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Motto

Johann von
Neumann
[1903-1957]

In mathematics you don’t
understand things. You
just get used to them.
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Fluids in the real world

wheather prediction

ships, planes, cars, trains

astrophysics, gaseous stars

rivers, floods, oceans, tsunami waves

human body, blood motion

Mathematical issues

Modeling

Analysis of models, well-posedness, stability, determinism (?)

Numerical analysis and implementations, computations
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Millennium problems (?)

Clay Mathematics Institute, Providence, RI

Birch and Swinnerton-Dyer Conjecture

Hodge Conjecture

Navier-Stokes Equation

P vs NP Problem

Poincaré Conjecture

Riemann Hypothesis

Yang-Mills and Mass Gap
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Navier-Stokes system

u = u(t, x) . . . . . . . . . . . . . . velocity of an incompressible viscous fluid
Π = Π(t, x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . pressure

Claude Louis Marie Henri
Navier [1785-1836]

Incompressibility constraint

divxu = 0

Momentum balance

∂tu + divx(u⊗ u) +∇xΠ = ∆u
George Gabriel Stokes
[1819-1903]
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Mathematical modeling of fluids in motion

Molecular dynamics

Fluids understood as huge families of individual particles (atoms,
molecules)

Kinetic models

Large ensembles of particles in random motion, description in terms of
averages

Continuum fluid mechanics

Phenomenological theory based on observable quantities - mass
density, temperature, velocity field

Models of turbulence

Essentially based on classical continuum mechanics but description in
terms of averaged quantities



Good models?

Stephen William Hawking
[*1942]

A model is a good model if
it:

Is elegant

Contains few arbitrary
or adjustable elements

Agrees with and
explains all existing
observation

Makes detailed
predictions about
future observations
that disprove or falsify
the model if they are
not borne out
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Linear vs. nonlinear models

Linear equations

Solutions built up from elementary functions - modes

Solvability by means of the symbolic calculus - Laplace and
Fourier transform

Limited applicability

Nonlinear equations

Explicit solutions known only exceptionally: solitons, simple
shock waves

Possible singularities created by nonlinearity - blow up and/or
shocks

Almost all genuine models are nonlinear
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Solvability - classical sense

Jacques Hadamard,
[1865 - 1963]

Existence. Given problem is
solvable for any choice of
(admissible) data

Uniqueness. Solutions are uniquely
determined by the data

Stability. Solutions depend
continuously on the data
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Solvability - modern way

Jacques-Louis Lions,
[1928 - 2001]

Approximations. Given problem
admits an approximation scheme
that is solvable analytically and,
possibly, numerically

Uniform bounds. Approximate
solutions possesses uniform bounds
depending solely on the data

Stability. The family of
approximate solutions admits a limit
representing a (generalized) solution
of the given problem
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Singularities in nonlinear models

Blow-up singularities - concentrations

Solutions become large (infinite) in a finite time.
There is too much energy pumped in the system

Shock waves - oscillations

Shocks are singularities in “derivatives”.
Originally smooth solutions become discontinuous in a
finite time
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Weak vs. strong

Pointwise (ideal) values of functions are replaced by their integral
averages. This idea is close to the physical concept of measurement

Derivatives in the equations replaced by integrals:

∂u

∂x
≈ ϕ 7→ −

∫
u∂xϕ, ϕ a smooth test function

Dirac distribution: δ0 : ϕ 7→ ϕ(0)

Paul Adrien Maurice Dirac
[1902-1984]
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Field equations - classical vs. weak formulation

u = u(t, x) ...................... velocity field

% = %(t, x) ........................mass density

Mass conservation∫
B

%(t2, ·) dx −
∫

B

%(t1, ·) dx = −
∫ t2

t1

∫
∂B

%u · n dSx

Equation of continuity

∂t% + divx(%u) = 0

Weak formulation∫ ∫
%∂tϕ + %u · ∇xϕ dxdt = 0 for any smooth ϕ



State of the art

Jean Leray [1906-1998]
Global existence of weak
solutions for the
incompressible
Navier-Stokes system (3D)

Olga Aleksandrovna
Ladyzhenskaya
[1922-2004] Global
existence of classical
solutions for the
incompressible 2D
Navier-Stokes system

Pierre-Louis Lions[*1956] Global existence of weak
solutions for the compressible barotropic Navier-Stokes
system (2,3D)

and many, many others...
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What may go wrong...

What is not (?) in classical models

the fluid velocity may become large or even infinite

infinite speed of propagation

“incompressibility” and the non-local character of the pressure in the
incompressible models

Mathematical problems

Gap between the existence and uniqueness theory - weak solutions
exist globally in time but are not (known to be) unique; strong
(classical) solutions (are known to) exist only locally in time

Possibility of blow-up or concentrations of solutions at some points

Possibility of fast oscillations, shock waves (?)

Way out?

Better (more accurate) models

Better mathematics

Both?



Do some solutions lose energy?

Rudolph Clausius,
[1822–1888]

First and Second law of thermodynamics

Die Energie der Welt ist constant; Die Entropie der
Welt strebt einem Maximum zu

Kinetic energy balance for a viscous incompressible fluid

classical:
d
dt

∫
1

2
|u|2 dx = −ν

∫
|∇xu|2

weak:
d
dt

∫
1

2
|u|2 dx ≤ − ν

∫
|∇xu|2
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Complete fluid systems

State variables

Mass density

% = %(t, x)

Absolute temperature

ϑ = ϑ(t, x)

Velocity field

u = u(t, x)

Thermodynamic functions

Pressure

p = p(%, ϑ)

Internal energy

e = e(%, ϑ)

Entropy

s = s(%, ϑ)

Transport

Viscous stress

S = S(ϑ,∇xu)

Heat flux

q = q(ϑ,∇xϑ)



Field equations

Total energy conservation

d
dt

∫ (
1

2
%|u|2 + %e(%, ϑ)

)
dx = 0

Mass conservation

∂t% + divx(%u) = 0

Momentum balance

∂t(%u) + divx(%u⊗ u) +∇xp(%, ϑ) = divxS(ϑ,∇xu)

Entropy production

∂t(%s) + divx(%su) + divx

(
q(ϑ,∇xϑ)

ϑ

)
≥ 1

ϑ

(
S : ∇xu−

q · ∇xϑ

ϑ

)



Second law

Joseph Fourier [1768-1830]

Fourier’s law

q = −κ(ϑ)∇xϑ

Isaac Newton
[1643-1727]

Newton’s rheological law

S = µ(ϑ)

(
∇xu +∇t

xu−
2

3
divxu

)
+ η(ϑ)divxuI
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Gibbs’ relation

Willard Gibbs
[1839-1903]

Gibbs’ relation:

ϑDs(%, ϑ) = De(%, ϑ) + p(%, ϑ)D

(
1

%

)

Thermodynamics stability:

∂p(%, ϑ)

∂%
> 0,

∂e(%, ϑ)

∂ϑ
> 0
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Boundary conditions

Impermeability

u · n|∂Ω = 0

No-slip

utan|∂Ω = 0

No-stick

[S · n]× n|∂Ω = 0

Navier’s slip

[S · n]tan + β[u]tan = 0

Thermal insulation

q · n|∂Ω = 0
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Mathematics of complete system

Weak solutions exist globally in time for any physically admissible
data

Strong solutions exist locally in time

Weak-strong uniqueness. A weak solution coincides with the
strong solution emanating from the same initial data as long as the
latter exists. Strong solutions are unique in the class of weak
solutions

Long-time stability. Any weak solution stabilizes to an equilibrium
state for large time

Conditional regularity. Any weak solution with a bounded velocity
gradient is regular (strong)
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However...

Sir Winston
Churchill,
[1874–1965]

However beautiful the
strategy, you should
occasionally look at the
results
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Open questions

Despite the well know fact that the Navier-Stokes equations and
related models have been successfully used many times as a platform
for modeling and numerical implementations for many real world
problems, we still don’t know if:

Are the weak solutions to the incompressible/compressible models
uniquely determined by the data?

Does the density in the compressible models remain bounded if it
was initially?

Does the density in the compressible models remain bounded below
away from zero if it was initially?

Does the velocity gradient remain bounded?
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