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Abstract

This is a short introduction to the theory of nonlinear wave equations. After a preliminary
part devoted to the simplified 1D−problem, we shortly discuss the blow-up phenomena for
the quasilinear and semilinear wave equations. Then we develop an existence theory for a
class of semilinear wave equations under suitable restrictions on the structural properties of the
nonlinearities. In the final part, we discuss the problem of free vibrations for the semilinear
wave equation in the 1D−geometry.
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1 Introduction

There is a large number of real world phenomena that fits in the category of wave motion. We start
with a simple example of transport equation

(∂t + c∂x)[u] = 0. (1.1)

Obviously, the solutions of (1.1) also satisfy

∂t,tu(t, x)− c2∂x,xu(t, x) = (∂t − c∂x) ◦ (∂t + c∂x) [u] = 0. (1.2)

Equation (1.2) is a simple example of wave equation; it may be used as a model of an infinite elastic
string, propagation of sound waves in a linear medium, among other numerous applications. We shall
discuss the basic properties of solutions to the wave equation (1.2), as well as its multidimensional
and non-linear variants. To begin, we remark that (1.2) falls in the category of hyperbolic equations,
in accordance with the form of its principal part in the frequency (Fourier) variables

∂t,tu(t, x)− c2∂x,xu = F−1
(ξ0,ξ1)→(t,x)

[
(ξ2

0 − ξ2
1)F(t,x)→(ξ0,ξ1)[u]

]
,

where F denotes the standard Fourier transform.
Equation (1.2) can be written in several rather different form. Setting ∂tu = v we may rewrite

(1.2) as a system

∂t

(
u
v

)
= A

(
u
v

)
, with A =

[
0 Id

c2∂2
x,x 0

]
.

There is another way how to write (1.2), this time as a first order system

∂tu+ ∂xv = 0, ∂tv + c2∂xu = 0. (1.3)

Equation (1.3) has a non-linear variant

∂tu+ ∂xv = 0, ∂tv + ∂xσ(u) = 0

that can be interpreted in two different ways, namely as

∂2
t,tu− ∂2

x,xσ(u) = 0,

or, introducing a scalar potential Φ,

∂xΦ = u, ∂tΦ = −v,
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we obtain
∂2

t,tΦ− ∂x (σ(∂xΦ)) = 0.

Finally, going back to (1.3), we easily deduce

∂tR + c∂xR = 0, ∂tS − c∂xS = 0, R = v + cu, S = v − cu. (1.4)

Note that the the systems decouples in (1.4) and can be easily solved by the method of characteristic
lines.

1.1 Exercises

1.1.1 Duhamel’s formula

Suppose that X(t) = T (t)[X0] is a solution operator for the problem

d

dt
X(t) = A[X(t)], X(0) = X0,

where A is a linear operator. Show (formally) that

Y (t) =
∫ t

0
T (t− s)[f(s)] ds

is a solution of the non-homogeneous problem

d

dt
Y (t) = A[Y (t)] + f(t), Y (0) = 0.

1.2 Bibliography

There several basic texts concerning the theory of wave motion and wave equations. The reader
interested in physical aspects may consult the monographs by Billingham and King [2], Debnath [5],
Lighthill [10]. Mathematical aspects are nicely exposed by John [7], Leis [8], Strauss [15] , Văınberg
[17]. For more recent and advanced treatment, we refer to Tao [16]. More references will be mentioned
in relevant parts of the text.
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2 1-D linear wave equation

Writing
∂t,tu(t, x)− c2∂x,xu(t, x)

= (∂t − c∂x) ◦ (∂t + c∂x) [u] = (∂t + c∂x) ◦ (∂t − c∂x) [u],

we easily observe that solutions of (1.2) can be written in the form

u(t, x) = v(x+ ct) + w(x− ct), t ∈ R, x ∈ R. (2.1)

The general formula (2.1) yields solutions of (1.2) defined for both positive and negative values of
the time t. The processes described by means of the wave equations like (1.2) are perfectly time
reversible.

2.1 Uniqueness, finite speed of propagation

Multiplying the operator in (1.2) by u we obtain

∂t
1

2

(
|∂tu|2 + c2|∂xu|2

)
− c2∂x (∂xu∂tu) = 0, (2.2)

where the quantity

E =
1

2

(
|∂tu|2 + c2|∂xu|2

)
represents the energy. Given an interval [a, b] ⊂ R1 we may integrate (2.2) over the cone

Ca,b,τ =
{
t ∈ (0, τ), x ∈ R1

∣∣∣ 0 < t < τ, x ∈ (a+ ct, b− ct)
}
,

and use the Gauss-Green theorem to obtain∫ b−τc

a+τc

1

2

(
|∂tu|2 + c2|∂xu|2

)
dx =

∫ b

a

1

2

(
|∂tu|2 + c2|∂xu|2

)
dx (2.3)

− 1√
1 + c2

∫ τ

0

c

2

(
|∂tu(t, a+ ct)|2 + c2|∂xu(t, a+ ct)|2

)
+ c2 (∂xu∂tu) (t, a+ ct) dt

− 1√
1 + c2

∫ τ

0

c

2

(
|∂tu(t, b− ct)|2 + c2|∂xu(t, b− ct)|2

)
− c2 (∂xu∂tu) (t, b− ct) dt

≤
∫ b

a

1

2

(
|∂tu|2 + c2|∂xu|2

)
dx.

Thus the values of the solution in the wave cone Ca,b,τ are uniquely determined by the value of the
“initial data” in terms of ∂tu and ∂xu at the initial time t = 0. The solutions of the wave equation
(1.2) admit a finite speed of propagation c > 0. This is a characteristic feature of all hyperbolic
problems, meaning the solutions propagate along characteristic curves (lines).
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2.2 D’Alembert solution operator

As we have observed in the previous discussion, the solutions of the wave equation (1.2) are

• given by the formula (2.1),

• uniquely determined by u and ∂tu at the initial time t = 0.

Consequently, in terms of the functions v, w introduced in (2.1),

u(0, x) = u0(x) = v(x) + w(x),

∂tu(0, x) = u1(x) = cv′(x)− cw′(x);

whence, going back to (2.1), we deduce the so-called D’Alembert solution formula:

u(t, x) =
1

2

[
u0(x+ ct) + u0(x− ct)

]
+

1

2c

∫ x+ct

x−ct
u1(s) ds. (2.4)
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Jean le Rond dAlembert
(wikipedia)

French mathematician, philosopher,
and encyclopedist
[1717 (Paris) - 1783 (Paris)]

• D’Alembert rule

• D’Alembert theorem (Gauss -
D’Alembert):

A polynomial of degree N with complex
coefficients possesses exactly N com-
plex roots

• D’Alembert martingale

It is easy to check that the function u given through (2.3) (i) solves the homogeneous wave
equation (1.2) and (ii) satisfies the initial conditions

u(0, x) = u0(x), ∂tu(0, x) = u1(x), x ∈ R (2.5)

as long as u0, u1 are twice continuously differentiable in R.
We note immediately that solutions of the wave equation obtained from (2.4) inherit the regularity

of the initial data (2.5). What is more, formula (2.4) could be used to provide a kind of “generalized”
solution to the initial-value problem (1.2), (2.5) provided the data u0, u1 are not smooth enough.
Indeed, for non-smooth data, say

u0 ∈ L1
loc(R

1), u1 ∈ L1
loc(R

1),

we can find a sequence of smooth functions u0,ε ∈ C∞c (R), u1,ε ∈ C∞c (R) such that

u0,ε → u0, u1,ε → u1 in L1(K) for any compact set K ∈ R1
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and use (2.4) to conclude that the corresponding (unique) solutions uε of (1.2), (2.5) converge in
L1

loc([0, T ] × R1) to a (unique) function u that may be viewed as a “weak” solution of the same
problem with the initial data u0, u1.

2.3 Dispersion and local energy decay

Before starting our study of more complicated and even nonlinear analogues of the wave equation
(1.2), we take advantage of the simplicity of D’Alembert’s formula (2.4) to illustrate other charac-
teristic features of wave propagation. We have seen in Section 2.1 that the total energy

∫
R1
E(t, x) dx =

1

2

∫
R1

(
|∂tu(t, ·)|2 + |∂xu(t, ·)|2

)
dx

is a constant of motion, meaning independent of time for any solution of (1.2). Of course, we need
the above integral to be finite at least at one time instant t t0. This can be easily seen for compactly
supported initial data u0, u1 by means of formula (2.3) and then extended via density argument to
general u0, u1.

Consider the local energy

Ea,b(t) =
∫ b

a
E(t, x) dx for −∞ < a < b <∞.

Going back to D’Alembert’s formula (2.4) we may compute∫ T

−T
Ea,b(t) dt =

1

2

∫ T

−T

∫ b

a

(
|∂tu(t, x)|2 + |∂xu(t, x)|2

)
dx dt

≤ 2(c+ 1)
∫ T

−T

∫ b

a

(
|∂xu0(x+ ct)|2 + |∂xu0(x− ct)|2

)
dx dt

+2(c+ 1)
∫ T

−T

∫ b

a

(
|∂xu1(x+ ct)|2 + |∂xu1(x− ct)|2

)
dx dt

≤ 4(b− a)
∫

R1

(
|∂xu0(x)|2 + |∂xu1(x)|2

)
dx

for any T > 0.
Letting T →∞ we may therefore infer that∫ ∞

−∞

[∫ b

a
E(t, x)

]
dx dt ≤ 4(b− a)

∫
R1
E(0, x) dx, (2.6)
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which may be interpreted as local energy decay. In accordance with (2.1), waves - solutions of (1.2)
emanating from spatially localized initial data - decay locally to zero in the integral sense (2.6). We
may also observe uniform time decay, meaning[∫ b

a
E(t, x)

]
→ 0 as t→∞

but only for compactly supported initial data. These phenomena are conditioned by unboundedness
of the physical space R1, where the waves have enough space to disperse. As we shall see later, the
situation is completely different on bounded intervals, where the waves are reflected by the boundary.

Finally, we note that the local L2−norm of a solution∫ b

a
|u(t, x)|2 dx

may remain bounded below away from zero as t → ∞ for certain data as a direct consequence of
D’Alembert’s formula.

2.4 Wave equation on bounded intervals

Consider the 1-D wave equation

∂2
t,tu(t, x)− c2∂2

x,xu(t, x) = 0 (2.7)

for x belonging to a bounded interval, say (0, π), supplemented with the boundary conditions

u(t, 0) = u(t, π) = 0, t > 0, (2.8)

and the initial conditions,

u(0, x) = u0(x), ∂tu(0, x) = u1(x), x ∈ (0, π). (2.9)

Our goal is to observe that D’Alembert’s formula (2.4) can be adapted to the initial-boundary
value problem (2.7 - 2.9). To this end, we first suppose that u0, u1 are spatially periodic with the
period 2π. In such a case, it is easy to check that D’Alembert’s formula yields a solution u with the
same property, meaning periodic in x. In addition, assuming that both u0 and u1 are odd functions,

u0(−x) = −u0(x), u1(−x) = −u1(x), x ∈ R1

we easily observe that u given by (2.4) is also odd. In particular, as a byproduct, we recover the
boundary conditions (2.8).
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We conclude that D’Alembert’s formula yields a solution for the problem (2.7 - 2.9) provided
the initial data u0, u1 were extended as odd, 2π−periodic functions in R1. Similarly, replacing odd
by even we may deduce a solution formula for the problem with the so-called Neumann boundary
condition

∂xu(t, 0) = ∂xu(t, π) = 0. (2.10)

Carl Neumann
(wikipedia)

German mathematician, physicist, and
mineralogist
[1832 (Koenigsberg) - 1925 (Leipzig)]

• works on Dirichlet principles

• Neumann series

At this point, it is important to notice that extending the function u0 to be odd requires certain
restrictions on ∂2

x,xu0 at the boundary points x = 0, π provided we want C2−solutions, namely,

∂2
x,xu0(0) = ∂2

x,xu0(π) = 0. (2.11)

Relations (2.11) are called compatibility conditions, and their meaning is the the initial datum u0

satisfies the equation (2.7) at t = 0 provided we set, in accordance with (2.8),

∂2
t,tu(0, ·) = 0.

Similarly, we derive that the compatibility conditions for the Neumann problem (2.10) read simply

∂xu0(0) = ∂xu0(π) = 0.

Next, we introduce the total energy

1

2

∫ π

0

(
|∂tu(t, x)|2 + |∂xu(t, x)|2

)
dx,
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exactly as in Section (2.1). However, unlike in the case of spatially localized solutions defined on the
whole real line R1, the total energy, though evaluated over a compact interval, does not decay to
zero as t → ∞. It can be easily seen that the total energy is actually conserved, meaning constant
in time, as a consequence of our choice of the boundary conditions.

We conclude this part by a simple but rather interesting observation that all solutions to the
initial-boundary value problem (2.7 - 2.9) are also 2π

c
-time periodic, a property that can be easily

deduced from (2.4).

2.5 Riemann invariants, observability

There are several ways how to write the wave equation (1.2). One possibility is to introduce the
so-called Riemann invariants

R = ∂tu+ c∂xu, S = ∂tu− c∂xu (2.12)

and rewrite (1.2) as a system

∂tR(t, x)− c∂xR(t, x) = 0, ∂tS(t, x) + c∂xS(t, x) = 0 (2.13)

of two independent transport equations. Accordingly, the quantity R is constant along the lines
t 7→ [t, x− ct], while S is constant on t 7→ [t, x+ ct] for x ∈ R.

Georg Friedrich Bernhard Rie-
mann
(wikipedia)

German mathematician
[1826 (Breselenz) - 1866 (Verbania, Italy)]

• Riemann problem

• zeta function

• Riemann hypothesis
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Now, we exploit the relatively simple form of (2.13) to show boundary observability property for
(1.2). To be more specific, we consider the situation described by the initial-boundary value problem
(2.8), where the solutions u and, consequently, ∂tu vanish on the boundary x = 0, π. Since (2.13) is
a system of two independent transport equations, we easily deduce that∫ π

0
R2
(

2π

c
, x
)

dx ≤ c
∫ 2π/c

0
R2(t, 0) dt = c3

∫ 2π/c

0
|∂xu(t, 0)|2 dt, (2.14)

and, similarly, ∫ π

0
S2
(

2π

c
, x
)

dx ≤ c
∫ 2π/c

0
S2(t, 0) dt = c3

∫ 2π/c

0
|∂xu(t, 0)|2 dt. (2.15)

We recall the convention that u may be viewed as a 2π−spatially periodic odd function, while ∂xu
is 2π−spatially periodic even.

Consequently, relations (2.14), (2.15) give rise to∫ π

0
E(2π/c, x) dx =

1

2

∫ π

0

(
|∂tu|2 + |∂xu|2

)
(2π/c, x) dx

≤ const(c)
∫ 2π/c

0
|∂xu(0, t)|2 dt.

However, the total energy is a constant of motion and we deduce the observability inequality :∫ π

0
E0 dx =

1

2

∫ π

0

(
|∂xu0|2 + |u1|2

)
dx ≤ const(c)

∫ 2π/c

0
|∂xu(t, 0)|2 dt. (2.16)

The message hidden in (2.16) reads that the behavior of solutions to the boundary value problem
(2.7 - 2.9) is entirely controlled (determined) by the boundary values of ∂xu on the time interval of
the length at least 2π/c.

Repeating the same arguments we can show a more general inequality∫ π

−π
E0 dx ≤ const(c)

∫ 2π/c

0

(
|∂tu(t, ξ)|2 + |∂xu(t, ξ)|2

)
dt for any ξ ∈ [−π, π] (2.17)

that holds for any 2π−spatially periodic solution u, in particular for any solution of the initial-
boundary value problems (2.7), (2.8), (2.9) and (2.7), (2.9), (2.10).

2.6 Uniqueness and data dependence

As we have seen in Section 2.1, smooth solutions are uniquely determined by their initial values on
any wave cone. We have used the Gauss-Green formula, and, in particular, the existence of suitably
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defined traces. Here, we show that solutions of the wave equation (1.2) are still uniquely determined
by the initial data even if we suppose much less regularity. To begin, we extend the class of solutions
saying that u is a weak solution of the wave equation (1.2) on the space-time cylinder (0, T ) × B if
the integral identity ∫ T

0

∫
B
u(t, x)

(
∂2

t,tϕ(t, x)− c2∂2
x,xϕ(t, x)

)
dx dt = 0 (2.18)

holds for any test function ϕ ∈ C∞c ((0, T )×B).
First, we observe that the “initial values” of u and ∂tu at the time t = 0 can be well defined.

To this end, we take a special test function ϕ(t, x) = ψ(t)φ(x) in (2.18). We easily check that the
mapping

t 7→
∫

B
u(t, x)φ(x) dx dt

has two derivatives with respect to the t variable integrable in [0, T ] provided u ∈ L1((0, T )×B). In
particular,

t 7→
∫

B
u(t, x)φ(x) dx dt, ∂t

(
t 7→

∫
B
u(t, x)φ(x)

)
may be viewed as continuous functions of t ∈ [0, T ]. In particular, it makes sense to speal about the
values of u and ∂tu at any time t ∈ [0, T ].

Assuming the solution u is more regular, say,

∂tu, ∂xu ∈ L1((0, T )×B)

we deduce from (2.18) that
∫ T
0

∫
B (∂tu+ c∂xu) (∂tϕ− c∂xϕ) dx dt = 0,

∫ T
0

∫
B (∂tu− c∂xu) (∂tϕ+ c∂xϕ) dx dt = 0.

 (2.19)

Thus the Riemann invariants R, S introduced in (2.12), being now solely integrable functions
in (0, T ) × B, are still constant on the characteristic lines t 7→ [t, x − ct], t 7→ [t, x + ct], x ∈ B,
respectively. In particular, the solution u is uniquely determined in the wave cone

CB,T = {t ∈ (0, T ), y ∈ B | t ∈ (0, T ), y = x+ ct or y = x− ct for a certain x ∈ B}

by the initial values u and ∂tu at t = 0, x ∈ B.
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2.7 Exercises

2.7.1 Non-homogeneous wave equation

Using Duhamel’s formula (see Section 1.1.1) show that

u(t, x) =
1

2

[
u0(x+ t) + u0(x− t)

]
+

1

2

∫ x+t

x−t
u1(s) ds

+
1

2

∫ t

0

∫ x+(t−s)

x−(t−s)

[
f(s, z)

]
dz ds

is a solution of the non-homogeneous problem

∂2
t,tu(t, x)− ∂2

x,xu(t, x) = f(t, x), t > 0, x ∈ R1,

u(0, x) = u0(x), ∂tu(0, x) = u1(x), x ∈ R1.

3 1-D nonlinear wave equation

We discuss briefly the situation when the speed of propagation dependends on ∂xu, specifically,

∂2
t,tu(t, x)− ∂xσ

(
∂xu(t, x)

)
= 0. (3.1)

Our main goal is to show that, in general, equation (3.1) does not admit smooth solutions no matter
how regular and small the initial data are.

3.1 Riemann invariants

Similarly to Section 2.5, we rewrite equation (3.1) in terms of the Riemann invariants. Writing

U = ∂tu, V = ∂xu

we obtain
∂tV − ∂xU = 0, ∂tU − ∂xσ(V ) = 0. (3.2)

Furthermore, introducing

h(Z) =
∫ Z

0

√
σ′(s) ds

14



we get

∂th(V )−
√
σ′(V )∂xU = 0, ∂tU −

√
σ′(V )∂xh(V ) = 0;

whence
∂t [U + h(V )]−

√
σ′(V )∂x [U + h(V )] = 0, (3.3)

and
∂t [U − h(V )] +

√
σ′(V )∂x [U − h(V )] = 0. (3.4)

By analogy with Section 2.5, the quantities

R = U + h(V ), S = U − h(V )

are termed Riemann invariants

3.2 Shock waves

It is easy to deduce from (3.3), (3.4) that the nonlinear equation (3.1) does not admit, in general,
global in time smooth solutions. Indeed we can take that initial data so that U = h(V ), meaning
S = 0. In accordance with (3.4), this property is preserved at any positive time as S is constant
along characterisic curves

X′ =
√
σ′(V (t,X), X(0) = X0.

In particular, equation (3.3) reads

∂tU −
1

2

√
σ′(h−1(U))∂xU = 0, (3.5)

which is nothing other than a quasilinear transport equation discuss. In particular, solutions of (3.5)
may develop discontinuities (shock waves) in a finite time even if the initial data are taken smooth
and small.

3.3 Exercises

3.3.1 Shock waves for transport equations

Using the method of characteristics show that solutions of the 1D−transport equation

∂tu+ ∂xσ(u) = 0

develops singularities in a finite time provided σ is a non-linear function.
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3.4 Bibliography

A classical introduction to the theory of shock waves is the monograph by Smoller [14]. A more
recent exposition of the theory of nonlinear conservation laws can be found in Dafermos [4] or
Benzoni-Gavage and Serre [1], [13].

4 Semilinear equations

We finish our study of the wave equations by the semilinear problem

∂2
t,tu(t, x)− ∂2

x,xu(t, x) + f(u(t, x)) = 0, (4.1)

together with its multidimensional analogue

∂2
t,tu(t, x)−∆xu(t, x) + f(u(t, x)) = 0, (4.2)

supplemented with suitable boundary as well as initial conditions.
In contrast with the example of a quasilinear equation examined in the previous section, the

equations (4.1), (4.2) are nonlinear only on the lower order terms. Thus we expect, at least under
certain hypotheses imposed on f , that the solutions will inherit regularity of the initial data.

4.1 Finite time blow-up

Solutions of non-linear equations may not exist an arbitrary long time intervals. We have seen an
example of a singular behavior in Section 3.2, where solutions of a quasilinear equation developed
singularities in the form of shock waves in a finite time. For semi-linear equations like (4.1), (4.2),
solutions may develop a blow-up, where the amplitude becomes infinite in a finite time. In contrast
with the shock waves, where usually the solutions my be “continued” in some form, the blow up
behavior may lead to the ultimate state with hypothetial “infinite” energy. Here, we employ the
method based on convexity of the nonlinear response function developed by Levine [9].

Consider regular solutions of the semilinear equation (4.1), supplemented, for definiteness, with
the homogeneous Dirichlet boundary conditions

u(0, t) = u(π, t) = 0. (4.3)
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Multiplying the equation by ∂tu, integrating by parts and making use of the boundary conditions,
we obtain

d

dt

∫ π

0

(
1

2
|∂tu|2 +

1

2
|∂xu|2 + F (u)

)
(t, ·) dx = 0,

where we have set
F (u) = −

∫ u

0
f(z) dz.

The quantity

E(t) =
∫
Ω

(
1

2
|∂tu|2 +

1

2
|∂xu|2 + F (u)

)
(t, x) dx

plays the role of energy for the semilinear wave equation (4.2), and, as we have just observed, it is a
constant of motion. Note however that “energy” defined in such a way may be negative.

Introducing

I(t) =
1

2

∫
Ω
|u(t, x)|2 dx

we easily compute
d

dt
I(t) =

∫
Ω
u(t, x)∂tu(t, x) dx,

and
d2

dt2
I(t) =

∫
Ω

(
|∂tu(t, x)|2 + u(t, x)∂2

t,tu(t, x)
)

dx,

17



where, by virtue of (4.2),∫
Ω
u(t, x)∂2

t,tu(t, x) dx = −
∫
Ω

(
|∇xu(t, x)|2 + f(u(t, x))u(t, x)

)
dx.

Thus, combining the previous two identities, we arrive at

d2

dt2
I(t) = (2 + 2λ)

∫
Ω
|∂tu(t, x)|2 dx+ 2λ

∫
Ω
|∇xu(t, x)|2 dx (4.4)

+
∫
Ω

(
(2 + 4λ)F (u)− uf(u)

)
(t, x) dx− (2 + 4λ)E

for any λ ≥ 0.
Suppose that

• there exists ε > 0 such that

(2 + ε)F (u) ≥ uf(u) for all u ∈ R; (4.5)

• the energy E(t) = E < 0 is negative.

Consequently, we can take λ = ε/4 and compute

I(t)
d2

dt2
I(t) ≥ (1 + λ)

∫
Ω
|u(t, x)|2 dx

∫
Ω
|∂tu(t, x)|2 dx (4.6)

≥ (1 + λ)

∣∣∣∣∣ ddtI(t)
∣∣∣∣∣
2

,

where we have used the Cauchy-Schwartz inequality. Moreover, it follows from (4.5) that

d2

dt2
I(t) ≥ −(2 + 4λ)E > 0,

in particular, I is strictly convex and there is τ > 0 such that

I(τ) > 0, I ′(τ) > 0.

Thus, finally, dividing (4.6) on II ′, we get

d

dt
log

(
d

dt
I(t)

)
≥ d

dt
log

(
I1+λ(t)

)
for all t ≥ τ,
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from which we deduce that

d

dt
I(t) ≥ µI1+λ(t), with µ =

d

dt
I(τ)I−1−λ(τ) > 0. (4.7)

Relation (4.7) yields the existence of a finite number T such that

lim
t→T−

I(t) = ∞. (4.8)

We conclude that solutions of the problem (4.2), (4.3) with negative total energy E must blow-up
in a finite time as soon as that nonlinearity f satisfy the convexity hypothesis (4.5). It is easy to
check that the latter holds, for instance, if

f(u) = mu− |u|p−1u, m ≥ 0, p > 1.

Moreover, for such an f , we can find a couple of (smooth) functions u0 = u0(x), u1 = u1(x) satisfying

E0 =
∫
Ω

(
1

2
|u1(x)|2 +

1

2
|∂xu0(x)|2 + F (u0(x))

)
dx < 0.

Accordingly, any classical solution u of the nonlinear wave equation (4.2) emanating from the initial
data

u(0, x) = u0(x), ∂tu(0, x) = u1(x), x ∈ Ω (4.9)

must blow-up in a finite time T , specifically,∫
Ω
|u(t, x)|2 dx→∞ as t→ T.

It is worth noting that the arguments used in the above discussion were based mainly on the
structural properties of the non-linearity f . Accordingly, similar examples may be constructed for
other types of boundary conditions and also on a large class of (unbounded) spatial domains, in
particular for Ω = R3.

4.2 Soliton solutions, breathers

The example discussed in the previous section showed that the semilinear wave equation need not
to possess a global-in-time solution for a certain class of convex nonlinearities. Here, we consider a
seemingly similar problem, namely the so-called Sine-Gordon equation
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∂2
t,tu(t, x)− ∂2

x,xu(t, x) + sin(u(t, x)) = 0, x ∈ R, (4.10)

where the solutions are defined on the whole real line and decay for large x,

lim
|x|→∞

u(t, x) = 0. (4.11)

Equation (4.10) possesses an explicit solution, namely

u(t, x) = 4 arctan

 √
1− ω2 cos(ωt)

ω cosh
(√

1− ω2x
)
 (4.12)

for 0 < ω < 1.
The solution given through (4.12) is called breather ; it is time-periodic and spatially localized.

Breathers belong to the class of solutions to nonlinear evolutionary equations termed solitons. Soli-
tons are stable objects and may interact. There is a vast literature devoted to solitons and their
basic properties. The evolutionary equations possessing soliton solutions are typically completely in-
tegrable, meaning, possessing and infinite family of conserved quantities. Here, we restrict ourselves
to claiming that the Sine-Gordon equation (4.10) possesses this kind of spatially localized solutions.

4.3 A priori bounds

Unlike the equations with convex nonlinearities discussed in Section 4.1, the solutions of the Sine-
Gordon equation (4.10) remain bounded on compact time intervals. Indeed we may write

∂2
t,tu(t, x)− ∂2

x,xu(t, x) + sin(u(t, x))

= ∂2
t,tu(t, x)− ∂2

x,xu(t, x) + u(t, x) + sin(u(t, x))− u(t, x);

whence, multiplying (4.10) on ∂tu and integrating by parts, we may infer that

1

2

d

dt

∫
R

(
|∂tu|2 + |∂xu|2 + |u|2

)
(t, x) dt (4.13)

≤
∫

R
(sin(u(t, x))− u(t, x)) ∂tu(t, x) dt ≤ 2

∫
Ω
|u(t, x)||∂tu(t, x)| dx

≤
∫
Ω
|u(t, x)|2 dx+

∫
Ω
|∂tu(t, x)|2 dx.
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Thus, by virtue of Gronwall’s lemma,∫
R

(
|∂tu|2 + |∂xu|2 + |u|2

)
(t, x) dt (4.14)

≤ exp(2t)
∫

R

(
|∂tu|2 + |∂xu|2 + |u|2

)
(0, x) dt.

Thomas Hakon Gronwall
(wikipedia)

Swedish mathematician
[1877 (Dylta bruk) - 1932 (New York)]

• Gronwall area theorem

• Gronwall inequality

The relation (4.14) yields bounds, uniform with respect to compact time intervals, on the L2−norms
of ∂tu, ∂xu, and u in terms of the initial data. Specifically, denoting

u(0, x) = u0(x), ∂tu(0, x) = u1(x)

we get

sup
t∈[0,T ]

(
‖∂tu(t, ·)‖L2(R) + ‖u(t, ·)‖W 1,2(R)

)
(4.15)

≤ c(T )
(
‖u1‖L2(R) + ‖u0‖W 1,2(R)

)
.

We may wish to deduce similar bounds on higher order derivatives. To this end, we take the time
derivative of the equation (4.10), and, denoting ∂tu = v we obtain

∂2
t,tv − ∂2

x,xv + cos(u)v = 0.
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Since | cos(u)| ≤ 1, we can repeat the arguments leading to (4.15) to obtain

sup
t∈[0,T ]

(
‖∂2

t,tu(t, ·)‖L2(R) + ‖∂tu(t, ·)‖W 1,2(R)

)
(4.16)

≤ c(T )
(
‖u0‖W 2,2(R) + ‖u1‖W 1,2(R)

)
,

where we have used (4.10) to express

∂2
t,tu(0, ·) = ∂2

x,xu0 − sin(u0).

Moreover, as
| sin(u)| ≤ |u|,

we may use once more the equation (4.10) to include ∂2
x,x in the left-hand side of (4.16):

sup
t∈[0,T ]

(
‖∂2

t,tu(t, ·)‖L2(R) + ‖∂tu(t, ·)‖W 1,2(R) + ‖u(t, ·)‖W 2,2(R)

)
(4.17)

≤ c(T )
(
‖u0‖W 2,2(R) + ‖u1‖W 1,2(R)

)
.

Thanks to the standard embedding relations

W 1,2(R) ↪→ BC(R), (4.18)

the estimate (4.17) yields uniform bounds on u and its first derivatives in the space of bounded and
continuous function on R. In particular, we may continue the above procedure be differentiating
(4.10) in t and x to obtain uniform bounds on the solutions in the Sobolev space W k,2(R) of an
arbitrary order k = 0, 1, . . .. We note that, by virtue of (4.18), that solutions are classical, meaning
twice continuously differentiable, if k ≥ 3. Unlike the situation treated in Section 4.1, where the
norm of solutions blows-up in a finite time, the solutions of the Sine-Gordon equation (4.10) are
controlled by the initial data. This is obviously due to the specific properties of the nonlinearity,
here represented by a uniformly Lipschitz function sin(u).
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The estimates (4.15 - 4.17) are formal. They have been derived under the principal hypothesis
that a sufficiently smooth solution u exists. Such a type of bounds is usually called a priori estimates
in the literature. Intuitively, the available a priori bounds determine the function spaces framework
suitable for a given nonlinear problem. From this point of view, the scale of Sobolev spaces W k,2

resulting from the “energy” estimates (4.15 - 4.17) is more convenient for second-order problems like
(4.10) rather than the classical framework of continuous functions.

4.4 Exercises
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4.4.1 Global in time solutions for the blow-up nonlinearities

Consider the semilinear wave equation in the form

∂2
t,tu− ∂2

x,xu+ u = |u|r−1u, r > 1,

supplemented with the homogeneous Dirichlet boundary conditions

u(t, 0) = u(t, π) = 0

Show that for “small” initial data the solutions remain bounded for t→∞.

4.5 Bibliography

Here, we follow the presentation in the spirit of the modern geometric theory of evolutionary equa-
tions, see Cazenave and Haraux [3] or, in the context of parabolic problems, Quittner and Souplet
[12].

5 Well-posedness for semilinear wave equations

We focus on a semilinear wave equation in the form

∂2
t,tu(t, x)−∆xu(t, x) + f(u(t, x)) = 0, t > 0, x ∈ Ω, (5.1)

where Ω ⊂ RN is a bounded domain with a regular boundary on which we prescribe the homo-
geneous Dirichlet condition

u(t, ·)|∂Ω = 0. (5.2)

Given the initial data
u(0, ·) = u0, ∂tu(0, ·) = u1 in Ω, (5.3)

our main goal will be to show that the resulting initial-boundary value problem (5.1 - 5.3) possesses
a (possibly unique) solution on a given time interval (0, T ).
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We follow the nowadays standard scheme based on

• a priori bounds;

• compactness or (weak) sequential stability;

• approximate scheme and convergence.

Such a way of a constructive proof of existence is easily adaptable when solving the real world
problems, where the chosen approximate scheme coincides with the expected numerical implemen-
tation. Although it may seem at the first glance that a priori bounds as well as the property of
compactness of the (hypothetical) family of solutions are superfluous in the proof of existence, they
represent the natural preliminary steps in identifying the suitable function spaces framework as well
as the approximate scheme.

In general, given a nonlinear problem, we first try to identify as many a priori bounds as possible in
order to guarantee compactness or sequential stability of a hypothetical class of solutions. Sequential
stability means that any sequence of smooth solutions bounded in terms of a priori estimates possesses
at least a subsequence that converges to another solution of the same problem. Having clarified these
two rather crucial issues, we may try to construct solutions by means of a suitable approximation
scheme, the convergence of which can be established by the tools developed in the preceding two
steps.

5.1 A priori bounds

Basically all a priori bounds available for solutions of the problem (5.1 - 5.3) follow from the so called
energy method.

5.1.1 Basic energy estimates

We adopt the procedure introduced in Section 4.3. Multiplying the equation (5.1) on ∂tu, integrating
the resulting expression over Ω, and using the Gauss-Green theorem together with the boundary
condition (5.2) to eliminate the boundary terms, we obtain the standard energy balance:

d

dt
E(t) = 0, E(t) =

∫
Ω

(
1

2
|∂tu|2 +

1

2
|∇xu|2 + F (u)

)
(t, x) dx, (5.4)

where we have denoted
F (u) =

∫ u

0
f(z) dz.

As we have seen in Section 4.1, the relation (5.4) itself is not strong enough to yield uniform
bounds unless we impose certain structural restrictions on f . Our aim is that the energy E represents
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a kind of “norm” in a suitable space. Since Ω is a bounded and regular domain, say of the class C2,
we have the Poincaré inequality :∫

Ω
|∇xv|2 dx ≥ Λ2

∫
Ω
|v|2 dx for any v ∈ W 1,2

0 (Ω), (5.5)

where Λ > 0 is the first (minimal) eigenvalue of the Dirichlet Laplacean in Ω,

−∆w = Λw in Ω, w|∂Ω = 0.

Henri Poincaré
(wikipedia)
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• Poincaré’s mapping

Inequality (5.5) motivates the following hypothesis imposed on f :

f ′(u) ≥ −c for all u ∈ R1, (5.6)

where c is a certain (positive) constant. Accordingly, we may write

f(u) = g(u) + h(u), with g(u) = f(u) + cu− f(0), h(u) = f(0)− cu,

where
g′(u) ≥ 0, g(0) = 0.
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In particular,

G(u) =
∫ u

0
g(z) dz ≥ 0 for all u ∈ R1. (5.7)

Here and hereafter, the symbol c or ci denotes a generic positive real constant that specific value of
which may vary from line to line.

With (5.7) in mind, we rewrite the energy balance (5.4) in the form

d

dt

∫
Ω

(
1

2
|∂tu|2 +

1

2
|∇xu|2 +G(u)

)
(t, x) dx =

∫
Ω
(cu− f(0))∂tu dx,

where ∣∣∣∣∫
Ω
(cu− f(0))∂tu dx

∣∣∣∣ ≤ c
(
1 + ‖u‖2

L2(Ω) + ‖∂tu‖2
L2(Ω)

)
.

Thus, seeing that∫
Ω

(
1

2
|∂tu|2 +

1

2
|∇xu|2 +G(u)

)
(t, x) dx ≥ 1

4

∫
Ω

(
|∂tu|2 + |∇xu|2 + Λ|u|2

)
(t, x) dx

we may apply Gronwall’s lemma to deduce

sup
t∈[0,T ]

(
‖∂tu(t, ·)‖2

L2(Ω) + ‖u(t, ·)‖2
W 1,2(Ω)

)
≤ c1(T, Ẽ0), (5.8)

where

Ẽ0 =
∫
Ω

(
1

2
|u1|2 +

1

2
|∇xu0|2 +G(u0)

)
(x) dx.

5.1.2 Higher order energy bounds

In order to derive estimates on higher order derivatives, we multiply the equation (5.1) on −∆xu and
integrate by parts to obtain:

d

dt

∫
Ω

1

2

(
|∆xu|2 + |∂t∇xu|2

)
(t, x) dx =

∫
Ω
f(u(t, x))∂t∆xu(t, x) dx. (5.9)

The integral on the right-hand side needs extra treatment. We write∫
Ω
f(u(t, x))∂t∆xu(t, x) dx

=
d

dt

∫
Ω
f(u(t, x))∆xu(t, x) dx−

∫
Ω
f ′(u(t, x))∂tu(t, x)∆xu(t, x) dx,
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where, by virtue of Hölder’s inequality,∣∣∣∣∫
Ω
f(u(t, x))∆xu(t, x) dx

∣∣∣∣ ≤ ‖f(u(t, ·))‖L2(Ω)‖∆xu(t, ·)‖L2(Ω), (5.10)

and ∣∣∣∣∫
Ω
f ′(u(t, x))∂tu(t, x)∆xu(t, x) dx

∣∣∣∣ (5.11)

≤ ‖f ′(u(t, ·)‖Lp(Ω)‖∂tu(t, x)‖Lq(Ω)‖∆xu(t, ·)‖L2(Ω), with
1

p
+

1

q
=

1

2
.

Keeping in mind that we control ∂t∇xu by the expression on the left-hand side of (5.9), we use
the imbedding

W 1,2
0 (Ω) ↪→ Lq(Ω),



q = ∞ for N = 1,

q <∞ arbitrary fimite if N = 2,

q ≤ 2N
N−2

for N > 2.

(5.12)

Consequently, under the growth restriction

|f ′(u)| ≤ c
(
1 + |u|r−1

)
, r arbitrary finite for N = 1, 2, r =

N

N − 2
, (5.13)

the uniform energy bound (5.8), together with the embedding (5.2), imply that

sup
t∈[0,T ]

‖f ′(u(t, ·))‖Lp(Ω) ≤ c(T,E0),


p <∞ arbitrary finite if N = 1, 2,

p = N for N ≥ 3;
(5.14)

which, together with (5.9), (5.11) and the standard Gronwall argument, give rise to a priori bounds

sup
t∈[0,T ]

(
‖∆xu(t, ·)‖L2(Ω) + ‖∂tu(t, ·)‖W 1,2(Ω)

)

≤ c
(
T,E0, ‖∆xu0‖L2(Ω), ‖u1‖2

W 1,2(Ω)

)
.

Finally, we may use the standard elliptic estimates for the operator ∆x to conclude that

sup
t∈[0,T ]

(
‖u(t, ·)‖W 2,2(Ω) + ‖∂tu(t, ·)‖W 1,2(Ω)

)
(5.15)

≤ c
(
T,E0, ‖∆xu0‖L2(Ω), ‖u1‖2

W 1,2(Ω)

)
.
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If f is sufficiently smooth and ∂Ω regular, we may continue differentiating the equation in time
to deduce a priori bounds on higher order derivatives in terms of the initial data u0, u1.

5.2 Compactness - weak sequential stability

Similarly to the derivation of the a priori bounds performed in the preceding section, the following
step is purely formal but very illustrative. Assuming we are given a sequence of (smooth) solutions
{un}∞n=1 of the initial-boundary value problem (5.1 - 5.3), bounded only via the energy bounds (5.8),
our goal is to show that, at least for a suitable subsequence,

un → u in a certain sense,

where u is a (possibly weak) solution of the same problem.
To be more specific, we therefore suppose that

sup
t∈[0,T ]

(
‖∂tun(t, ·)‖2

L2(Ω) + ‖un(t, ·)‖2
W 1,2(Ω)

)
≤ c, (5.16)

where the constant is independent of n = 1, 2, . . .. Accordingly, at least for a suitable subsequence
(not relabeled) we have

un → u weakly-(*) in L∞(0, T ;W 1,2
0 (Ω)), (5.17)

and
∂tun → ∂tu weakly-(*) in L∞(0, T ;L2(Ω)). (5.18)

Moreover, we have
‖un‖W 1,2((0,T )×Ω) ≤ c;

whence, by virtue of the compact embedding

W 1,2(Q) ↪→↪→ L2(Q), Qbounded in RN+1,

we may infer that
un → u in L2((0, T )× Ω),

and, passing again to a subsequence as the case may be

f(un) → f(u) a.a. in (0, T )× Ω, (5.19)

cf. Section 5.5.
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Next, we have to make sure that the sequence {f(un)}∞n=1 does not admit concentration points,
meaning it is equi-integrable in (0, T ) × Ω. To this end, we use the bounds (5.16), with embedding
relation (5.12). Supposing

|f(u)| ≤ c (1 + |u|r) , r arbitrary finite for N = 1, 2, r <
2N

N − 2
, (5.20)

which is obviously weaker than (5.13), we get

{f(un)}∞n=1 bounded in Lq((0, T )× Ω),


q arbitrary for N = 1, 2,

q = 1
r

2N
N−2

> 1 if N ≥ 3,
,

which, together with (5.19), gives rise to the desired conclusion

f(un) → f(u) weakly in Lq((0, T )× Ω). (5.21)

The above relation clearly allow us to pass to the limit in the equation (5.1) in the sense of
distributions. However, it seems more convenient to introduce a concise weak formulation of the
whole initial-boundary value problem (5.1 - 5.3), where the equation (5.1) with the initial conditions
(5.3) are replaced by a family of integral identities:

∫ τ

0

∫
Ω

[
u∂2

t,tϕ+∇xu · ∇xϕ+ f(u)ϕ
]
(t, ·) dx dt (5.22)

=
∫
Ω
u0∂tϕ(0, ·) dx−

∫
Ω
u1ϕ(0, ·) dx

for any test function ϕ ∈ C∞c ([0, T ) × Ω). Note that the relation (5.22) includes the distributional
formulation of the equation (5.1), together with the satisfaction of the initial conditions (5.2). Since
our solutions satisfy

u ∈ L∞(0, T ;W 1,2
0 (Ω)),

the homogeneous Dirichlet boundary conditions (5.2) are satisfied in the sense of traces.
Since the sequence of solutions {un}∞n=1 converges in the sense specified in (5.17), (5.18), (5.21),

it is easy to pass to the limit for n→∞ in the weak formulation (5.22) to conclude that the limit u
is another solution of the same problem. As for the initial data

un(0, ·) = u0,n, ∂tun(0, ·) = u1,n,

our hypotheses imply that

u0,n → u0 weakly in W 1,2
0 (Ω), u1,n → u1 weakly in L2(Ω)

at least for suitable subsequences, which is compatible with (5.22).
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5.3 Approximate solutions, convergence

The final and the only constructive step of the existence theory consists in finding a suitable family
of approximate problems. To this end, we consider a finite family of (sufficiently) smooth functions
{wn}N

n=1 in Ω, satisfying the homogeneous boundary condition (5.2). We introduce a finite dimen-
sional space XN ,

XN = span{wn | n = 1, 2, . . . , n}

endowed with the Hilbert structure induced by the Lebesgue space L2(Ω). Without loss of gener-
ality, we may therefore assume that wn is taken to be a basis of XN . Our aim is to construct the
approximate solutions uN in the form

uN(t, x) =
N∑

n=1

an(t)wn(x), (5.23)

where an will be solutions of a certain system of (non-linear) ordinary differential equations.
Taking the L2−scalar product of the equation (5.1) with wn and integrating by parts we obtain

d2

dt2
〈u(t);wn〉 = 〈∇xu;∇xwn〉 − 〈f(u);wn〉 , (5.24)

where we have denoted
〈v;w〉 =

∫
Ω
vw dx

the (real) scalar product in L2(Ω).
Using the ansatz (5.23) in (5.24) we obtain a system of second order equations

d2

dt2
an(t) = 〈∇xuN ;∇xwn〉 − 〈f(uN);wn〉 = G(a1(t), . . . , aN(t))n, (5.25)

n = 1, . . . , N , supplemented with the initial data

an(0) = 〈u0;wn〉 ,
d

dt
an(0) = 〈u1;wn〉 . (5.26)

The system (5.25), (5.26) is solvable, at least locally on a certain time interval [0, Tmax]. In order
to see that one can take Tmax and arbitrary positive number, we need uniform bounds independent
of n, similar to the energy a priori bounds obtained in (5.8). To this end, mimicking the procedure
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leading to (5.8), we multiply (5.25) by ∂tan and take the sum over n to obtain a discrete version of
the energy balance

d

dt

∫
Ω

(
1

2
|uN |2 +

1

2
|∇xuN |2 + F (uN)

)
(t, ·) dx = 0. (5.27)

Consequently, exactly as in Section 5.1.1, we derive the uniform bounds

sup
t∈[0,T ]

(
‖∂tuN(t, ·)‖2

L2(Ω) + ‖uN(t, ·)‖2
W 1,2(Ω)

)
≤ c1(T + E0) exp(c2T ), (5.28)

for any T < Tmax, uniformly in ε→ 0.In particular, the existence interval of the approximate solutions
can be extended to an arbitrary positive number T , and uN satisfy the integral identity:∫ τ

0

∫
Ω

[
uN∂

2
t,tϕ+∇xuN · ∇xϕ+ f(uN)ϕ

]
(t, ·) dx dt (5.29)

=
∫
Ω
u0∂tϕ(0, ·) dx−

∫
Ω
u1ϕ(0, ·) dx

for any test function ϕ belonging to the class

ϕ ∈ C1([0, T ];XN). (5.30)

5.3.1 Higher order estimates

One may wonder, if the higher order estimates analogous to (5.15) can be also derived at the ap-
proximate level. To this end, we have only to realize, that all we need is invariance of the space XN

with respect to the Dirichlet Laplacean. In other words, the basis {wn}N
n=1 must be taken as the first

N eigenfunctions of the Laplace operator ∆x in Ω, endowed with the Dirichlet boundary conditions.
Accordingly, multiplication by ∂t∆xuN can be performed even at the level of approximate equation
(5.25).
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Pierre-Simon de Laplace
(wikipedia)

French mathematician, physicists, and
astronomer
[1749 (Beamount-en-Auge) - 1827 (Paris)]

• Laplace operator

• Laplace transform

• Central Limit Theorem

5.3.2 Limit n→∞

With the uniform bounds (5.28) at hand, it is now a routine matter to let N →∞ in (5.29), where
we can follow step by step the arguments of Section 5.2. In such a way, we obtain a weak solution u,

u ∈ L∞(0, T ;W 1,2
0 (Ω)), ∂tu ∈ L∞(0, T ;L2(Ω))

satisfying the integral identity (5.22) for any

ϕ ∈ ∪∞N=1C
1([0, T ];XN).

Finally, using the density of the functions wn in, say, W 1,2
0 (Ω), we conclude. We have proved the

following result:
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Theorem 5.1 Let Ω ⊂ RN be a bounded domain of the class C2+ν. Suppose that the nonlinearity
f is a continuously differentiable function satisfying

f ′(u) ≥ −c,

|f(u)| ≤ c(1 + |u|r),


r arbitrary finite for N = 1, 2

r < 2N
N−2

if N ≥ 3

for all u ∈ R1. Let the initial data u0, u1 belong to the class

u0 ∈ W 1,2
0 (Ω), u1 ∈ L2(Ω).

Then the wave equation (5.1), with the boundary condition (5.2), and the initial condition (5.3)
possesses a weak solution u in the sense specified in (5.22),

u ∈ L∞(0, T ;W 1,2
0 (Ω)), ∂tu ∈ L∞(0, T ;L2(Ω)).

If, in addition, f is continuously differentiable,

|f ′(u)| ≤ c
(
1 + |u|r−1

)
, r arbitrary finite for N = 1, 2, r =

N

N − 2
(5.31)

and
u0 ∈ W 2,2(Ω) ∩W 1,2

0 (Ω), u1 ∈ W 1,2
0 (Ω),

then the weak solution belongs to the class

u ∈ L∞(0, T ;W 2,2(Ω)), ∂tu ∈ L∞(0, T ;W 1,2(Ω)).

5.4 Energy equality, uniqueness

We conclude the chapter by addressing the problem of uniqueness of the weak solutions obtained in
Theorem 5.1. To this end, we restrict ourselves to the class of nonlinearities f satisfying the growth
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condition (5.31). It is easy to check that

f(u) ∈ L∞(0, T ;L2(Ω))

as soon as u is a “finite energy” solution of (5.22), in particular, u ∈ L∞(0, T ;W 1,2
0 (Ω)). Indeed this

follows directly from the standard embedding (5.12). Thus u can be viewed as a (weak) solution of
the linear equation

∂2
t,tu(t, x)−∆xu(t, x) = g(t, x) = −f(u(t, x)) ∈ L∞(0, T ;L2(Ω)). (5.32)

We therefore start our discussion by a short excursion in the linear theory.

5.4.1 Linear equation and the Fourier method

The initial-boundary value problem associated to the linear equation (5.32) may be solved by the
Fourier method. To this end, we consider the eigenvalue problem for the Dirichlet Laplacean:

−∆xw = λw in Ω, w|∂Ω = 0. (5.33)

As is well-known, the problem (5.33) possesses a family of solutions {wn}∞n=1, together with the
associated (positive) real eigenvalues {λn}∞n=1, where {wn}∞n=1 can be taken as an orthogonal basis of
the Hilbert space L2(Ω). Moreover, the functions wn are smooth (twice continuously differentiable)
as soon as ∂Ω is smooth (of class C2+ν).

Joseph Fourier
(wikipedia)

French mathematician, and physicist
[1768 (Auxerre) - 1830 (Paris)]

• Fourier series

• Fourier transform
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Revoking the functional calculus associated to the self-adjoint operator −∆D - the Dirichlet
Laplacean - we may define

H(−∆D)[v] =
∞∑

n=1

H(an[v])wn,

where
an[v] = 〈v;wn〉 ≡

∫
Ω
vwn dx are the Fourier coefficients.

Accordingly, the function

u(t, ·) =
1

2

[
exp

(
i
√
−∆Dt

)
[u0] + exp

(
−i
√
−∆Dt

)
[u0]

]
(5.34)

+
1

2
√
−∆

[
exp

(
i
√
−∆Dt

)
[u1]− exp

(
−i
√
−∆Dt

)
[u1]

]

+
∫ t

0

1

2
√
−∆

[
exp

(
i
√
−∆D(t− s)

)
[g(s, ·)]− exp

(
−i
√
−∆D(t− s)

)
[g(s, ·)]

]
ds

represents a weak solution of the linear equation (4.9), supplemented with the boundary conditions
(5.2) and the initial conditions (5.3). More specifically, u satisfies the integral identity∫ T

0

∫
Ω

[
u∂2

t,tϕ− u ·∆xϕ− gϕ
]
(t, ·) dx dt (5.35)

=
∫
Ω
u0∂tϕ(0, ·) dx−

∫
Ω
u1ϕ(0, ·) dx

for any test function ϕ belonging to the class ϕ ∈ C∞c ([0, T )× Ω) provided, for instance

u0 ∈ W 1,2
0 (Ω), u1 ∈ L2(Ω), g ∈ L1(0, T ;L2(Ω)).

Indeed relation (5.35) can be verified first for the approximate data

u0,N =
N∑

n=1

an[u0]wn, u1,N =
N∑

n=1

an[u1]wn, gN(t, ·) =
N∑

n=1

an[g(t, ·)]wn,

for which the equation (5.32) holds in the standard sense, and then we let N →∞. Moreover, it is
easy check, by a direct inspection of (5.34), that

u ∈ C([0, T ];W 1,2
0 (Ω)), ∂tu ∈ C([0, T ];L2(Ω)),

and that u satisfies the energy balance∫
Ω

1

2

(
|∂tu|2 + |∇xu|2

)
(t, ·) dx =

∫
Ω

1

2

(
|u1|2 + |∇xu0|2

)
dx (5.36)
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+
∫ t

0
g(s, ·)∂tu(s, ·) ds.

Finally, we observe that the weak solutions satisfying (5.35) are uniquely determined by the data
u0, u1, and g. Indeed the difference v of two integrable solutions satisfies∫ T

0

∫
Ω
v
(
∂2

t,tϕ−∆xϕ
)

dx dt = 0 for any ϕ ∈ C∞c ([0, T )× Ω); (5.37)

whence, by a simple density argument, the identity (5.37) holds for any ϕ,

ϕ ∈ C2([0, T ]× Ω), ϕ|∂Ω = 0, ϕ(T, ·) = ∂tϕ(T, ·) = 0. (5.38)

On the other hand, the image of the space of test functions (5.38) under the wave operator ∂2
t,t−∆x

is dense in, say, L2((0, T )× Ω); whence (5.37) yields immediately v ≡ 0.
We have proved the following result:

Theorem 5.2 Let Ω ⊂ RN be a bounded domain of class C2+ν. Assume that the data belong to
the regularity class

u0 ∈ W 1,2
0 (Ω), u1 ∈ L2(Ω) and g ∈ L1(0, T ;L2(Ω)).

Then the initial-boundary value problem (5.32), (5.2), (5.3) admits a weak solution u,

u ∈ C([0, T ];W 1,2
0 (Ω)), ∂tu ∈ C([0, T ];L2(Ω)),

unique in the space of integrable functions L1((0, T )×Ω). Moreover, u is given by formula (5.34)
and satisfies the energy balance (5.36).

5.4.2 Energy equality and uniqueness for the nonlinear problem

As already observed in (5.32), the solution u of the semilinear equation (5.1) constructed in Theorem
5.1 can be seen as a solution of the linear equation (5.32) with g = −f(u), where g ∈ L∞(0, T ;L2(Ω))
as soon as the nonlinearity f obeys the hypothesis (5.31). Consequently, we may apply the conclusion
of Theorem 5.2 to deduce that

u ∈ C([0, T ];W 1,2
0 (Ω)), ∂tu ∈ C([0, T ];L2(Ω)), (5.39)
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satisfies the energy balance (5.36); whence∫
Ω

(
1

2
|∂tu|2 +

1

2
|∇xu|2 + F (u)

)
(t, ·) dx (5.40)

=
∫
Ω

(
1

2
|u1|2 +

1

2
|∇xu0|2 + F (u0)

)
dx.

Suppose now that u1, u2 are two solutions emanating from the same initial data. Taking v =
u1 − u2 and revoking (5.36) again, we obtain

1

2

∫
Ω

(
|∂tv|2 + |∇xv|2

)
(t, ·) dx =

∫ t

0

∫
Ω

(
f(u2)− f(u1)

)
∂tv dx ds (5.41)

≤
∫ t

0

∫
Ω

∣∣∣f ′(ξu1 + (1− ξ)u2)
∣∣∣ |v||∂tv| dx ds,

where, since u1, u2 belong to the regularity class (5.39) and f obeys (5.31),

∣∣∣f ′(ξu1 + (1− ξ)u2)
∣∣∣ ∈ L∞(0, T ;Lr(Ω)), r =



∞ if N = 1

arbitrary finite for N = 2

N for N ≥ 3.

Consequently, by means of Hölder’s inequality and the embedding (5.12), we may infer that

1

2

∫
Ω

(
|∂tv|2 + |∇xv|2

)
(t, ·) dx ≤ c

∫ t

0
‖∇xv‖L2(Ω)‖∂t‖L2(Ω);

whence a straightforward application of Gronwall’s lemma yields v = u1 − u2 ≡ 0.
Summarizing the previous discussion, we obtain:
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Theorem 5.3 Let Ω ⊂ RN be a bounded domain of class C2+ν. Assume that the initial data
belong to the regularity class

u0 ∈ W 1,2
0 (Ω), u1 ∈ L2(Ω),

and that f is a continuously differentiable function on R1 satisfying

f ′(u) ≥ −c,

|f ′(u)| ≤ c
(
1 + |u|r−1

)
, r arbitrary finite for N = 1, 2, r =

N

N − 2
,

for all u ∈ R1.

Then the initial-boundary value problem (5.1), (5.2), (5.3) admits a weak solution u,

u ∈ C([0, T ];W 1,2
0 (Ω)), ∂tu ∈ C([0, T ];L2(Ω)),

unique in the space
u ∈ L∞(0, T ;W 1,2

0 (Ω)), ∂tu ∈ L∞(0, T ;L2(Ω)).

Moreover, u satisfies the energy equality (5.40).

5.5 Exercises

(i) Show that
wn → w weakly in Lq(Q) for a certain q > 1,

and
wn → w̃ a.a. in Q

implies w = w̃ a.a. in Q.

(ii) Find a sequence of functions such that

vn → 0 a.a. in Q,

where Q ⊂ R1 is an open interval, such that {vn} does not converge to zero weakly in L1(Q).
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5.6 Bibliography

The basic strategy of this chapter is taken over from the classical monograph of J.-L.Lions [11].

6 Free vibrations

We consider a simple 1D analogue of the semilinear wave equation introduced in the previous section:

∂2
t,tu(t, x)− ∂2

x,xu(t, x) + f(u(t, x)) = 0, x ∈ (0, π), t ∈ R1, (6.1)

supplemented with the homogeneous Dirichlet boundary conditions

u(t, 0) = u(t, π) = 0. (6.2)

Equation (6.1), with (6.2), may be viewed as a simple model of a (nonlinear) vibrating string. Of
course, the length π of the string can be replaced by an arbitrary positive number. As we have seen
in Theorem 5.1 above, the problem (6.1), (6.2), together with the initial data

u(0, ·) = u0, ∂tu(0, ·) = u1 (6.3)

is well-posed for any data
u0 ∈ W 1,2

0 (0, π), u1 ∈ L2(0, π)

and any continuously differentiable function f obeying the growth restrictions specified in Theorem
5.1. In addition, we suppose that f(0) = 0 so that u ≡ 0 is a trivial solution of (6.1), (6.2).

6.1 Wave equation as a Hamiltonian system

The wave equation (6.1) can be written in the form

∂tu = v, ∂tv = ∆xu− f(u). (6.4)

Thus defining the functional

H(u, v) =
∫
Ω

1

2
|v|2 +

1

2
|∂xu|2 + F (u) dx

we may be viewed as
∂tu = DvH(u, v), ∂tv = −DuH(u, v), (6.5)

where Dv, Du are understood as Fréchet (variational) derivatives. The functional H plays a role
of the Hamiltonian associated to (6.4), and, in accordance with our discussion in Section 4.1, it is
constant along solution trajectories, meaning

d

dt
H
(
u(t, ·), v(t, ·)

)
= 0.

Thus equation (6.1) can be interpreted as an infinite-dimensional Hamiltonian system.
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6.1.1 Periodic solutions and free vibrations

As we have observed above, any solution to the problem (6.1 - 6.3) with f ≡ 0 is time-periodic. A
natural question arises, namely if the same can be said about the solutions to the nonlinear problem.
Such a statement, however, seems quite ambitious and may not even be true in general. Instead we
pose a simpler question: Does the problem (6.1), (6.2), with f(0) = 0, possess a non-trivial (non-zero)
periodic solution? The time-periodic solutions of (6.1), (6.2) are associated with the free vibrations
in the string model. Note that there is no dissipative mechanism incorporated in the model (6.1),
(6.2) as the total energy represented by the Hamiltonian H is constant in time.

We are therefore interested in the solutions of (6.1), (6.2) defined on the whole real line R1 and
satisfying, in addition,

u(t+ 2π, x) = u(t, x) for all t ∈ R1, x ∈ (0, π). (6.6)

The length of the period - 2π - is obviously related to the length of the underlying space interval.
As we shall see, it is possible to construct time periodic solutions with a period which is a rational
multiple of π. The existence for other (irrational) periods is still an outstanding open problem.

6.2 Variational formulation

We start by introducing the concept of weak solution to the problem (6.1), (6.2), (6.6). To this end,
we consider the class of test functions ϕ that are (i) twice continuously differentiable in R1 × [0, 1],
(ii) satisfy the homogeneous Dirichlet boundary conditions (6.2), and (iii) are time periodic with
the period 2π, meaning they satisfy (6.6). Denote

Q = {(t, x) | t ∈ (0, 2π), x ∈ (0, π)}.
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Definition 6.1 We shall say that a function u is a weak solution to the problem (6.1), (6.2),
and (6.6) if

u ∈ L1(Q), f(u) ∈ L1(Q),

and the integral identity∫ 2π

0

∫ π

0

[
u(t, x)

(
∂2

t,tϕ(t, x)− ∂2
x,xϕ(t, x)

)
+ f (u(t, x))ϕ(t, x)

]
dx dt = 0 (6.7)

holds for any test function ϕ ∈ C2(R2 × [0, π] such that

ϕ(t, 0) = ϕ(t, π) = 0, ϕ(t+ 2π, x) = ϕ(t, x) for any t ∈ R1, x ∈ (0, π).

Note that such a concept of weak solution is, in fact, weaker than that one introduced in Section
5.2 for the initial-boundary value problem. Indeed, in contrast with (5.22), we do not assume any
integrability properties of the (generalized) derivatives ∂tu, ∂xu. The reason is that they are simply
not available (in a direct manner) for the component of u belonging to the kernel of the differential
operator ∂2

t,t − ∂2
x,x, supplemented with the boundary conditions (6.2), (6.6).

In the remaining part of this section, we show that the problem (6.1), (6.2), (6.6) possesses
infinitely many (weak) solutions for a suitable class of nonlinearities f . As a matter of fact, it is
enough to show existence of at least one solution u such that u 6= 0, and u effectively depending on
the time variable. Then u is time-periodic with some minimal period 2π/N and we may repeat the
same procedure for the periodic solutions with the period 2π/(N + 1).

To conclude this section, we introduce the functions

ej,k(t, x) =



1√
2π

sin(jt) sin(kx) for j > 0, k > 0,

1
π

sin(kx), j = 0

1√
2π

cos(jt) sin(kx) for j < 0, k > 0.

The functions {ej,k}j∈Z,k>0 form a basis of the Hilbert space L2(Q), and we may introduce the Fourier
coefficients

aj,k[v] =
∫ 2π

0

∫ π

0
vej,k dx dt
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for any v ∈ L1(Q).
Now, it is easy to see that the weak formulation (6.7) is, in fact, equivalent to the identity

(j2 − k2)aj,k[u] = aj,k [f(u)] for all j ∈ Z, k = 1, 2, . . . (6.8)

6.3 Direct method for finding time-periodic solutions

We use a direct method to find solutions of the problem (6.1), (6.2), (6.6), more specifically, we
reformulate the problem as finding critical points of the so-called action functional:

A[v] =
∫ 2π

0

∫ π

0

(
1

2
|∂xv|2 −

1

2
|∂tv|2 + F (v(t, x))

)
dx dt, F (v) =

∫ v

0
f(z) dz.

Indeed computing formally ∂A(u) we get

〈∂A[u];ϕ〉 =
∫ 2π

0

∫ π

0

[
∂xu∂xϕ− ∂tu∂tϕ+ f(u)ϕ

]
dx dt;

whence we recover (6.7) by setting ∂A(u) = 0.

6.4 Formal computations, a priori bounds

Suppose, for a moment, that all quantities in question are smooth. Moreover, assume that we have
found a sequence {un}∞n=1 of critical points of the functional A such that

A[un] → F0 < 0 as n→∞. (6.9)

Since un are critical points of A, meaning, in particular, that

〈∂A[un];un〉 = 0,

we get

A[un]− 1

2
〈∂A[un];un〉 (6.10)

=
∫ 2π

0

∫ π

0

(
F (un)− 1

2
f(un)un

)
dx dt→ F0 < 0 as n→∞.

In order to exploit (6.10), we restrict ourselves to a very particular class of superlinear nonlin-
earities, namely

f(u) = |u|p−1u, p > 1, (6.11)
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where

F (u) =
1

p+ 1
|u|p+1.

Since p > 1 we deduce from (6.10) that(
1

2
− 1

p+ 1

)∫ 2π

0

∫ π

0
|un|p+1 dx dt→ −F0 > 0. (6.12)

In particular, we may infer that

un → u weakly in Lp+1(Q), (6.13)

and

f(un) → f(u) weakly in Lq(Q), q =
p+ 1

p
, (6.14)

passing to a subsequence as the case may be.
With the estimates at hand, we can let n→ 0 in (6.8) to conclude that

(j2 − k2)aj,k[u] = aj,k

[
f(u)

]
for all j ∈ Z, k = 1, 2, . . . (6.15)

Consequently, our ultimate goal is to show that

f(u) = f(u).

To this end, we use the theory of monotone operators. It is convenient to decompose

L2(Q) = K ⊕R,

where K is the kernel of the periodic D’Alambert operator ∂2
t,t − ∂2

x,x,

K =
{
v ∈ L2(Q)

∣∣∣ ak,j[v] = 0 whenever j2 − k2 6= 0
}
,

R =
{
v ∈ L2(Q)

∣∣∣ ak,j[v] = 0 for j2 − k2 = 0
}
.

Accordingly, we write
un = P [un] + P⊥[un],

where P denotes the orthogonal projection onto the space R. Finally, we introduce a scale of norms
on the space R,

‖v‖2
β =

∑
j,k,j2 6=k2

∣∣∣j2 − k2
∣∣∣β a2

k,j[v], β ≥ 0.
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Now, we claim the following auxilliary result.

Lemma 6.1

∑
j,k,j2 6=k2

1

|j2 − k2|α
<∞

for any α > 1.

Proof:
We write ∑

j,k,j2 6=k2

1

|j2 − k2|α
<∞ =

∑
k>0

1

k2α
+ 2

∑
j>0,k>0,j 6=k

1

|j + k|α
1

|j − k|α
,

where ∑
j>0,k>0,j 6=k

1

|j + k|α
1

|j − k|α
=

∑
k>0,m 6=0,m>−k

1

|2k +m|α
1

mα

≤
∑

k 6=0,m 6=0

1

|k|α
1

|m|α
,

where the last series converges as soon as α > 1.

Q.E.D.

Using Lemma 6.1 we easily observe that

‖P [v]‖L∞(Q) ≤ c(β)‖P [v]‖β for all β > 1, (6.16)

with c(β) →∞ for β ↗ 1. Indeed

‖P [v]‖L∞(Q) ≤ c
∑

j2 6=k2

|aj,k[v]| ,

where ∑
j2 6=k2

|aj,k[v]| =
∑

j2 6=k2

|j2 − k2|−β/2|j2 − k2|β/2 |aj,k[v]|
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≤

 ∑
j2 6=k2

1

|j2 − k2|β

1/2

‖P [v]‖β ;

whence the desired conclusion follows directly from Lemma 6.1.
Seeing that, obviously,

‖P [v]‖L2(Q) ≤ c‖P [v]‖β=0 (6.17)

we may interpolate (6.16), (6.17) to obtain the following conclusion:
For any 2 ≤ q <∞, there is β(q) < 1 such that

‖P [v]‖Lq(Q) ≤ c(p) ‖P [v]‖β(q) , (6.18)

in particular
‖P [v]‖Lq(Q) ≤ c(q) ‖P [v]‖β=1 . (6.19)

Going back to (6.8) we deduce that

‖P [un]‖2
β=1 =

∑
j,k,j2 6=k2

|j2 − k2|a2
j,k[un]

=
∑
j,k

aj,kf(un)sgn(j2 − k2)aj,k[P [un]] =
∫ 2π

0

∫ π

0
f(un)P [ũn] dx dt,

where we have set
ũn =

∑
j,k

sgn(j2 − k2)aj,k[un]ej,k.

In accordance with (6.19), we get∣∣∣∣∫ 2π

0

∫ π

0
f(un)P [ũn] dx dt

∣∣∣∣ ≤ c1‖f(un)‖L(p+1)/p(Q)‖P [ũn‖Lp+1(Q)

≤ c2‖P [ũn‖β=1 = c2‖P [un‖β=1,

where we have used the relations (6.14) and (6.19). Consequently, we may infer that

‖P [un]‖β=1 ≤ c (6.20)

uniformly for n→∞.
It follows from (6.20) that

‖P [un]− P [u]‖β → 0 for n→∞ as soon as 0 ≤ β < 1,
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we can use the embedding (6.20) to conclude that

P [un] → P [u] (strongly) in Lq(Q) for any 1 ≤ q <∞. (6.21)

It remains to show strong convergence of the component P⊥[un]. To this end, we use monotonicity
of the functions f . Returning once more to the relation (6.8) we deduce that∫ 2π

0

∫ π

0
f(un)P⊥[un] dx dt = 0,

while (6.15) yields ∫ 2π

0

∫ π

0
f(u)P⊥[u] dx dt = 0,

in particular, ∫ 2π

0

∫ π

0
f (un)P⊥[un] dx dt→

∫ 2π

0

∫ π

0
f(u)P⊥[u] dx dt (6.22)

as n→∞.
On the other hand, thanks to the specific form of the nonlinearity f ,

‖un − u‖p+1
Lp+1(Q) ≤ c

∫ 2π

0

∫ π

0
(f(un)− f(u)) (un − u) dx dt

= c
[∫ 2π

0

∫ π

0
(f(un)− f(u)) (P [un]− P [u]) dx dt

+
∫ 2π

0

∫ π

0
(f(un)− f(u))

(
P⊥[un]− P⊥[u]

)
dx dt

]
,

where, in agreement with (6.21), (6.22), the two integrals on the right-hand side tend to zero for
n→∞.

Thus we may infer that
un → u (strongly) in Lp+1(Q), (6.23)

in particular,
f(u) = f(u), (6.24)

therefore u is a weak solution of the problem (6.1), (6.2), (6.6). Finally, we let n → ∞ in (6.12) to
conclude that (

1

2
− 1

p+ 1

)∫ 2π

0

∫ π

0
|u|p+1 = −F0 > 0, (6.25)

meaning u 6= 0.

47



6.5 Finite-dimensional approximation

In this section, we construct a sequence of approximate solutions to the problem (6.1), (6.2), (6.6)
by means of a Galerkin scheme. We take a family of finite-dimensional spaces

Xn =
{
v ∈ L2(Q)

∣∣∣ aj,k[v] = 0 for all k > n, |j| > n
}
,

together with the action functional An,M ,

An,M [v] =
∫ 2π

0

∫ π

0

(
M2

2
|∂xv|2 −

M2

2
|∂tv|2 + F (v(t, x))

)
dx dt,

F (v) =
∫ v

0
f(z) dz, v ∈ Xn,

where

〈∂An[u];ϕ〉 =
∫ 2π

0

∫ π

0

[
M2 (∂xu∂xϕ− ∂tu∂tϕ) + f(u)ϕ

]
dx dt

for u, ϕ ∈ Xn and M a positive integer.
We observe that, formally for the time being, the critical points of An,M for n → ∞ will yield

weak solutions of the problem

∂2
t,tũ− ∂2

x,xũ+
1

M2
f(ũ) = 0,

which, after the simple change of variables

u(t, x) = ũ(Mt,Mx)

give rise to solutions of the original problem (6.1), (6.2), (6.6), provided ũ has been extended as a
2π-periodic odd function in the x-variable.

Our next goal will be to show that An,M possesses a family of critical points un ∈ Xn satisfying

−c1 < An,M [un] < −c2 < 0 (6.26)

for M sufficiently large, where the constants c1, c2 are independent of n→∞.

6.5.1 Critical points on Xn

We use the following result, see [6] :
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Lemma 6.2 Let X be a finite-dimensional (Hilbert) space and J ∈ C1(X,R) such that

lim
‖v‖X→∞

J(v) = ∞, (6.27)

and X admits a decomposition
X = V1 ⊕ V2 ⊕ V3,

J ≤ b on S ∩ (V1 ⊕ V2), S = {v ∈ X |‖v‖X = r > 0}, (6.28)

J > b on V3 (6.29)

and
J > a on V2 ⊕ V3 (6.30)

for certain real numbers a,b.

Then there exists a critical point vc of J in X such that

∂J(v0) = 0, J(v) ∈ [a, b].

Our goal is to apply Lemma 6.2 in the situation

X = Xn, J = An,M ,

where Xn is endowed with the norm

‖v‖2
Xn

= ‖P [v]‖2
β=1 + ‖P⊥[v]‖2

L2(Q).

Moreover, we take

V1 = span
{
ej,k |k2 − j2 < −3

}
∩Xn, V2 =

{
ej,k |k2 − j2 = −3

}
∩Xn,

V3 =
{
ej,k |k2 − j2 ≥ 0

}
∩Xn.

Step 1:
It is easy to check that Xn = V1 ⊕ V2 ⊕ V3 and that

An,M =
∑

|j|,k≤n

M2(k2 − j2)a2
j,k[v] +

∫
Q
F (v) dx for v ∈ Xn.
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In particular, we have
An,M ≥ 0 on V3, (6.31)

and An,M satisfies the coercivity hypothesis (6.27) in Xn for any fixed n = 1, 2, ....

Step 2:

We consider the values of An,M on the sphere {‖v‖Xn = 1} intersected with the space V1 ∩ V2.
Keeping in mind the embedding relation (6.19), we get

An,m[v] ≤ −
∑

|j|,k≤n

M2|k2 − j2|a2
j,k[v] +

1

p
‖v‖p+1

Lp+1(Q) (6.32)

≤ −M2‖v‖2
Xn

+ c‖v‖p+1
Xn

≤ −M2 + c < 0 for any v ∈ S ∩ (V1 ⊕ V2)

provided M is taken large enough. It is important to notice that the estimate (6.32) is independent
of M .

Step 3:

Finally, fixing M so that (6.32) holds and taking v ∈ V2 ⊕ V3 we get

Mn,M ≥ −3M2
∑

j2−k2=−3

a2
j,k[v] +

1

p+ 1

∫
Q
|v|p+1 dx

≥ −3M2‖v‖2
L2(Q) +

1

p+ 1
‖v‖p+1

Lp+1(Q)

≥ −3M2‖v‖2
L2(Q) +

c

p+ 1
‖v‖p+1

L2(Q) ≥ −c(M),

where, similarly to the previous step, the bound on the right-hand side is independent of n.
We infer that there exists a positive integer M > 0 such that all hypotheses of Lemma 6.2 are

satisfied with the constant a < b < 0 independent of M . Thus we obtain the existence of critical
points un ∈ Xn of the functional An,M satisfying (6.26). Exactly as in Section 6.4 we can pass to the
limit for un → u, where u is a non-zero weak solution of the problem (6.1), (6.2), (6.6) in the sense
specified in Definition 6.1.

We have proved the following result:
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Theorem 6.1 Let f be of the form

f(u) = |u|p−1u for all u ∈ R1, for a certain p > 1.

The the problem (6.1), (6.2), (6.6) admits infinitely many non-zero weak solutions u, u ∈
Lp+1(Q), in the sense of Definition 6.1.

6.6 Exercises

6.6.1 Coercivity of monotone functions

(i)

Show that for p ≥ 1 there is positive constant c(p) such that(
|u|p−1u− |v|p−1v

)(
u− v

)
≥ c(p)|u− v|p+1.

(ii)

Let f : [0,∞) → [0,∞) be a convex function such that f(0) = 0. Show that

(f(u)− f(v)) (u− v) ≥ f(|u− v|)|u− v| for any u, v ≥ 0.
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