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0. Introduction

In [10], some cardinal characteristics of ordered sets are studied, among others
the 2-pseudodimension introduced by the first author in [8] (see also [9]). For the

reader’s convenience, we recall its definition. Let � = (G, �) be an ordered set, let
I �= ∅ be a set and let fi : G → {0, 1} be a mapping for any i ∈ I. If

(1) x � y ⇐⇒ fi(x) � fi(y) for all i ∈ I

holds for any x, y ∈ G, then we say that (fi ; i ∈ I) is a 2-realizer of � . Further, we
set

(2) 2-pdim � = min{|I| ; (fi ; i ∈ I) is a 2-realizer of � };

this cardinal is called the 2-pseudodimension of � . The significance of this charac-

teristic is given by the following fact: 2-pdim � is the least cardinal m such that �
can be embedded into the cardinal power of type 2m [8], [10].

Another characteristic of an ordered set � , studied in [10], is its separability sep � ;
by this we mean the minimum of cardinalities of dense subsets in � . The density

of subsets of � , defined in [10], corresponds to the u-density introduced in 2.2. of
this article. Here we introduce some modifications of the definition of dense subsets
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of ordered sets and compare the corresponding concepts. Other definitions of dense

subsets of ordered sets can be found in [12], [13], [14]; for linearly ordered sets see,
e.g. [3] or [4]. Some other characteristics of linearly ordered sets are studied in [6],
[7], [11].

We summarize some notation used in the sequel. For basic notions concerning
ordered sets see [1] or [2]. An ordered set with a carrier G and a relation � will be
denoted by (G, �) or � . IfM is a set, then |M | is its cardinality and � (M) its power,
i.e. � (M) = {X ; X ⊆ M}. If α is an ordinal, then |α| denotes also the cardinality of
α. For elements x, y of an ordered set (G, �), x ‖ y means that x, y are incomparable
and x ≺ y means that y is a cover of x, i.e.x < y and x < z < y for no z ∈ G. If

x is an element of an ordered set � , then I(x) denotes the principal ideal and F (x)
the principal filter in � generated by x, i.e. I(x) = {t ∈ G ; t � x}, F (x) = {t ∈
G ; t � x}. Further, we set IH(x) = I(x) ∩ H, FH(x) = F (x) ∩ H whenever H is a
subset of G. When the contrary is not stated, we assume |M | � 2 for any set M in

the following chapters. The Axiom of Choice will be assumed.

1. Weakly dense subsets

1.1. Definition. Let � = (G, �) be an ordered set and let H ⊆ G. The set H

will be called weakly l-dense in � if

(3) x, y ∈ G, x � y ⇒ there exists h ∈ H such that h � x, h � y.

Further, set

(4) wl-sep � = min{|H | ; H ⊆ G is weakly l-dense in � };

this cardinal will be called the weak l-separability of � .

The following theorem provides a complete characterization of weakly dense sub-

sets of � .

1.2. Theorem. Let � = (G, �) be an ordered set and let H ⊆ G. H is weakly

l-dense in � if and only if x = sup IH(x) for any x ∈ G.

�����. 1. Let H be weakly l-dense in � and let x ∈ G. We have t � x for
all t ∈ IH(x). Let y ∈ G be such an element that t � y for each t ∈ IH(x). Suppose

that x � y; then there exists t ∈ H, t � x such that t � y, i.e. t ∈ IH(x), t � y

contradicting our assumption. Hence x � y and consequently, x = sup IH(x).

2. Let x = sup IH(x) for all x ∈ G and let x, y ∈ G, x � y. Suppose that
there is no t ∈ H with t � x, t � y, i.e. that t ∈ H, t � x implies t � y. Then
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IH(x) ⊆ IH(y) implying x = sup IH(x) � sup IH(y) = y, a contradiction. Thus

there exists t ∈ H, t � x with t � y and H is weakly l-dense in � . �

From 1.2 we easily obtain

1.3. Corollary. Let � be an ordered set, let H ⊆ G be weakly l-dense in �
and let x, y ∈ G. Then x � y if and only if IH(x) ⊆ IH(y).

�����. If x � y, then, trivially, IH(x) ⊆ IH(y). Conversely, if IH(x) ⊆ IH(y),

then x = sup IH(x) � sup IH(y) = y. �

In other words, the mapping x → IH(x) is an embedding of (G, �) into (� (H),⊆)
whenever H is weakly l-dense in � .

As an example, let � be a lattice satisfying the descending chain condition. Then
any element of � is the supremum of the join-irreducible elements of � lying below

it. Thus the set H of join-irreducible elements is weakly l-dense in � .
Another consequence of Theorem 1.2 is the following assertion.

1.4. Lemma. Let � be an ordered set and let H ⊆ G be weakly l-dense in � .

Define a mapping fh : G → {0, 1}, for any h ∈ H , in the following way: fh(x) = 1
iff h ∈ IH(x). Then (fh ; h ∈ H) is a 2-realizer of � .

�����. By 1.3, x, y ∈ G, x � y is equivalent to IH(x) ⊆ IH(y) and this is

equivalent to fh(x) � fh(y) for all h ∈ H . �

1.5. Corollary. Let � be an ordered set. Then

(5) 2-pdim � � wl-sep � .

If � is a finite antichain, |G| = m, then the only weakly l-dense subset in � is G;
thus wl-sep � = m. On the other hand, 2-pdim � = n, where n is the least positive

integer with

(
n

[n2 ]

)
� m ([8], [5], [15]). Thus 2-pdim � < wl-sep � is possible.

The following definition is dual to that of 1.1.

1.6. Definition. A subset H of an ordered set � = (G, �) is called weakly
u-dense in � if

(6) x, y ∈ G, x � y ⇒ there exists h ∈ H such that y � h, x � h.

Further,

(7) wu-sep � = min{|H | ; H ⊆ G is weakly u-dense in � }.
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By considerations dual to 1.2 and 1.4 we find

1.7. Theorem. A subset H of an ordered set � is weakly u-dense in � iff

x = infFH(x) for each x ∈ G.

1.8. Lemma. Let H be a weakly u-dense subset of an ordered set � and let

fh : G → {0, 1}, h ∈ H , be such a mapping that fh(x) = 0 iff h ∈ FH(x). Then

(fh ; h ∈ H) is a 2-realizer of � .

This yields

1.9. Corollary. For any ordered set � we have

(8) 2-pdim � � min{wl-sep � , wu-sep � }.

Now we show that wl-sep �= wu-sep � need not hold.

����� ��	
��
. Let M be an infinite set and let G ⊆ � (M) be the set of

those subsets X ⊆ M for which |X | = |M |. If � = (G,⊆), then wu-sep � = |M |,
wl-sep � > |M |.
�����. If H ⊆ G is weakly u-dense in � then M − {x} ∈ H for each x ∈ M .

In fact, if y ∈ M, y �= x, then M − {y} � M − {x}, which means that there must
exist A ∈ H such that M − {x} ⊆ A, M − {y} � A. This is possible only if
A = M − {x}. Thus |H | � |M | and wu-sep � � |M |. On the other hand, the set
H = {M − {x} ; x ∈ M} is weakly u-dense in � : If A, B ∈ G, A � B, then there
exists x ∈ A − B and hence B ⊆ M − {x}, A � M − {x}. Consequently, wu-sep �

= |M |.
Assume wl-sep � � |M | and let H ⊆ G be a weakly l-dense subset in � such

that |H | = |M |. Let α be the least ordinal with |α| = |M | and let (Ai ; i < α) be
a sequence of type α composed of all elements of H . We have |Ai| = |M | for each
i < α. Choose arbitrary x0, y0 ∈ A0, x0 �= y0. Let β < α be an ordinal and suppose
that we have defined elements xi, yi for all ordinals i < β. Let us choose xβ , yβ ∈ Aβ

so that xβ �= yβ , xβ /∈ {xi ; i < β} ∪ {yi ; i < β}, yβ /∈ {xi ; i < β} ∪ {yi ; i < β}.
This is possible for |{xi ; i < β} ∪ {yi ; i < β}| � 2|β| < |M | = |Aβ |. Thus by
transfinite induction we have defined elements xi, yi for all ordinals i < α such that
xi, yi ∈ Ai, xi �= xj , yi �= yj for i �= j and {xi ; i < α} ∩ {yi ; i < α} = ∅. Denote
A = {xi ; i < α}, B = {yi ; i < α}. Then |A| = |B| = |M |, thus A, B ∈ G and
A∩B = ∅, especially A � B. By assumption there must exist an ordinal i < α such

that Ai ⊆ A, Ai � B. But yi ∈ Ai, thus yi ∈ A, which is a contradiction for yi ∈ B,
A ∩ B = ∅. �
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If we consider the dual to the set from 1.10 we see that also wl-sep � < wu-sep �

is possible.
Now let � = (G, �) be an ordered set, let G1 ⊆ G and let � 1 = (G1, �) with the

induced order. One may expect that wl-sep � 1 � wl-sep � ; the following example
shows that this is not the case.

1.11. ��	
��
. Let M be an infinite set, let G = � (M) and let G1 be the set
of those subsets X ⊆ M for which |X | = |M |. If � = (G,⊆), � 1 = (G1,⊆), then
wl-sep � = |M |, wl-sep � 1 > |M |.
�����. We have seen that wl-sep � 1 > |M | in Example 1.10; but we will show

that wl-sep � = |M |. If H ⊆ G is a weakly l-dense subset in � , then {x} ∈ H for all

x ∈ M : choose y ∈ M , y �= x so that {x} � {y}; consequently, there exists A ∈ H

such that A ⊆ {x}, A � {y}. This is possible only for A = {x}; it implies wl-sep

� � |M |. On the other hand, the set H = {{x} ; x ∈ M} is weakly l-dense in � :
if A, B ∈ G, A � B, then there exists an element x ∈ A − B and then {x} ⊆ A,

{x} � B. Thus wl-sep � � |M |, which implies wl-sep � = |M |. �

1.12. Definition. Let � be an ordered set and let H ⊆ G. We will say that H

is weakly dense in � if it is both weakly l-dense and weakly u-dense in � . Further,

set

(9) w-sep � = min{|H | ; H ⊆ G is weakly dense in � }.

As the union of a weakly l-dense subset of � and a weakly u-dense subset of � is

a weakly dense subset of � we have trivially

(10) max{wl-sep � , wu-sep � } � w-sep � � wl-sep � + wu-sep � .

If the set G is infinite, then the cardinals wl-sep � , wu-sep � are also infinite.

Thus in (10) the sign = holds; especially we have

(11) w-sep � = max{wl-sep � , wu-sep � }

for any infinite ordered set � .

If G is finite, then both max{wl-sep � , wu-sep � } < w-sep � and w-sep � <

wl-sep � + wu-sep � is possible. For the first relation take � = (� (M),⊆), where
M is finite, |M | � 3; then H1 = {{x} ; x ∈ M} is the least weakly l-dense subset of
� , H2 = {M − {x} ; x ∈ M} is the least weakly u-dense subset of � and H1 ∪ H2

is the least weakly dense subset of � . Consequently, wl-sep � = wu-sep � = |M |,
w-sep � = 2|M |. For the other relation, note that if � is a chain, x, y ∈ G and x ≺ y,
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then every weakly l-dense subset of � contains y, every weakly u-dense subset of �

contains x and every weakly dense subset of � contains x, y. Hence we have: if � is
a finite chain, then wl-sep � = wu-sep � = |G| − 1, w-sep � = |G|.

2. Dense subsets

2.1. Definition. Let � = (G, �) be an ordered set and let H ⊆ G. We will call

H l-dense in � if the following conditions are satisfied:

x, y ∈ G, x < y ⇒ there exist h1, h2 ∈ H such that x � h1 < h2 � y,(12)

x, y ∈ G, x ‖ y and I(x)− {x} ⊆ I(y)⇒ x ∈ H.(13)

The condition (12) was formulated already in Hausdorff [3], p. 89, for chains. (13)
is a slight modification of a condition which appeared in Novotný [12].

Further, we define the l-separability of � :

(14) l-sep � = min{|H | ; H ⊆ G is l-dense in � }.

The u-density is defined dually:

2.2. Definition. A subset H of an ordered set � is called u-dense in � if it
satisfies (12) and the condition

(15) x, y ∈ G, x ‖ y and F (x) − {x} ⊆ F (y)⇒ x ∈ H.

Further,

(16) u-sep � = min{|H | ; H ⊆ G is u-dense in � }.

Note that if H is l-dense (u-dense) in � and x ∈ G is a minimal (maximal) element

which is not the least (the greatest), then x ∈ H . Also, if x, y ∈ G and x ≺ y, then
x, y ∈ H .

2.3. Theorem. Let � be an ordered set and let H ⊆ G be an l-dense subset of

� . Then H is weakly l-dense in � .

�����. Let H be l-dense in � and let x, y ∈ G, x � y. If y < x, then there exist

elements h1, h2 ∈ H such that y � h1 < h2 � x, which means that h2 � x, h2 � y.
Let x ‖ y and suppose that there is no h ∈ H such that h � x, h � y. Consequently,

h ∈ H, h � x implies h � y. Let z ∈ I(x)−{x} be an arbitrary element. Then z < x

and thus there exist h1, h2 ∈ H such that z � h1 < h2 � x. By our assumption
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h2 � y, which means that z < y, i.e. z ∈ I(y). Thus I(x) − {x} ⊆ I(y) and by (13)

x ∈ H . As x � x we have x � y contradicting the assumption x ‖ y. Hence there
must exist an element h ∈ H such that h � x, h � y and H is weakly l-dense in
� . �

The dual assertion to 2.3 is also valid.

2.4. Corollary. Let � be an ordered set. Then

(17) wl-sep � � l-sep � , wu-sep � � u-sep � .

LetM be a finite set, |M | � 3 and let � = (� (M),⊆). We have stated above that
wl-sep � = |M |. Let A ∈ � (M) be arbitrary. If A �= ∅ and x ∈ A, then A−{x} ≺ A;
if A = ∅ and x ∈ M , then A ≺ {x}. Thus � (M) is the only l-dense subset of � and

l-sep � = 2|M|. Hence wl-sep � < l-sep � is possible; analogously for wu-sep � ,
u-sep � .

2.5. Definition. Let � be an ordered set and let H ⊆ G. The set H will be

called dense in � if it is both l-dense and u-dense in � . Further, set

(18) sep � = min{|H | ; H ⊆ G is dense in � }.

Trivially, we have

(19) max{l-sep � , u-sep � } � sep � � l-sep � + u-sep �

and if � is infinite, then the sign = holds. But we will show that, on the contrary
to weak density, = always holds in the left inequality of (19). This is a consequence

of the following trivial assertion.

2.6. Lemma. Let � be a finite ordered set. If H ⊆ G is l-dense in � , then

H = G.

�����. Let x ∈ G. If x is not an isolated element of � then there exists an

element y ∈ G such that either x ≺ y or y ≺ x. Consequently, x ∈ H . If x is isolated,
then it is a minimal and not the least element, thus x ∈ H again. �

The same holds for u-density; thus l-sep � = u-sep � = |G| for a finite ordered
set � .

2.7. Corollary. Let � be an ordered set. Then

(20) sep � = max{l-sep � , u-sep � }.
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Note that (5), (17) and (20) imply 2-pdim � � sep � ; this fact (with another
formulation) is the main result in [12].

Trivially, w-sep � � sep � for any ordered set � . If M is an infinite set and
� = (� (M),⊆), then it is easy to show wl-sep �= |M |, l-sep � = 2|M| and similarly
wu-sep � = |M |, u-sep � = 2|M|. Then (11) implies w-sep � = |M | and from (20)
we have sep � = 2|M|. Thus w-sep � < sep � is possible.

We prove a simple assertion.

2.8. Lemma. Let � be a chain and let H ⊆ G. Then H is dense in � if and

only if it is weakly dense in � .

�����. If H is dense in � , then it is weakly dense by 2.3 and the dual assertion.
Let H be weakly dense in � and let x, y ∈ G, x < y. As y � x, there exists h2 ∈ H

such that h2 � y, h2 � x, i.e. x < h2 � y. As h2 � x, there exists h1 ∈ H such that
x � h1, h2 � h1, i.e. h1 < h2. Then x � h1 < h2 � y, which means that (12) holds

and H is dense in � . �

As a corollary, we have w-sep � = sep � if � is a chain.

At the end, we summarize the relations obtained:

2-pdim � � min{wl-sep � , wu-sep � }
max{wl-sep � , wu-sep � } � w-sep � � wl-sep � + wu-sep �

wl-sep � � l-sep �

wu-sep � � u-sep �

w-sep � � sep �
sep � = max{l-sep � , u-sep � }.

The following two problems remain open:

1. Let � = (G, �) be an ordered set, let G1 ⊆ G and let � 1 = (G1, �) be an
ordered subset of � . Does then l-sep � 1 � l-sep � (u-sep � 1 � u-sep � ) hold?

2. Can there exist an ordered set � such that l-sep � �= u-sep � ?
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