to the congruence lattice of an abelian lattice ordered group?
We also deal with the case when lattices of finite breadth are considered instead

of finite lattices.
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2. Preliminaries

Let X and Y be partially ordered sets, X ∩ Y = ∅. Put Z = X ∪ Y and on the
set Z define a partial order � as follows:
1) on the set X or Y , the original partial order remains valid;

2) for x ∈ X and y ∈ Y we put x < y.

We denote (Z, �) = X ⊕ Y .

Let A be a nonempty class of partially ordered sets which is closed with respect to
isomorphisms. We denote by F1(A) the class of all partially ordered sets X having
the property that there exist n ∈ N and X1, X2, . . . , Xn ∈ A with

X � X1 × X2 × . . . × Xn.

Further, we denote by F2(A) the class of all partially ordered sets Z such that either

(i) Z ∈ A,
or

(ii) there exist X ∈ A and a finite chain Y such that Z � X ⊕ Y .

We put F3(A) = F2(F1(A)) and

F0(A) =
⋃

Fn
3 (A) (n = 1, 2, 3, . . .).

It is obvious that in the definition of F0(A) the condition (ii) above can be replaced
by the condition

(ii′) there exist X ∈ A and a one-element chain Y such that Z � X ⊕ Y .

Let A0 be the class of all finite chains. We prove
(B) Let D be a finite lattice. Then the following conditions are equivalent:

(i) There exists an abelian lattice ordered group G such that D is iso-

morphic to the congruence lattice of G.

(ii) D belongs to the class F0(A0).

��������. The lattice in Fig. 1 satisfies the condition (ii) above; the lattice

in Fig. 2 does not satisfy this condition.
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Fig. 1 Fig. 2

3. The implication (ii)⇒ (i)

For lattice ordered groups we apply the notation as in Birkhoff [1] and Conrad [3].

If A is a linearly ordered group and B is a lattice ordered group, then we denote

by A ◦ B the corresponding lexicographic product.

It is well-known that congruences on a lattice ordered group G are in a one-to-one

correspondence with the �-ideals of G. Moreover, if G is abelian, then the notion of
an �-ideal of G coincides with the notion of a convex �-subgroup of G.

Let C(G) be the system of all convex �-subgroups of G; this system is partially
ordered by the set-theoretical inclusion.

The following two assertions are easy to verify.

3.1. Lemma. Let A and B be lattice ordered groups, G = A × B. Then

C(G) � C(A)× C(B).

3.2. Lemma. Let A be a linearly ordered group with A 	= {0}; further, let B be

a lattice ordered group. Let C0(A) be the system of all nonzero convex �-subgroups

of A. Then

C(A ◦ B) � C(B)⊕ C0(A).

We denote by Z the additive group of all integers with the natural linear order.
For a positive integer n let us denote by n a chain having n elements. Then 3.2 yields

3.3. Lemma. Let G = G1 ◦ G2 ◦ . . . ◦ Gn, where G1 = Z for i = 1, 2, . . . , n.
Then C(G) � n+ 1.

3.4. Lemma. Let D be a finite lattice and let (i), (ii) be as in (B). Then the

implication (ii)⇒(i) is valid.
�	

�. Assume that (ii) is satisfied. We proceed by induction with respect to

the number of elements of the lattice D. Put cardD = k.
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Let k = 1. We set G = {0}. Hence K(G) � D, whence (i) holds.

Suppose that k > 1 and that the assertion is valid for lattices whose numbers of

elements are less than k.

Since D belongs to F0(A0), by applying the relation between (ii) and (ii′) we
conclude that either

a) there exist lattices X1, X2, . . . , Xn belonging to F0(A0) such that

D � X1 × X2 × . . . × Xn

and that cardXi < k for i = 1, 2, . . . , n,

or

b) there exists a lattice D1 and a one-element chain B such that D � D1 ⊕ B.

Assume that a) holds. In view of the induction hypothesis there are abelian lattice

ordered groupsGi (i = 1, 2, . . . , n) such that C(Gi) � Xi. PutG = G1×G2×. . .×Gn.
In view of 3.1 we have C(G) � D.

Next, let us suppose that b) holds. In view of the induction hypothesis there is

an abelian lattice ordered group G1 with C(G1) � D1. Put G2 = Z and denote

G = G2 ◦ G1.

According to 3.2 we have

C(G) � D1 ⊕ B,

whence (i) is satisfied. �

We remark that without using the equivalence between (ii) and (ii′) when defining
F0(A0) the above proof must be slightly modfied and instead of 3.2 we have to
apply 3.3.

4. The implication (i)⇒ (ii)

A lattice ordered group H is said to be a lexico extension of its convex �-subgroup
H1 if, whenever 0 < x ∈ H \H1, then x > h1 for each h1 ∈ H1. (Cf. [3].) We express

this situation by writing H = 〈H1〉. If, moreover, H 	= H1, then H is called a proper
lexico extension of H1.

We recall the following well-known result.

4.1. Lemma. Let H = 〈H1〉. Then H1 is an �-ideal of H and the factor �-group

H/H1 is linearly ordered.
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4.2. Lemma. Let H be a proper lexico extension of H1; put H2 = H/H1. Let

B be the system of all nonzero convex �-subgroups of H2. Then

C(H) � C(H1)⊕ B.

The proof is simple, it will be omitted.

From 4.1 we conclude that the present lemma is, in fact, a generalization of 3.2.

Let A be a nonempty class of lattice ordered groups. Suppose that A is closed
with respect to isomorphisms. We denote by ϕ(A) the class of all lattice ordered
groups G such that either G ∈ A or there are G1, G2, . . . , Gn ∈ A such that n > 1
and

G = 〈G1 × G2 × . . . × Gn〉.
Put

ϕ0(A) =
⋃

ϕn(A) (n = 1, 2, 3, . . .).
Let G be a lattice ordered group. A subset X of G+ is called disjoint if x1 ∧ x2 = 0
whenever x1 and x2 are distinct elements of G.

From the result of Conrad [2] (a slight sharpening of this result is given in the

author’s paper [7]) we obtain

4.3. Lemma. The following conditions for a lattice ordered group G are equiv-

alent:

(i) Each disjoint subset of G is finite.

(ii) There exists a finite system A 	= ∅ of linearly ordered groups such that G ∈
ϕ0(A).

Let 0 � x ∈ G. The convex �-subgroup of G generated by x is the set

⋃
[−nx, nx] (n = 1, 2, 3, . . .);

we denote this set by G[x].

If x1 and x2 are disjoint elements of G (i.e., if x1 ∧ x2 = 0), then

G[x1] ∩ G[x2] = {0}.

Hence we have

4.4. Lemma. Let G be a lattice ordered group such that the set C(G) is finite.
Then each disjoint subset of G is finite.
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Let A1 	= ∅ be a finite system of finite chains. Put

T1 = A1, Tn = ϕn−1(A1) for n = 2, 3, . . .

In view of the results of Section 3 (namely, cf. 3.3), for each X ∈ A1 there exists
an abelian linearly ordered group GX such that C(GX) � X . Denote

A1 = {GX : X ∈ A1}.

4.5. Lemma. Let A1 and A1 be as above. Let G be a lattice ordered group

such that G ∈ ϕ0(A1). Put C(G) = D. Then D belongs to F0(A1).

�	

�. There exists the least positive integer n with G ∈ Tn. We proceed by

induction with respect to n. If n = 1, then the assertion is a consequence of the
definition of F0(A1).
Let n > 1. Hence there are G1, G2, . . . , Gm ∈ ϕn−1(A1) such that m > 1 and

G = 〈G1 × G2 × . . . × Gm〉.

By the induction hypothesis we conclude that all C(Gi) (i = 1, 2, . . . , m) belong to

F0(A1). Then in view of 3.1 we obtain

C(G1 × G2 × . . . × Gm) ∈ F0(A1).

From this and from 4.2 we infer that the relation

C(〈G1 × G2 × . . . × Gm〉) ∈ F0(A1)

is valid. Hence D ∈ F0(A1). �

4.6. Lemma. Let D be a finite lattice. Let (i) and (ii) be as in (B). Then
(i)⇒(ii).

�	

�. It suffices to apply 4.4, 4.3 and 4.5. �

Now, 3.4 and 4.6 imply that (B) holds.
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5. Lattices of finite breadth

For a lattice L we denote by A(L) the system of all antichains of L. We put

b(L) = sup{cardX : X ∈ A(L)}.

The cardinal b(L) will be called the breadth of L.
Let Bf be the class of all lattices L such that b(L) is finite.

It is obvious that if H is a linearly ordered group then the lattice C(H) is a chain.
Let C0 be the class of all chains C1 having the property that there exists a linearly

ordered group H with C1 � C(H).
The chains belonging to C0 can be completely characterized by using merely their

order properties; this characterization has been given by Iwasawa [6].
We prove

(C) Let D be a lattice of finite breadth. Then the following conditions are equiv-

alent:
(i1) = the condition (i) of (B).

(ii1) D belongs to the class F0(C0).

5.1. Lemma. Let G be a lattice ordered group such that b(C(G)) is finite.
Then each disjoint subset of G is finite.

�	

�. By way of contradiction, assume that there exists an infinite disjoint

subset {xi}i∈I of G. Then without loss of generality we can suppose that xi > 0 for
each i ∈ I. Let us apply the notation as in Section 4. Then the system {G[xi]}x∈I

is an infinite antichain in the lattice C(G), which is a contradiction. �

From this and from 4.3 we obtain

5.2. Corollary. Let G be as in 5.1. Then there is a finite system A 	= ∅ of
linearly ordered groups such that G ∈ ϕ0(A).
Let G and A be as in 5.2. Denote

A = {C(H) : H ∈ A}.

Thus A ⊆ C0.
In view of 5.2 and 4.5 we have

5.3. Lemma. Let G be as in 5.1. Then C(G) ∈ F0(C0).
In view of 5.3, the implication (i1)⇒(ii1) is valid.
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5.4. Lemma. Let D be a lattice of finite breadth. Then the implication

(ii1)⇒(i1) holds.
�	

�. Assume that (ii1) is satisfied. Denote

Q1 = C0 and Qn = Fn−1
3 (Q1) for n > 1.

Thus there is n ∈ N such that D ∈ Qn. We proceed by induction with respect to n.

Let n = 1. Then in view of the definition of C0 we conclude that (i1) is valid.
Further, suppose that n > 1 and that the assertion is valid whenever D1 ∈ Qm,

m ∈ N , m < n. We have D ∈ F2 (F1(Qn−1)). Hence there are X1, X2, . . . , Xk ∈
Qn−1 and a one-element lattice Y such that

D = (X1 × X2 × . . . × Xk)⊕ Y.

In view of the induction hypothesis there are abelian lattice ordered groups Xi such
that Xi = C(Gi) for i = 1, 2, . . . , k. The remaining steps are as in the proof of

3.4. �

In view of 5.3 and 5.4 we conclude that (C) is valid.
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