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Abstract

We consider a simplified model arising in radiation hydrodynamics
based on the Navier-Stokes-Fourier system describing the macroscopic
fluid motion, and a transport equation modeling the propagation of ra-
diative intensity. We establish existence of global-in-time existence for
the associated initial-boundary value problem in the framework of weak
solutions.
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1 Introduction

The aim of radiation hydrodynamics is to incorporate the effects of radiation in
the conventional hydrodynamics framework. There are numerous applications
ranging from combustion and high-temperature hydrodynamics to models of
gaseous stars in astrophysics. Various degrees of complexity of the mathematical
models reflect the effect of coupling between the macroscopic descrition of the
fluid and the statistical character of the motion of the massless photons. The
reader may consult the monographs by Chandrasekhar [6], Mihalas and Weibel-
Mihalas [36], Pomraning [39] for more information on the topic.
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Plan AV0Z10190503.
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Following the recent studies by Buet and Després [5], Golse and Perthame
[23], we consider a mathematical model, where the motion of the fluid is gov-
erned by the standard field equations of classical continuum fluid mechanics
describing the evolution of the mass density % = %(t, x), the velocity field
~u = ~u(t, x), and the absolute temperature ϑ = ϑ(t, x) as functions of the time
t and the Eulerian spatial coordinate x ∈ Ω ⊂ R3. The effect of radiation, rep-
resented by its quanta - massless particles called photons traveling at the speed
of light c - is incorporated in the radiative intensity I = I(t, x, ~ω, ν), depending
on the direction vector ~ω ∈ S2, where S2 ⊂ R3 denotes the unit sphere, and the
frequency ν ≥ 0. The collective effect of radiation is then expressed in terms of
integral means with respect to the variables ~ω and ν of quantities depending on
I. In particular, the radiation energy ER is given as

ER(t, x) =
1
c

∫
S2

∫ ∞

0

I(t, x, ~ω, ν) d~ω dν. (1.1)

The time evolution of I is described by a transport equation with a source
term depending on the absolute temperature, while the effect of radiation on
the macroscopic motion of the fluid is represented by extra source terms in the
momentum and energy equations evaluated in terms of I.

More specifically, the system of equations to be studied reads as follows:

Equation of continuity:

∂t%+ divx(%~u) = 0 in (0, T )× Ω; (1.2)

Momentum equation:

∂t(%~u) + divx(%~u⊗ ~u) +∇xp(%, ϑ) = divxT− ~SF in (0, T )× Ω; (1.3)

Energy balance equation:

∂t

(
%

(
1
2
|~u|2 + e(%, ϑ)

))
+ divx

(
%

(
1
2
|~u|2 + e(%, ϑ)

)
~u

)
+ divx

(
p~u+ ~q − T~u

)
(1.4)

= −SE in (0, T )× Ω;

Radiation transport equation:

1
c
∂tI + ~ω · ∇xI = S in (0, T )× Ω× (0,∞)× S2. (1.5)

The symbol p = p(%, ϑ) denotes the thermodynamic pressure and e = e(%, ϑ)
is the specific internal energy, interrelated through Maxwell’s equation

∂e

∂%
=

1
%2

(
p(%, ϑ)− ϑ

∂p

∂ϑ

)
. (1.6)

2



Furthermore, T is the viscous stress tensor determined by Newton’s rheolog-
ical law

T = µ

(
∇x~u+∇t

x~u−
2
3
divx~u

)
+ η divx~u I, (1.7)

where the shear viscosity coefficient µ = µ(ϑ) > 0 and the bulk viscosity coeffi-
cient η = η(ϑ) ≥ 0 are effective functions of the absolute temperature. Similarly,
~q is the heat flux given by Fourier’s law

~q = −κ∇xϑ, (1.8)

with the heat conductivity coefficient κ = κ(ϑ) > 0.
Finally,

S = Sa,e + Ss, (1.9)

where

Sa,e = σa

(
B(ν, ϑ)− I

)
, Ss = σs

(
1
4π

∫
S2
I(·, ~ω) d~ω − I

)
, (1.10)

and

SE =
∫
S2

∫ ∞

0

S(·, ν, ~ω) dν d~ω, ~SF =
1
c

∫
S2

∫ ∞

0

~ωS(·, ν, ~ω) dν d~ω, (1.11)

with the absorption coefficient σa = σs(ν, ϑ) ≥ 0, and the scattering coefficient
σs = σs(ν, ϑ) ≥ 0. More restrictions on the structural properties of constitutive
relations will be imposed in Section 2 below.

System (1.2 - 1.5) is supplemented with the boundary conditions:

No-slip, no-flux:

~u|∂Ω = 0, ~q · ~n|∂Ω = 0; (1.12)

Transparency:

I(t, x, ν, ~ω) = 0 for x ∈ ∂Ω, ~ω · ~n ≤ 0, (1.13)

where ~n denotes the outer normal vector to ∂Ω.

System (1.2 - 1.13) can be viewed as a toy model in radiation hydrodynamics,
the physical foundations of which were described by Pomraning [39] and Mihalas
and Weibel-Mihalas [36] in the framework of special relativity, see also [37,
38] for a list of references and a review of related computational works in the
relativistic framework. Similar systems have been investigated more recently
in astrophysics and laser applications (in the relativistic and inviscid case) by
Lowrie, Morel and Hittinger [32], Buet and Després [5], with a special attention
to asymptotic regimes, see also Dubroca and Feugeas [10], Lin [30] and Lin,
Coulombel and Goudon [31] for related numerical issues.

The existence of local-in-time solutions and sufficient conditions for blow
up of classical solutions in the non-relativistic inviscid case were obtained by
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Zhong and Jiang [42], see also the recent papers by Jiang and Wang [27, 28]
for a related one-dimensional “Euler-Boltzmann” type models. Moreover, a
simplified version of the system has been investigated by Golse and Perthame
[23], where global existence was proved by means of the theory of nonlinear
semi-groups. To the best of our knowledge, similar results for viscous fluids
are restricted to the one-dimensional geometry [1, 13, 14] (however see [10]
for a simplified treatment of radiation in the diffusion regime in the physically
relevant 3D-case).

Our goal in the present paper is to show that the existence theory for the
Navier-Stokes-Fourier system developed in [12], and [17, Chapter 3] can be
adapted to problem (1.2 - 1.13). As a complete proof of existence becomes
rather involved and nowadays well understood (see [17, Chapter 3]), we focus
only on the property of weak sequential stability for problem (1.2 - 1.13) in the
framework of the weak solutions introduced in [12]. More specifically, we intro-
duce a concept of finite energy weak solution in the spirit of [12] and show that
any sequence {%ε, ~uε, ϑε, Iε}ε>0 of solutions to problem (1.2 - 1.13), bounded in
the natural energy norm, possesses a subsequence converging to another (weak)
solution of the same problem. Such a property highlights the essential ingredi-
ents involved in the “genuine” proof of existence that may be carried over by
means of the arguments delineated in [17, Chapter 3].

In comparison with the standard Navier-Stokes-Fourier system studied in
[17], problem (1.2 - 1.13) features a new principal difficulty due to the appar-
ent discrepancy between the classical (non-relativistic) description of the fluid
motion, and the behavior of photons traveling with the speed of light. In partic-
ular, in contrast with the Second law of thermodynamics, the associated entropy
equation may contain a negative production term. This problem, related to the
fact that, hypothetically, one might have |~u| > c, has already been observed
by Buet and Després [5, Section 2.5]. On the other hand, non-negativity of
the entropy production rate plays a crucial role in the approach developed in
[12]; whence its adaptation to the present setting requires new ideas. Instead
of introducing the radiation entropy, we keep the classical form of the entropy
balance equation supplemented with the relevant “radiation” production term
proportional to

1
ϑ

(
~u · ~SF − SE

)
,

see Section 2. As pointed out, this term may change sign and, accordingly,
we have to establish its “weak continuity” with respect to ϑ, ~u, and I con-
tained in ~SF , SE . Note that this is quite delicate as the velocity field ~u may
develop uncontrolled time oscillations on the hypothetical vacuum zones where
% vanishes. In order to overcome this difficulty, we use higher regularity of the
ω−averages of the radiative intensity discovered by Bardos et al. [2] and Golse
et al. [24, 25]. For further generalizations and a more complete list of references,
see Bournaveas and Perthame [4].

The paper is organized as follows. In Section 2, we list the principal hypothe-
ses imposed on constitutive relations, introduce the concept of weak solution to
problem (1.2 - 1.13), and state the main result. Uniform bounds imposed on
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weak solutions by the data are derived in Section 3. The property of weak
sequential stability of a bounded sequence of weak solutions is established in
Section 4. Finally, we introduce a suitable approximation scheme and discuss
the main steps of the proof of existence in Section 5.

2 Hypotheses and main results

The structural hypotheses imposed on constitutive relations are motivated by
the general existence theory for the Navier-Stokes-Fourier system developed in
[17, Chapter 3]. To a certain extent they can be viewed as a suitable compromise
between the underlying physical properties of real fluids and the hypotheses
required by the mathematical theory.

2.1 Constitutive equations

Motivated by [17], we consider the pressure in the form

p(%, ϑ) = ϑ5/2P
( %

ϑ3/2

)
+
a

3
ϑ4, a > 0, (2.1)

where P : [0,∞) → [0,∞) is a given function with the following properties:

P ∈ C1[0,∞), P (0) = 0, P ′(Z) > 0 for all Z ≥ 0, (2.2)

0 <
5
3P (Z)− P ′(Z)Z

Z
< c for all Z ≥ 0, (2.3)

lim
Z→∞

P (Z)
Z5/3

= p∞ > 0. (2.4)

The reader may consult [12], [17] for the physical background of hypotheses (2.1
- 2.4). Note that ϑ5/2P (%/ϑ3/2) is a general form of the molecular pressure com-
patible with (1.6), satisfying the universal state equation of a monoatomic gas
p = 2

3%e, see Eliezer et al. [15]. Hypothesis (2.2) reflects positive compressibil-
ity of the fluid, while the strangely looking (2.3) is equivalent to positivity and
boundedness of the specific heat at constant volume. Hypothesis (2.4) means
that the fluid behaves like a Fermi gas in the degenerate area % >> ϑ3/2.

The component a
3ϑ

4 represents the effect of “equilibrium” radiation pressure
imposed on the fluid by the collective force of the part of photons that may be
considered in thermal equilibrium with the fluid. As a matter of fact, since the
radiative transfer equation is linear in I, we tacitly suppose that radiation is a
sum of two contributions, where the radiative transfer equation (1.5), together
with the sources SE and ~SF describes the “out-of-equilibrium” part of the radi-
ation, with a temperature ϑr which is a priori distinct from the equilibrium tem-
perature ϑ, while the equilibrium part is described by the ϑ4 Stefan-Boltzmann
correction to the gaseous equation of state. To motivate this kind of splitting,
just recall that a difficult problem in high-temperature physics consists in the
treatment of interfaces separating two media with different optical properties;
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one of them at Local Thermodynamical Equilibrium (LTE) and the other not.
This is the case of stellar atmospheres in the astrophysical context, and specially
in the studies of complicated radiative phenomena appearing at the surface of
the sun, see Mihalas [35]. Another example appears in the ICF (Inertial Con-
finement Fusion) context, where intense laser beams attack a target producing
thermonuclear fusion events through ablation fronts, see [8]. In numerical im-
plementations, one needs to develop effective transmission conditions allowing
to compute accurately the flow in both these regimes and it is therefore natural
to consider the well-posedness problem for our composite model (cf. [11] for a
study of the pure equilibrium system).

In accordance with Maxwell’s equation (1.6), the specific internal energy e
can be taken in the form

e(%, ϑ) =
3
2
ϑ

(
ϑ3/2

%

)
P

( %

ϑ3/2

)
+ a

ϑ4

%
, (2.5)

whereas the associated specific entropy reads

s(%, ϑ) = M
( %

ϑ3/2

)
+

4a
3
ϑ3

%
, (2.6)

with

M ′(Z) = −3
2

5
3P (Z)− P ′(Z)Z

Z2
< 0.

The transport coefficients µ, η, and κ are continuously differentiable func-
tions of the absolute temperature such that

0 < c1(1 + ϑ) ≤ µ(ϑ), µ′(ϑ) < c2, 0 ≤ η(ϑ) ≤ c(1 + ϑ), (2.7)

0 < c1(1 + ϑ3) ≤ κ(ϑ) ≤ c2(1 + ϑ3) (2.8)

for any ϑ ≥ 0.
Finally, we assume that σa, σs, B are continuous functions of ν, ϑ such that

0 ≤ σa(ν, ϑ), σs(ν, ϑ) ≤ c1, 0 ≤ σa(ν, ϑ)B(ν, ϑ) ≤ c2, (2.9)

σa(ν, ϑ), σs(ν, ϑ), σa(ν, ϑ)B(ν, ϑ) ≤ h(ν), h ∈ L1(0,∞), (2.10)

and
σa(ν, ϑ), σs(ν, ϑ) ≤ cϑ (2.11)

for all ν ≥ 0, ϑ ≥ 0. Relations (2.9 - 2.11) represent a rather crude “cut-
off” hypotheses neglecting the effect of radiation at large frequencies ν and low
values of the temperature ϑ. Note, however, that relations similar to (2.11) were
derived by Ripoll et al. [40].
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2.2 Weak formulation

In the weak formulation of the Navier-Stokes-Fourier system, it is customary
to replace the equation of continuity (1.2) by its (weak) renormalized version
represented by a family of integral identities∫ T

0

∫
Ω

(
b(%)∂tϕ+ b(%)~u · ∇xϕ+

(
b(%)− b′(%)%

)
divx~uϕ

)
dx dt (2.12)

= −
∫

Ω

b(%0)ϕ(0, ·) dx

satisfied for any ϕ ∈ C∞c ([0,∞) × Ω), and any b ∈ C∞[0,∞), b′ ∈ C∞c [0,∞).
Note that (2.12) implicitly includes satisfaction of the initial condition

%(0, ·) = %0.

Similarly, the momentum equation (1.3) is replaced by∫ T

0

∫
Ω

(%~u · ∂tϕ+ %~u⊗ ~u : ∇xϕ+ pdivxϕ) dx dt (2.13)

=
∫ T

0

∫
Ω

T : ∇xϕ+ ~SF · ϕ dx dt−
∫

Ω

(%~u)0 · ϕ(0, ·) dx

for any ϕ ∈ C∞c ([0, T )× Ω; R3). As the viscous stress contains first derivatives
of the velocity ~u, for (2.13) to make sense, the field ~u must belong to a certain
Sobolev space with respect to the spatial variable. Here, we require that

~u ∈ L2(0, T ;W 1,2
0 (Ω; R3)), (2.14)

where (2.14) already includes the no-slip boundary condition (1.12).
As a matter of fact, the total energy balance (1.4) is not suitable for the

weak formulation since, at least according to the recent state-of-art, the term
T~u is not controlled on the (hypothetical) vacuum zones of vanishing density.
Following [17], we replace (1.4) by the internal energy equation

∂t(%e) + divx(%e~u) + divx~q = T : ∇x~u− pdivx~u+ ~u · ~SF − SE . (2.15)

Furthermore, dividing (2.15) by ϑ and using Maxwell’s relation (1.6), we may
rewrite (2.16) as the entropy equation

∂t(%s) + divx(%s~u) + divx

(
~q

ϑ

)
=

1
ϑ

(
T : ∇x~u−

~q · ∇xϑ

ϑ

)
+

1
ϑ

(
~u · ~SF − SE

)
.

(2.16)
Finally, similarly to [12], equation (2.16) is replaced in the weak formulation by
an inequality, specifically,∫ T

0

∫
Ω

(
%s∂tϕ+ %s~u · ∇xϕ+

~q

ϑ
· ∇xϕ

)
dx dt (2.17)
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≤ −
∫

Ω

(%s)0ϕ(0, ·) dx

−
∫ T

0

∫
Ω

1
ϑ

(
T : ∇x~u−

~q · ∇xϑ

ϑ

)
ϕ dx dt−

∫ T

0

∫
Ω

1
ϑ

(
~u · ~SF − SE

)
ϕ dx dt

for any ϕ ∈ C∞c ([0, T )× Ω), ϕ ≥ 0.
Since replacing equation (1.4) by inequality (2.17) would certainly result

in a formally under-determined problem, system (2.12), (2.13), (2.17) must be
supplemented with the total energy balance∫

Ω

(
1
2
%|~u|2 + %e(%, ϑ) + ER

)
(τ, ·) dx (2.18)

+
∫ τ

0

∫ ∫
∂Ω×S2, ~ω·~n≥0

∫ ∞

0

~ω · ~nI(t, x, ~ω, ν) dν d~ω dSx dt

=
∫

Ω

(
1

2%0
|(%~u)0|2 + (%e)0 + ER,0

)
dx,

where ER is given by (1.1), and

ER,0 =
∫
S2

∫ ∞

0

I0(·, ~ω, ν) d~ω dν.

The transport equation (1.5) can be extended to the whole physical space
R3 provided we set

σa(x, ν, ϑ) = 1Ωσa(ν, ϑ), σs(x, ν, ϑ) = 1Ωσs(ν, ϑ)

and take the initial distribution I0(x, ~ω, ν) to be zero for x ∈ R3\Ω. Accordingly,
for any fixed ~ω ∈ S2, equation (1.5) can be viewed as a linear transport equation
defined in (0, T ) × R3, with a right-hand side S. With the above mentioned
convention, extending ~u to be zero outside Ω, we may therefore assume that
both % and I are defined on the whole physical space R3.

Definition 2.1 We say that %, ~u, ϑ, I is a weak solution of problem (1.2 -
1.13) if

% ≥ 0, ϑ > 0 for a.a. (t, x)× Ω, I ≥ 0 a.a. in (0, T )× Ω× S2 × (0,∞),

% ∈ L∞(0, T ;L5/3(Ω)), ϑ ∈ L∞(0, T ;L4(Ω)),

~u ∈ L2(0, T ;W 1,2
0 (Ω; R3)), ϑ ∈ L2(0, T ;W 1,2(Ω)),

I ∈ L∞((0, T )× Ω× S2 × (0,∞)), I(t, ·) ∈ L∞(0, T ;L1(Ω× S2 × (0,∞)),

and if %, ~u, ϑ, I satisfy the integral identities (2.12), (2.13), (2.17), (2.18),
together with the transport equation (1.5).
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2.3 Main result

The main result of the present paper can be stated as follows.

Theorem 2.1 Let Ω ⊂ R3 be a bounded Lipschitz domain. Assume that the
thermodynamic functions p, e, s satisfy hypotheses (2.1 - 2.6), and that the
transport coefficients µ, λ, κ, σa, and σs comply with (2.7 - 2.11).

Let {%ε, ~uε, ϑε, Iε}ε>0 be a family of weak solutions to problem (1.2 - 1.13)
in the sense of Definition 2.1 such that

%ε(0, ·) ≡ %ε,0 → %0 in L5/3(Ω), (2.19)∫
Ω

(
1
2
%ε|~uε|2 + %εe(%ε, ϑε) + ER,ε

)
(0, ·) dx (2.20)

≡
∫

Ω

(
1

2%0,ε
|(%~u)0,ε|2 + (%e)0,ε + ER,0,ε

)
dx ≤ E0,∫

Ω

%εs(%ε, ϑε)(0, ·) dx ≡
∫

Ω

(%s)0,ε dx ≥ S0,

and

0 ≤ Iε(0, ·) ≡ I0,ε(·) ≤ I0, |I0,ε(·, ν)| ≤ h(ν) for a certain h ∈ L1(0,∞).

Then
%ε → % in Cweak([0, T ];L5/3(Ω)),

~uε → ~u weakly in L2(0, T ;W 1,2
0 (Ω; R3)),

ϑε → ϑ weakly in L2(0, T ;W 1,2(Ω)),

and
Iε → I weakly-(*) in L∞((0, T )× Ω× S2 × (0,∞)),

at least for suitable subsequences, where {%, ~u, ϑ, I} is a weak solution of problem
(1.2 - 1.13).

A major part of the rest of the paper is devoted to the proof of Theorem
2.1. It consists of three steps. First of all, we establish uniform estimates on the
family {%ε, ~uε, ϑε, Iε}ε>0 independent of ε → 0. Secondly, we observe that the
extra forcing terms in (2.13), (2.17) due to the effect of radiation are bounded
in suitable Lebesgue norms. In particular, the analysis of the macroscopic vari-
ables %ε, ~uε, ϑε is essentially the same as in the case of the Navier-Stokes-Fourier
system presented in [17]. Consequently, the proof of Theorem 2.1 reduces to the
study of the transport equation (1.5) governing the time evolution of the radia-
tion intensity Iε. In the last part of the paper, we introduce an approximation
scheme similar to that used in [17, Chapter 3] and sketch the main ideas of a
complete proof of existence of global-in-time weak solutions to problem (1.2 -
1.13).
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3 Uniform bounds

Uniform (a priori) bounds form the basis of the existence theory. They are
derived from the total energy balance, entropy production equation, and other
related physical principles. We follow a line of arguments similar to those of
[12].

3.1 Energy estimates

As a direct consequence of the total energy balance (2.18), combined with hy-
potheses of Theorem 2.1, we obtain

ess sup
t∈(0,T )

‖√%ε~uε‖L2(Ω;R3) ≤ c, (3.1)

ess sup
t∈(0,T )

‖%εe(%ε, ϑε)‖L1(Ω) ≤ c, (3.2)

and
ess sup

t∈(0,T )

‖ER,ε‖L1(Ω) ≤ c. (3.3)

Thus, as the internal energy contains the radiation component proportional
to ϑ4, we deduce from (3.2) that

ess sup
t∈(0,T )

‖ϑε‖L4(Ω) ≤ c, (3.4)

and, by virtue of hypotheses (2.1 - 2.4),

ess sup
t∈(0,T )

‖%ε‖L5/3(Ω) ≤ c. (3.5)

3.2 Estimates of the radiation intensity

At this stage we focus on the transport equation (1.5). Since the quantity Iε is
non-negative, we have

1
c
∂tIε + ~ω · ∇xIε ≤ σs(ν, ϑε)B(ν, ϑε) + σa(ν, ϑε)

1
4π

∫
S2
Iε(·, ~ω) d~ω (3.6)

as the coefficients σs, σa are also non-negative. Moreover, making use of the
“cut-off” hypothesis (2.9), we deduce a uniform bound

0 ≤ Iε(t, x, ν, ~ω) ≤ c(T )(1 + sup
x∈Ω, ν≥0,~ω∈S2

I0,ε) ≤ c(T )(1 + I0) for any t ∈ [0, T ].

(3.7)
Finally, hypothesis (2.10), together with (3.7), yield

‖SE,ε‖L∞((0,T )×Ω) + ‖~SF,ε‖L∞((0,T )×Ω;R3) ≤ c, (3.8)

which, combined with hypothesis (2.11), implies∥∥∥∥ 1
ϑε
SE,ε

∥∥∥∥
L∞((0,T )×Ω)

+
∥∥∥∥ 1
ϑε

~SF,ε

∥∥∥∥
L∞((0,T )×Ω;R3)

≤ c. (3.9)
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3.3 Dissipative estimates

Since the viscosity coefficients satisfy (2.7), we get∫ T

0

∫
Ω

1
ϑε

Tε : ∇x~uε dx dt ≥ c1

∥∥∥∥∇x~uε +∇t
x~uε −

2
3
divx~uεI

∥∥∥∥2

L2((0,T )×Ω;R3×3)

≥ c2‖~uε‖2L2(0,T ;W 1,2
0 (Ω;R3))

,

where we have used the standard Korn’s inequality.
On the other hand, in accordance with (3.9)∣∣∣∣∣

∫ T

0

∫
Ω

1
ϑε
~uε · ~SF,ε dx dt

∣∣∣∣∣ ≤ c‖~uε‖L1((0,T )×Ω;R3),

whence the entropy inequality (2.17) yields the uniform bounds

‖~uε‖L2(0,T ;W 1,2
0 (Ω;R3)) ≤ c, (3.10)

‖∇xϑε‖L2((0,T )×Ω;R3) ≤ c. (3.11)

3.4 Pressure estimates

We start with a simple observation: estimates (3.5), (3.10) imply that the se-
quences {%ε~uε}ε>0, {%ε~uε⊗~uε}ε>0 are bounded in the Lebesgue space Lp((0, T )×
Ω) for a certain p > 1. Similarly, combining (3.4), (3.10), (3.11) we get

{Tε}ε>0 bounded in Lp((0, T )× Ω;R3×3) for a certain p > 1.

Now, repeating step by step the arguments of [21], we observe that the
quantities

ϕ(t, x) = ψ(t)B[%ω
ε ], ψ ∈ D(0, T ) for a sufficiently small parameter ω > 0,

may be used as test functions in the momentum equation (2.13), where B[v] is
a suitable branch of solutions to the boundary value problem

divx

(
B[v]

)
= v − 1

|Ω|

∫
Ω

v dx, B|∂Ω = 0. (3.12)

Note that the construction of the operator B, described in detail in [22], is based
on an integral representation formula due to Bogovskii [3].

The resulting estimate reads∫ T

0

∫
Ω

p(%ε, ϑε)%ω
ε dx dt < c, with c independent of ε, (3.13)

in particular,

{p(%ε, ϑε)}ε>0 is bounded in Lp((0, T )× Ω) for a certain p > 1. (3.14)

Note that an alternative way to obtain these estimates was proposed in [34].
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4 Weak sequential stability

To begin, let us stress that the weak stability property for the studied system
is a complex problem that requires a lot of ingredients developed elsewhere.
The sequential stability of the densities, for example, is based on the method
for solving barotropic Navier-Stokes system proposed by Lions [33] and later
developed in [20]. Compactness of the temperature requires tools from the
theory of Young measures and depends heavily on the presence of the radiation
pressure, see [17, Chapter 3] for details. On the other hand, as these steps are
nowadays quite well developed and understood, we restrict ourselves to the part
of the proof of weak sequential stability that requires new ideas, in particular,
we examine the extra terms in the entropy balance equation (2.17).

4.1 Weak sequential stability of macroscopic thermody-
namic quantities

In view of the uniform estimates on the radiation forcing terms SE , ~SF estab-
lished in (3.8), (3.9), strong (pointwise) convergence of the macroscopic ther-
modynamic quantities {%ε}ε>0, {ϑε}ε>0 can be shown exactly as in [12]. Thus
we get

%ε → % in Cweak([0, T ];L5/3(Ω)), %ε → % a.a. in (0, T )× Ω, (4.1)

ϑε → ϑ weakly in L2(0, T ;W 1,2(Ω)), ϑε → ϑ a.a. in (0, T )× Ω, (4.2)

and
log(ϑε) → log(ϑ) in L2((0, T )× Ω). (4.3)

Moreover,
~uε → ~u weakly in L2(0, T ;W 1,2

0 (Ω; R3)). (4.4)

Relations (4.1 - 4.4), together with the uniform bounds established in Section
3, allow us to pass to the limit in the weak formulation of the Navier-Stokes-
Fourier system introduced in Section 2.2, as soon as we show convergence of the
sequence {Iε}ε>0. This will be accomplished in the forthcoming section.

4.2 Convergence of the radiation intensities

Our ultimate goal is to establish convergence of the quantities

1
ϑε
~uε · ~SF,ε =

1
cϑε

~uε ·
∫ ∞

0

σa(ν, ϑε)
(∫

S2
~ω (B(ν, ϑε)− Iε) d~ω

)
dν

+
1
cϑε

~uε ·
∫ ∞

0

σs(ν, ϑε)
(∫

S2
~ω

((
1
4π

∫
S2
Iε d~ω

)
− Iε

)
d~ω

)
dν

and
1
ϑε
SE,ε =

1
cϑε

∫ ∞

0

σa(ν, ϑε)
(∫

S2
(B(ν, ϑε)− Iε) d~ω

)
dν.
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Since ϑε → ϑ a.a. in (0, T )× Ω, and

~uε → ~u weakly in L2(0, T ;W 1,2
0 (Ω; R3))

the desired result follows from compactness of the velocity averages over the
sphere S2 established by Golse et al. [24, 25], see also Bournaveas and Perthame
[4], and hypothesis (2.10). Specifically, we use the following result (see [24]).

Proposition 4.1 Let I ∈ Lq([0, T ] × Rn+1 × S2), ∂tI + ω · ∇xI ∈ Lq([0, T ] ×
Rn+1 × S2) for a certain q > 1. In addition, let I0 ≡ I(0, ·) ∈ L∞(Rn+1 × S2).

Then
Ĩ ≡

∫
S2
I(·, ν) d~ω

belongs to the space W s,q([0, T ] × Rn+1) for any s, 0 < s < inf{1/q, 1 − 1/q},
and

‖Ĩ‖W s,q ≤ c(I0)(‖I‖Lq + ‖∂tI + ω · ∇I‖Lq ).

A direct application of Proposition 4.1 yields the desired conclusion∫
S2
Iε(·, ν) d~ω →

∫
S2
I(·, ν) d~ω in L2((0, T )× Ω)

and ∫
S2
~ωIε(·, ν) d~ω →

∫
S2
~ωI(·, ν) d~ω in L2((0, T )× Ω)

for any fixed ν. Note that strong (a.a. pointwise) convergence of the ω−averages
is needed as ~uε may fail to converge strongly on hypothetical vacuum zones.

Theorem 2.1 has been proved.

5 Approximations, global-in-time existence

We conclude the paper by proposing an approximation scheme to be used to
prove existence of global-in-time weak solutions to problem (1.2 - 1.13). The
scheme is essentially the same as in [17, Chapter 3], the extra regularizing terms
are put in { }.

• The continuity equation (1.2) is replaced by an “artificial viscosity” ap-
proximation

∂t%+ divx(%~u) = {d∆%}, d > 0, (5.1)

to be satisfied on (0, T )×Ω, and supplemented by the homogeneous Neu-
mann boundary conditions

∇x% · ~n|∂Ω = 0. (5.2)

The initial distribution of the approximate densities is given through

%(0, ·) = %0,δ, (5.3)
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where
%0,δ ∈ C2,ν(Ω), ∇x%0,δ · ~n|∂Ω = 0, inf

x∈Ω
%0,δ(x) > 0, (5.4)

with a positive parameter δ > 0.

• The momentum equation is replaced by a Faedo-Galerkin approximation:∫ T

0

∫
Ω

(
(%~u)∂tϕ+ (%~u⊗ ~u) : ∇xϕ+ (p+ {δ(%Γ + ρ2)}) div xϕ

)
=

∫ T

0

∫
Ω

(
{d(∇xρ∇x~u)} · ϕ+ Tδ : ∇xϕ− SFϕ

)
dxdt−

∫
Ω
(ρ~u)0 · ϕ dx,

(5.5)
to be satisfied for any test function ϕ ∈ C1

c ([0, T ), Xn), where

Xn ⊂ C2,ν(Ω;R3) ⊂ L2(Ω;R3) (5.6)

is a finite-dimensional space of functions satisfying the no-slip boundary
conditions

ϕ|∂Ω = 0 (5.7)

The space Xn is endowed with the Hilbert structure induced by the scalar
product of the Lebesque space L2(Ω;R3).

We set

Tδ = Tδ(ϑ,∇x~u) =

= (µ(ϑ) + δϑ)
(
∇x~u+∇T

x ~u− 2
3div x~uI

)
+ λ(ϑ)div x~uI.

(5.8)

• We replace the entropy equation (1.4) by a modified internal energy bal-
ance

∂t(%e+ {δ%ϑ}) + divx

(
(%e+ {δ%ϑ})~u

)
− divx∇xKδ = (5.9)

Tδ(ϑ,∇x~u) : ∇x~u− p divx~u+ {dδ(Γ|%|Γ−2 + 2)|∇xρ|2 + δ
1
ϑ2

− dϑ5}

−SE + ~uSF

to be satisfied in (0, T )× Ω, together with no-flux boundary conditions

∇xϑ · ~n|∂ = 0. (5.10)

The initial conditions read

%(e+ δϑ)(0, ·) = %0,δ(e(%0,δ, ϑ0,δ) + δϑ0,δ), (5.11)

where the (approximate) temperature distribution satisfies

ϑ0,δ ∈ C1(Ω), ∇xϑ0,δ · ~n|∂Ω = 0, inf
x∈Ω

ϑ0,δ(x) > 0. (5.12)
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By Kδ we mean

Kδ(ϑ) =
∫ ϑ

1

κδdz, κδ = κ+ δ
(
ϑΓ +

1
ϑ

)
. (5.13)

• We add the equation for the radiative transfer

1
c
∂tI + ~ω · ∇xI = S in (0, T )× Ω× (0,∞)× S2, (5.14)

together with the transparency condition (1.13).

Given a family of approximate solutions {%d,δ, ~ud,δ, ϑd,δ, Id,δ}d>0,δ>0, we may
construct a weak solution of system (1.2 - 1.13) letting successively d → 0,
δ → 0 and using compactness arguments delineated in the previous part of this
paper. The reader may consult [17, Chapter 3] for all technical details. The
approximate solutions can be constructed by means of a fixed point argument
applied to the couple ~u, I, similarly to [17, Chapter 3, Section 3.4].
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