
127 (2002) MATHEMATICA BOHEMICA No. 2, 229–241

Proceedings of EQUADIFF 10, Prague, August 27–31, 2001

AN INTRODUCTION TO HIERARCHICAL MATRICES

Wolfgang Hackbusch, Leipzig, Lars Grasedyck, Kiel,

Steffen Börm, Leipzig

Abstract. We give a short introduction to a method for the data-sparse approximation
of matrices resulting from the discretisation of non-local operators occurring in boundary
integral methods or as the inverses of partial differential operators.
The result of the approximation will be the so-called hierarchical matrices (or short

H-matrices). These matrices form a subset of the set of all matrices and have a data-sparse
representation. The essential operations for these matrices (matrix-vector and matrix-
matrix multiplication, addition and inversion) can be performed in, up to logarithmic fac-
tors, optimal complexity.

Keywords: hierarchical matrices, data-sparse approximations, formatted matrix opera-
tions, fast solvers

MSC 2000 : 65F05, 65F30, 65F50, 65N50

1. Introduction

1.1. Overview. H-matrices are based on two observations:
• Integral operators can be efficiently treated by using separable expansions of
the corresponding kernel functions (cf. [5] or [10]).

• The inverse of an elliptic partial differential operator can be cast in the form of
an integral operator by using Green’s functions.

In the first half of this introduction, we will present the H-matrix representation
of integral operators using a variant of the panel clustering approach (cf. [5]). The
second half is devoted to the application of these techniques to the computation of
the inverses of matrices arising in finite element discretisations.

1.2. Model problem: Integral equation. Let us consider an integral operator
of the form

(1) L : V → W, u �→
(

x �→
∫
Ω

g(x, y)u(y) dy

)
,

229

on a submanifold or subdomain Ω of �d with a kernel function

g : �d × �
d → �

which is assumed to be asymptotically smooth, i.e., to satisfy

(2) |∂α
x ∂β

y g(x, y)| � Cas1(Cas2‖x − y‖)−|α|−|β||g(x, y)|, Cas1, Cas2 ∈ �, α, β ∈ �
d
0 .

In typical applications, g is non-local, so, contrary to the treatment of differential
operators, the finite element discretisation of the operator L does not lead to a
sparse matrix. Due to the lack of sparsity, operations on the discrete matrix are
prohibitively expensive.
In this paper, we will focus on the method of H-matrices, a combination of the

panel clustering method [5] and the mosaic skeleton matrix approach [10]. This
method can deal with, in comparison to the two alternatives mentioned above, rela-
tively general domains and operators.

1.3. Elliptic partial differential equations. Since the inverses of elliptic par-
tial differential operators can be represented by Green’s associated function in the
form of an integral operator, our approximation scheme extends to the inverses of
finite element discretisations of such operators. The kernel function (Green’s func-
tion) is only necessary for theoretical considerations; in practice one starts with
the sparse discretisation of an elliptic partial differential operator and calculates an
approximate inverse as in Subsection 4.4.

2. Construction of the cluster tree and block partition

While wavelet techniques can be employed to deal directly with problems in a
continuum, H-matrix techniques require a discrete subspace together with the finite
element or boundary element basis (ϕi)i∈I . The corresponding Ritz-Galerkin matrix
L is given by

(3) Lij = 〈ϕi,Lϕj〉L2 .

2.1. Cluster tree. Let TI be a tree and denote by TI the set of its nodes. TI is
called a cluster tree corresponding to an index set I, if the following conditions hold:

1. TI ⊆ P(I) \ {∅}, i.e., each node of TI is a subset of the index set I.
2. I is the root of TI .
3. If τ ∈ TI is a leaf, then1 |τ | � Cleaf , i.e., the leaves consist of a relatively small
number of indices.

4. If τ ∈ TI is not a leaf, then it has two sons and is their disjoint union.

1 |τ | denotes the number of elements in the set τ .

230

For each τ ∈ TI , we denote the set of its sons by S(τ) ⊆ TI .
The restriction of TI to binary trees serves only the purpose of simplifying the

presentation of some steps of the algorithms. The extension to more general trees is
straightforward.
The support of a cluster τ ∈ TI is given by the union of the supports of the basis

functions corresponding to its elements, i.e.,

Ωτ :=
⋃
i∈τ

Ωi, where Ωi := suppϕi for all i ∈ I.

������� 2.1 (Construction of cluster trees). A simple method of building a
cluster tree is based on geometry-based splittings of the index set. We associate
each degree of freedom i ∈ I with a suitable point xi ∈ �

d , e.g., the centre of the
support of the corresponding basis function or the corresponding Lagrange point, if
Lagrangian finite elements are used.

Let {e1, . . . , ed} be an orthonormal basis of �d , e.g., the basis {ex, ey, ez} of the
canonical unit vectors in 3D. The following algorithm will split a given cluster τ ⊆ I

into two sons:
procedure Split(τ);
begin

{ Choose a direction for geometrical splitting of the cluster τ }
for j := 1 to d do

begin

αj := min{〈ej , xi〉 : i ∈ τ};
βj := max{〈ej , xi〉 : i ∈ τ}
end;
jmax := argmax{βj − αj : j ∈ {1, . . . , d}};
{ Split the cluster τ in the chosen direction }
γ := (αjmax + βjmax)/2;
τ1 := ∅; τ2 := ∅;
for i ∈ τ do

if 〈ejmax , xi〉 � γ then

τ1 := τ1 ∪ {i}
else

τ2 := τ2 ∪ {i};
end

2.2. Admissibility condition. Next, we need an admissibility condition that
allows us to select pairs (τ, σ) ∈ TI ×TI such that the kernel g(·, ·) is smooth enough
on the domain associated with Ωτ × Ωσ.

231

If we assume asymptotically smooth kernels, this requirement will lead to an ad-
missibility condition of the form

min{diam(Ωτ), diam(Ωσ)} � η dist(Ωτ ,Ωσ),

where η ∈ �>0 is a parameter controlling the trade-off between the number of ad-
missible blocks, i.e., the algorithmic complexity, and the speed of convergence, i.e.,
the quality of the approximation.
In typical applications for unstructured grids, the computation of the diameter of

a cluster and especially of the distance of two clusters will be too complicated or
too time-consuming, so the “minimal” condition (4) will be replaced by a stronger
variant, for example by using super-sets of Ωτ and Ωσ that are of a simpler structure.

������� (Admissibility by Bounding Boxes). A relatively general and practical
admissibility condition for clusters in �d can be defined by using bounding boxes :
We define the canonical coordinate maps

πk : �d → �, x �→ xk,

for all k ∈ {1, . . . , d}. The bounding box for a cluster τ ∈ TI is then given by

Qτ :=
d∏

k=1

[aτ,k, bτ,k], where aτ,k := min(πkΩτ) and bτ,k := max(πkΩτ).

Obviously, we have Ωτ ⊆ Qτ , so we can define the admissibility condition

(2.1) min{diam(Qτ), diam(Qσ)} � η dist(Qτ , Qσ)

which obviously implies (4). We can compute the diameters and distance of the
boxes by

diam(Qτ) =

(d∑
k=1

(bτ,k − aτ,k)2
)1/2

and

dist(Qτ , Qσ) =

(d∑
k=1

(max(0, aτ,k − bσ,k))2 + (max(0, aσ,k − bτ,k))2
)1/2

.

2.3. Block tree. The cluster tree can be used to define a block tree by forming
pairs of clusters recursively:

232

The block tree corresponding to a cluster tree TI and an admissibility condition is
constructed by the following procedure:
procedure BuildBlockTree(τ × σ);
begin

if τ × σ is not admissible and |τ | > Cleaf and |σ| > Cleaf then

begin

S(τ × σ) := {τ ′ × σ′ : τ ′ ∈ S(τ), σ′ ∈ S(σ)};
for τ ′ × σ′ ∈ S(τ × σ) do
BuildBlockTree(τ ′ × σ′)

end

else

S(τ × σ) := ∅
end

By calling this procedure with τ = σ = I, we create a block cluster tree with root
I × I. The leaves of the block cluster tree form a partition of I × I.
The complexity of algorithms for the creation of suitable cluster trees and block

partitions has been analysed in detail in [3]: For typical quasi-uniform grids, a “good”
cluster tree can be created in O(n logn) operations, the computation of the block
partition can be accomplished in O(n) operations.

3. Rk-matrices

The basic building blocks for H-matrices (defined in Section 4) are Rk-matrices
which are a straightforward representation of low rank matrices. These matrices
form subblocks of the H-matrix corresponding to subsets τ × σ ⊂ I × I.

Definition 3.1 (Rk-matrix). A matrix of the form

R = ABT , A ∈ �
τ×k , B ∈ �

σ×k

is called an Rk-matrix.

Any matrix of rank at most k can be represented as an Rk-matrix and each
Rk-matrix has at most rank k. Rk-matrices have some nice properties, e.g., only
k(n+m) numbers are needed to store an Rk-matrix.

3.1. Discretisation. In the H-matrix representation of matrices, Rk-matrices
will occur only as a representation of admissible blocks.
If L is a differential operator, we have supp(Lϕj) ⊆ suppϕj , so the matrix blocks

corresponding to admissible pairs of clusters are zero.

233

The situation is more complicated if L is an integral operator of the type (1): Let
τ × σ be an admissible pair of clusters. Without loss of generality, we may assume
that diam(Ωτ) � diam(Ωσ).
In order to construct a rank k approximation of the block τ × σ, we use an m-th

order interpolation scheme2 with interpolation points (xτ
j)

k
j=1 and the corresponding

Lagrange polynomials (pτ
j)

k
j=1 and approximate the original kernel function g(·, ·) by

its interpolant

(6) g̃(x, y) :=
k∑

ι=1

pτ
ι (x)g(x

τ
ι , y).

Combining the asymptotical smoothness assumption (2) with standard interpolation
error estimates, we get

|g(x, y)− g̃(x, y)| � C

(
CintCas2

diam(Ωτ)
dist(Ωτ ,Ωσ)

)m

‖g‖∞,Ωτ×Ωσ ,

which combined with the admissibility condition (4) yields

|g(x, y)− g̃(x, y)| � C (CintCas2η)
m ‖g‖∞,Ωτ×Ωσ ,

so if η < 1/(CintCas2), we get �������	
�� convergence of the interpolation if we
increase the order m.
By replacing g(·, ·) by g̃(·, ·) in (3), we find

(7) Lij =
k∑

ι=1

∫
Ω

pτ
ι (x)ϕi(x) dx

∫
Ω

g(xτ
ι , y)ϕj(y) dy.

We define matrices A ∈ �
τ×k and B ∈ �

σ×k by setting

Aiι :=
∫
Ω

pτ
ι (x)ϕi(x) dx and Bjι :=

∫
Ω

g(xτ
ι , y)ϕj(y) dy

and rewrite (7) as3

L|τ×σ ≈ ABT ,

so we have approximated L|τ×σ by an Rk-matrix.

2A scheme of this type can be easily constructed by extending one-dimensional interpo-
lation techniques to the multi-dimensional case using tensor products. This leads to the
relation k = md between the rank of a block and the order of the interpolation.

3 For a vector v and a subset τ ⊂ I , v|τ is the restriction to the vector (vj)j∈τ , while for
a matrix L and subsets τ, σ ⊂ I the notation L|τ×σ is used for the block (Lij)i∈τ,j∈σ .

234

3.2. Matrix-vector multiplication. The matrix-vector multiplication x �→ y :=
Rx of an Rk-matrix R = ABT with a vector x ∈ �

σ can be done in two steps:

1. Calculate z := BT x ∈ �
k .

2. Calculate y := Az ∈ �
τ .

The transposed RT = BAT can be treated analogously and the complexity of the
matrix-vector multiplication is O(k(|σ|+ |τ |).

3.3. Truncation. The best approximation of an arbitrary matrix M ∈ �
τ×σ by

an Rk-matrix M̃ = ÃB̃T (in the spectral and Frobenius norm) can be computed
using the (truncated) singular value decomposition as follows:

1. Calculate a singular value decomposition M = UΣV T of M .
2. Set Ũ := [U1 . . . Uk] (first k columns), Σ̃ := diag(Σ11, . . . ,Σkk) (first (largest) k

singular values), Ṽ := [V1 . . . Vk] (first k columns).
3. Set Ã := ŨΣ̃ ∈ �

τ×k and B̃ := Ṽ ∈ �
σ×k .

We call M̃ the truncation of M to the set of Rk-matrices. The complexity of
the truncation is O((|τ | + |σ|)3). If the matrix M is an RK-matrix M = ABT

with K > k then the truncation can be computed in O(K2(|τ | + |σ|) +K3) by the
following procedure:

1. Calculate a truncated QR-dec. A = QARA of A, QA ∈ �
τ×K , RA ∈ �

K×K .
2. Calculate a truncated QR-dec. B = QBRB of B, QB ∈ �

σ×K , RB ∈ �
K×K .

3. Calculate a singular value decomposition RART
B = UΣV T of RART

B.
4. Set Ũ := [U1 . . . Uk] (first k columns), Σ̃ := diag(Σ11, . . . ,Σkk) (first (largest) k

singular values), Ṽ := [V1 . . . Vk] (first k columns).
5. Set Ã := QAŨ Σ̃ ∈ �

τ×k and B̃ := QBṼ ∈ �
σ×k .

3.4. Addition. Let R1 = ABT , R2 = CDT be Rk-matrices. The sum

R1 +R2 = [AC][B D]T

is an RK-matrix with K = 2k. We define the formatted addition ⊕ of two Rk-
matrices as the best approximation (in the spectral and Frobenius norm) of the sum
in the set of Rk-matrices, which can be computed as in Section 3.3. The formatted
subtraction
 is defined analogously.

3.5. Multiplication. The multiplication of an Rk-matrix R = ABT by an arbi-
trary matrix M from the left or right yields again an Rk-matrix:

RM = ABT M = A(MT B)T ,

MR =MABT = (MA)BT .

235

To calculate the product one has to perform the matrix-vector multiplication MT Bi

for the k columns i = 1, . . . , k of B with the transpose of M , or MAi for the k

columns i = 1, . . . , k of A with the matrix M .

4. H-matrices

Based on the cluster (binary) tree TI and the block cluster (quad-) tree TI×I we
define the H-matrix structure.

Definition 4.1 (H-matrix). Let L ∈ �
I×I be a matrix and TI×I a block cluster

tree of I × I consisting of admissible and non-admissible leaves. Let k ∈ �. L is
called H-matrix of blockwise rank k, if for all admissible leaves τ × σ ∈ TI×I

rank(L|τ×σ) � k,

i.e., each admissible subblock of the matrix is an Rk-matrix while the non-admissible
subblocks corresponding to leafs do not have to bear any specific structure.

�����
 4.2. If τ × σ is a non-admissible leaf of TI×I , then either |τ | � Cleaf or
|σ| � Cleaf , which means that the rank is bounded by Cleaf .

The storage requirements for an H-matrix are O(nk log(n)) for the one- and two-
dimensional block tree in [4] and [6]. The same bound also holds for any H-matrix
based on a sparse block tree (see [3]).

4.1. Matrix-vector multiplication. Let L ∈ �
I×I be anH-matrix. To compute

the matrix-vector product y := y+Lx with x, y ∈ �
I , we use the following procedure:

procedure MVM(L, τ × σ, x, y);

begin

if S(τ × σ) �= ∅ then
for each τ ′ × σ′ ∈ S(τ × σ) do

MVM(L, τ ′ × σ′, x, y)
else

y|τ := y|τ + L|τ×σx|σ; {unstructured or Rk-matrix}
end

The starting index sets are τ = σ = I.

The complexity for the matrix-vector multiplication is O(kn log(n)) under mod-
erate assumptions (see [3]) concerning the locality of the supports of the basis func-
tions ϕi.

236

4.2. Addition. Let L, L(1), L(2) ∈ �
I×I be H-matrices. The sum L := L(1)+L(2)

is anH-matrix with blockwise rank 2k. The formatted sum L̃ := L(1)⊕L(2) is defined
by the formatted addition of the Rk-subblocks:
procedure Add(L̃, τ × σ, L(1), L(2));
begin

if S(τ × σ) �= ∅ then
for each τ ′ × σ′ ∈ S(τ × σ) do
Add(L̃, τ ′ × σ′, L(1), L(2));

else

L̃|τ×σ := L(1)|τ×σ ⊕ L(2)|τ×σ; {unstructured or Rk-matrix}
end

4.3. Multiplication. Let L, L(1), L(2) ∈ �
I×I be H-matrices. The matrix L :=

L+L(1) ·L(2) is an H-matrix with blockwise rank O(k log(n)). The formatted product
L̃ := L⊕L(1)�L(2) is defined by using the formatted addition in the Rk-subblocks.
We distinguish three cases:

1. All matrices are subdivided. The multiplication and addition is done in the
subblocks.

2. The target matrix is subdivided and (at least) one of the factors is not subdi-
vided. One has to add the product (small or Rk-matrix involved) to the target
matrix.

3. The target matrix is not subdivided. This case will be treated in a separate
procedure MulAddRk.

procedure MulAdd(L̃, τ , ζ, σ, L(1), L(2));
begin

if S(τ × ζ) �= ∅ and S(ζ × τ) �= ∅ and S(τ × σ) �= ∅ then
{ Case 1: all matrices are subdivided }
for each τ ′ ∈ S(τ), ζ′ ∈ S(ζ), σ′ ∈ S(σ) do
MulAdd(L̃, τ ′, ζ′, σ′, L(1), L(2));

else begin

if S(τ × σ) �= ∅ then
begin

{Case 2: the target matrix is subdivided}
Calculate the product L′ := L(1)|τ×ζL

(2)|ζ×σ (unstructured or Rk-matrix)
and add L′ to L̃|τ×σ {formatted addition in subblocks of τ × σ}
end

else begin

{Case 3: the target matrix is not subdivided}
MulAddRk(L̃, τ , ζ, σ, L(1), L(2))

237

end

end

end

To cover case 3 we have to multiply two subdivided matrices, truncate the product
to the set of Rk-matrices and add the result to the target matrix. To do this we first
calculate the products in the subblocks and truncate them to the set of Rk-matrices.
Afterwards all four Rk-submatrices are added to the target matrix (extending them
by zeros so that all matrices are of the same size) using the formatted addition.
procedure MulAddRk(L̃, τ , ζ, σ, L(1), L(2));
begin

if S(τ × ζ) = ∅ or S(ζ × σ) = ∅ then
begin

Calculate the product L′ := L(1)|τ×ζL
(2)|ζ×σ {unstructured or Rk-matrix}

and add L′ to L̃|τ×σ {formatted addition}
end

else begin

for each τ ′ ∈ S(τ), σ′ ∈ S(σ) do
begin

Initialise L′
τ ′,σ′ := 0;

for each ζ′ ∈ S(ζ) do
MulAddRk(L′

τ ′,σ′ , τ ′, ζ′, σ′, L(1), L(2));
{L′

τ ′,σ′ is smaller than L and extended by zeros}
end;
L̃ := L ⊕

∑
τ ′∈S(τ)

∑
σ′∈S(σ)

L′
τ ′,σ′

end

end

4.4. Inversion. The inverse of a 2 × 2 block-matrix can be computed by use of
the Schur complement (see [4]). The exact sums and products are replaced by the
formatted operations ⊕,� and recursively one can define the formatted inverse F

of L.
procedure Invert(F , τ , σ, L);
begin

if S(τ × σ) = ∅ then begin
Calculate the inverse F := L−1 exactly { unstructured small matrix }
end

else begin{
S(τ) = {τ1, τ2}, S(σ) = {σ1, σ2}, F =

[
F11F12

F21F22

]
L =

[
L11L12

L21L22

] }

238

Invert(Y,τ1, σ1, L11);
S := L22
 (L21 � (Y � L12));
Invert(F22, τ2, σ2, S);
F11 := Y ⊕ (Y � (L12 � (F22 � (L21 � Y))));
F12 := −Y � (L12 � F22);
F21 := −F22 � (L21 � Y)
end

end

5. Numerical examples

In order to demonstrate the advantage of the H-matrix approach, we consider the
simple example of the discretisation of the single layer potential on the unit circle
in two space dimensions using a Galerkin method with piecewise constant basis
functions.
The logarithmic kernel function will be approximated by the interpolation ap-

proach given in (6) using tensor product Chebyshev points and corresponding La-
grange polynomials.
We report the relative error ‖L− L̃‖2/‖L‖2 in Table 1.4 The first column contains

the number of degrees of freedom for each discretisation level, the following columns
give the relative error. We observe that the error is bounded independently of the
discretisation level and that it decreases very quickly when the interpolation order
is increased.

n 1 2 3 4 5
1024 0.0357 0.002159 0.0002504 7.877e− 06 2.667e− 06
2048 0.03581 0.002185 0.0002507 7.86e− 06 2.691e− 06
4096 0.03587 0.002198 0.0002505 7.865e− 06 2.68e − 06
8192 0.03589 0.002204 0.0002518 7.755e− 06 2.667e− 06
16384 0.03591 0.002207 0.0002526 7.873e− 06 2.684e− 06

Table 1. Approximation error for the single layer potential

The time required for matrix vector multiplications is given in Table 2. It was
measured on a SUN Enterprise 6000 machine using UltraSPARC II processors run-
ning at 248 MHz by taking the time required for 100 matrix vector multiplications
and dividing by 100. We can see that the complexity grows almost linearly with
respect to the number of degrees of freedom and rather slowly with respect to the
interpolation order.

4 The Euclidean norms are approximated by performing 100 steps of the power iteration.

239

n 1 2 3 4 5
1024 0.01 0.02 0.01 0.01 0.03
2048 0.02 0.04 0.03 0.05 0.07
4096 0.05 0.11 0.09 0.12 0.17
8192 0.12 0.24 0.19 0.26 0.39
16384 0.27 0.53 0.41 0.56 0.83
32768 0.57 1.15 0.90 1.23 1.90
65536 1.18 2.44 1.96 2.73 4.14
131072 2.45 5.18 4.30 5.89 8.98
262144 5.15 11.32 9.14 12.95 19.78
524288 10.68 23.81 19.62 28.02 43.57

Table 2. Time [sec] required for the matrix vector multiplication

Finally, let us consider the time required for building the H-matrix representation
of the discretised integral operator. It is given in Table 3 and was measured on
the same machine. The integral of the Lagrange polynomials was computed by
using an exact Gauss quadrature formula, while the integral of the kernel function
was computed analytically. Once more we observe an almost linear growth of the
complexity with respect to the number of degrees of freedom and a slow growth with
respect to the interpolation order. Note that even on an old and quite slow processor
like the 248 MHz UltraSPARC II, the boundary element matrix for more than half
a million degrees of freedom can be approximated with an error less than 0.03% in
less than half an hour.

1 2 3 4 5
1024 0.61 0.93 1.76 3.11 5.60
2048 1.25 2.03 3.85 7.04 12.94
4096 2.56 4.29 8.41 15.82 29.65
8192 5.25 9.16 18.10 35.31 66.27
16384 10.75 19.30 39.32 77.47 146.65
32768 22.15 40.83 85.16 169.16 324.36
65536 45.79 87.32 185.85 368.46 702.63
131072 92.64 180.73 387.63 788.06 1511.66
262144 189.15 378.20 854.75 1775.85 3413.45
524288 388.96 795.84 1743.66 3596.77 6950.55

Table 3. Time [sec] required for building the H-matrix

240

6. Concluding remarks

Estimates concerning the cost of the matrix operations and the approximation er-
ror can be found in [6], [7] and [3]. There are several special variants of the H-matrix
technique described in [8]. The treatment of non-quasiuniform finite element meshes
is studied in [9]. Even matrix functions like the matrix exponential can be computed
effectively: [1], [2].

References

[1] I. P.Gavrilyuk, W.Hackbusch, B.N.Khoromskij: H-matrix approximation for the oper-
ator exponential with applications. Numer. Math. To appear.

[2] I. P.Gavrilyuk, W.Hackbusch, B.N.Khoromskij: H-matrix approximation for elliptic
solution operators in cylindric domains. East-West J. Numer. Math. 9 (2001), 25–58.

[3] L.Grasedyck: Theorie und Anwendungen Hierarchischer Matrizen. Doctoral thesis, Uni-
versity Kiel, 2001.

[4] W.Hackbusch: A sparse matrix arithmetic based on H-Matrices. Part I: Introduction
to H-Matrices. Computing 62 (1999), 89–108.

[5] W.Hackbusch, Z. P.Nowak: On the fast matrix multiplication in the boundary element
method by panel clustering. Numer. Math. 54 (1989), 463–491.

[6] W.Hackbusch, B.N.Khoromskij: A sparse H-matrix arithmetic. Part II: Application to
multi-dimensional problems. Computing 64 (2000), 21–47.

[7] W.Hackbusch, B.N.Khoromskij: A sparse H-matrix arithmetic: general complexity
estimates. J. Comput. Appl. Math. 125 (2000), 479–501.

[8] W.Hackbusch, B.N.Khoromskij, S. A. Sauter: On H2-matrices. Lectures on applied
mathematics (Hans-Joachim Bungartz, Ronald H.W.Hoppe, Christoph Zenger, eds.).
Springer, Berlin, 2000, pp. 9–29.

[9] W.Hackbusch, B.N.Khoromskij: H-matrix approximation on graded meshes. The
Mathematics of Finite Elements and Applications X, MAFELAP 1999 (John R. White-
man, ed.). Elsevier, Amsterdam, 2000, pp. 307–316.

[10] E.Tyrtyshnikov: Mosaic-skeleton approximation. Calcolo 33 (1996), 47–57.

Authors’ addresses: Wolfgang Hackbusch, Max Planck Institute for Mathematics in
the Sciences, Inselstrasse 22-26, 04103 Leipzig, Germany, e-mail: wh@mis.mpg.de; Lars
Grasedyck, Mathematisches Seminar Bereich 2, Universität Kiel, Hermann-Rodewald-
Strasse 3, 24098 Kiel, Germany; Steffen Börm, Max Planck Institute for Mathematics in
the Sciences, Inselstrasse 22-26, 04103 Leipzig, Germany, e-mail: sbo@mis.mpg.de.

241

