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Summary

In this chapter we present a nonlinear enhancement of a linear method, the
singular system analysis (SSA), which can identify potentially predictable or
relatively regular processes, such as cycles and oscillations, in a background
of colored noise. The first step in the distinction of a signal from noise is a
linear transformation of the data provided by the SSA. In the second step, the
dynamics of the SSA modes is quantified in a general, nonlinear way, so that
dynamical modes are identified which are more regular, or better predictable
than linearly filtered noise. A number of oscillatory modes are identified in
data reflecting solar and geomagnetic activity and climate variability, some of
them sharing common periods.
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1 Introduction

The quest for uncovering physical mechanisms underlying experimental data
in order to understand, model, and predict complex, possibly nonlinear pro-
cesses, such as those studied in geophysics, in many cases starts with an at-
tempt to identify trends, oscillatory processes and/or other potentially deter-
ministic signals in a noisy environment. The distinction of a relatively regular
part of the total variability of a complex natural process can be a key for
understanding not only such a process itself, but also interactions with other
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processes or phenomena, if they posses, for instance, oscillations on a similar
temporal scale.

Singular system (or singular spectrum) analysis (SSA) [1, 2, 3] in its orig-
inal form (closely related to the principal component analysis or Karhunen-
Loève decomposition) is a method for identification and distinction of im-
portant information in multivariate data from noise. It is based on an or-
thogonal decomposition of a covariance matrix of multivariate data under
study. The SSA provides an orthogonal basis onto which the data can be
transformed, making thus individual data components (“modes”) linearly in-
dependent. Each of the orthogonal modes (projections of the original data
onto the new orthogonal basis vectors) is characterized by its variance, which
is given by the related eigenvalue of the covariance matrix. Here, we will deal
with a univariate version of SSA (which, however, can be generalised into a
multivariate version, see, e.g. [4]) in which the analyzed data is a univari-
ate time series and the decomposed matrix is a time-lag covariance matrix,
i.e., instead of several components of multivariate data, a time series and its
time-lagged versions are considered. This type of SSA application, which has
frequently been used especially in the field of meteorology and climatology
[5, 6, 7, 8, 9], can provide a decomposition of the studied time series into
orthogonal components (modes) with different dynamical properties. Thus,
“interesting” phenomena such as slow modes (trends) and regular or irregular
oscillations (if present in the data) can be identified and retrieved from the
background of noise and/or other “uninteresting” non-specified processes.

In the traditional SSA, the distinction of “interesting” components (sig-
nal) from noise is based on finding a threshold (jump-down) to a “noise floor”
in a sequence of eigenvalues given in descending order. This approach might
be problematic if the signal-to-noise ratio is not sufficiently large, or the noise
present in the data is not white but “colored”. For such cases, statistical ap-
proaches utilizing the Monte Carlo simulation techniques have been proposed
[6, 10] for reliable signal/noise separation. The particular case of Monte Carlo
SSA (MCSSA) which considers the “red” noise, usually present in geophysical
data, has been introduced by Allen & Smith [11]. In this paper, we present
and apply an extension of the Monte Carlo singular system analysis based
on evaluating and testing the regularity of dynamics of the SSA modes. In
our approach, we retain the decomposition exploiting the linear covariance
structure of the data, however, in the testing (detection) part of the method,
we evaluate the regularity of dynamics of the SSA modes using a measure of
general, i.e., nonlinear dependence. The latter gives a clue in inferring whether
the studied data contain a component which is more regular and predictable,
in a general, nonlinear sense, than linearly filtered noise. Attempts to general-
ize SSA-like approach to accounting for nonlinear dependence structures are
also known [12, 13, 14, 15], however, are not considered in this chapter.



Detection of Oscillatory Modes 3

2 Monte Carlo singular system analysis and its
enhancement

2.1 The basic univariate singular system analysis

Let a univariate time series {y(i)}, i = 1, . . . , N0, be a realization of a stochas-
tic process {Y (i)} which is stationary and ergodic. A map into a space of n-
dimensional vectors x(i) with components xk(i), where k = 1, . . . , n, is given
as

xk(i) = y(i + k − 1). (1)

The sequence of the vectors x(i), i = 1, . . . , N = N0 − (n − 1), is usually
referred to as the n × N trajectory matrix X = {xk

i }, the number n of the
constructed components is called the embedding dimension, or the length of
the (embedding) window. Suppose that the n-dimensional time series (the tra-
jectory matrix X) results from a linear combination of m different dynamical
modes, m < n. Then, in an ideal case, the rank of the trajectory matrix X
is rank(X) = m, and X can be transformed into a matrix with only m non-
trivial linearly independent components. In the univariate SSA, it is supposed
that this procedure decomposes the original series {y(i)} into a sum of several
components and noise. Exceptional care must be taken when the trajectory
matrix X is constructed from a time series possibly containing short-range
correlated or nonlinear signals such as chaotic signals. The emergence of addi-
tional, linearly independent modes when the lags used in construction of the
trajectory matrix are larger than the correlation length of such a signal has
been discussed in [16].

Instead of the n × N matrix X, it is more convenient to decompose the
symmetric n× n matrix C = XT X, since rank(X) = rank(C). The elements
of the covariance matrix C are

ckl =
1
N

N∑

i=1

xk(i)xl(i), (2)

where 1/N is the proper normalization and the components xk(i), i =
1, . . . , N , are supposed to have zero mean. The symmetric matrix C can be
decomposed as

C = VΣVT , (3)

where V = {vij} is an n × n orthonormal matrix, Σ = diag(σ1, σ2, . . . , σn),
σi are non-negative eigenvalues of C, by convention given in descending order
σ1 ≥ σ2 ≥ . . . ≥ σn. If rank(C)= m < n, then

σ1 ≥ . . . ≥ σm > σm+1 = . . . = σn = 0. (4)

In the presence of noise, however, all eigenvalues are positive, and the relation
(4) takes the following form [17]:
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σ1 ≥ . . . ≥ σm À σm+1 ≥ . . . ≥ σn > 0. (5)

Then, the modes ξk
i

ξk
i =

n∑

l=1

vlkxl
i, (6)

for k = 1, . . . ,m are considered as the “signal” part, and the modes ξk
i , k =

m + 1, . . . , n, are considered as the noise part of the original time series. The
“signal” modes can be used to reconstruct the denoised signal x̃k

l as

x̃k
i =

m∑

l=1

vklξ
l
i. (7)

Of course, the original time series xk
i can be reconstructed back from the

modes as

xk
i =

n∑

l=1

vklξ
l
i. (8)

In the latter relation – decomposition (8), the modes ξk
i can also be interpreted

as time-dependent coefficients and the orthogonal vectors vk = {vkl} as basis
functions, usually called the empirical orthogonal functions (EOF’s).

2.2 Monte Carlo singular system analysis

The clear signal/noise distinction based on the eigenvalues σ1, σ2, . . . , σn can
only be obtained in particularly idealized situation when the signal/noise ratio
is large enough and the background consists of white noise. In many geophysi-
cal processes, however, so-called “red” noise with power spectrum of the 1/fα

(power-law) type is present [11]. Its SSA eigenspectrum also has the 1/fα

character [18], i.e., the eigenspectrum of red noise is equivalent to a coarsely
discretized power spectrum, where the number of frequency bins is given by
the embedding dimension n. The eigenvalues related to the slow modes are
much larger than the eigenvalues of the modes related to higher frequencies.
Thus, in the classical SSA approach applied to red noise, the eigenvalues of
the slow modes might incorrectly be interpreted as a (nontrivial) signal, or, on
the other hand, a nontrivial signal embedded in red noise might be neglected
if its variance is smaller than the slow-mode eigenvalues of the background red
noise. Therefore, Allen & Smith [11] proposed comparing the SSA spectrum
of the analyzed signal with the SSA spectrum of a red-noise model fitted to
the studied data. Such a red-noise process can be modeled by using an AR(1)
model (autoregressive model of the first order):

u(i)− û = α(u(i− 1)− û) + γz(i), (9)

where û is the process mean, α and γ are process parameters, and z(i) is
Gaussian white noise with zero mean and unit variance.
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In order to correctly detect a signal in red noise, we will apply the following
approach, inspired by Allen & Smith [11]:

First, the eigenvalues are plotted not according to their values, but ac-
cording to a frequency associated with a particular mode (EOF), i.e., the
eigenspectrum in this form becomes a sort of a (coarsely) discretized power
spectrum in general, not only in the case of red noise (when the eigenspectra
have naturally this form, as mentioned above).
Second, the eigenspectrum obtained from the studied data set is compared,
in a frequency-by-frequency way, with the eigenspectra obtained from a set of
realizations of an appropriate noise model (such as the AR(1) model (9)), i.e.,
an eigenvalue related to a particular frequency bin obtained from the data
is compared with a range of eigenvalues related to the same frequency bin,
obtained from the set of so-called surrogate data, i.e., the data artificially gen-
erated according to the chosen noise model (null hypothesis) [11, 19, 20, 21].
Allen & Smith [11] also discuss other relevant approaches how to compare the
eigenvalues from the tested data and the surrogates.

The detection of a nontrivial signal in an experimental time series becomes
a statistical test in which the null hypothesis that the experimental data were
generated by a chosen noise model is tested. When (an) eigenvalue(s) associ-
ated with some frequency bin(s) differ(s) with a statistical significance from
the range(s) of related noise model eigenvalues, then one can infer that the
studied data cannot be fully explained by the considered null hypothesis (noise
model) and could contain an additional (nontrivial) signal. This is a rough
sketch of the approach, for which we will use the term Monte Carlo SSA (MC-
SSA), as coined by Allen & Smith [11] (see [11] where also a detailed account
of the MCSSA approach with analyses of various levels of null hypotheses is
given), although the same term was earlier used for other SSA methods, which
considered a white noise background [6, 10].

2.3 Enhanced MCSSA: testing dynamics of the SSA modes

The MCSSA described above is a sophisticated technique. However, it still
assumes a very simple model, i.e., that the signal of interest has been linearly
added to a specified background noise. Therefore the variance in the frequency
band, characteristic for the searched signal, is significantly larger than the
typical variance in this frequency band obtained from the considered noise
model. If the studied signal has a more complicated origin, e.g., when an
oscillatory mode is embedded into a background process without significantly
increasing variance in a particular frequency band, the standard MCSSA can
fail. In order to be able to detect any interesting dynamical mode independent
of its (relative) variance, Paluš & Novotná [22] have proposed to test also
dynamical properties of the SSA modes against the modes obtained from
surrogate data. From this idea, the question arises how we can characterize
dynamics in a simple, computationally effective way.
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Consider a complex, dynamic process evolving in time. A series of mea-
surements done on such a system in consecutive instants of time t = 1, 2, . . .
is usually called a time series {y(t)}. Consider further that the temporal evo-
lution of the studied system is not completely random, i.e., that the state of
the system at time t in some way depends on the state in which the system
was at time t − τ . The strength of such a dependence per unit time delay
τ , or, inversely, a rate at which the system “forgets” information about its
previous states, can be an important quantitative characterization of tempo-
ral complexity in the system’s evolution. The time series {y(t)}, which is a
record of (a part of) the system’s temporal evolution, can be considered as
a realization of a stochastic process, i.e., a sequence of stochastic variables.
Uncertainty in a stochastic variable is measured by its entropy. The rate with
which the stochastic process “produces” uncertainty is measured by its en-
tropy rate. The concept of entropy rates is common to the theory of stochastic
processes as well as to information theory where the entropy rates are used
to characterize information production by information sources [23].

Alternatively, the time series {y(t)} can be considered as a projection of
a trajectory of a dynamical system, evolving in some measurable state space.
A. N. Kolmogorov, who introduced the theoretical concept of classification of
dynamical systems by information rates, was inspired by information theory
and generalized the notion of the entropy of an information source [24]. The
Kolmogorov-Sinai entropy (KSE) [24, 25, 26] is a topological invariant, suit-
able for classification of dynamical systems or their states, and is related to
the sum of the system’s positive Lyapunov exponents (LE) according to the
theorem of Pesin [27].

Thus, the concept of entropy rates is common to theories based on philo-
sophically opposite assumptions (randomness vs. determinism) and is ide-
ally applicable for a characterization of complex geophysical processes, where
possible deterministic rules are always accompanied by random influences.
However, possibilities to compute the exact entropy rates from experimental
data are limited to a few exceptional cases. Therefore Paluš [28] has pro-
posed “coarse-grained entropy rates” (CERs) instead. The CERs are rela-
tive measures of regularity and predictability of analyzed time series and
are based on coarse-grained estimates of information-theoretic functionals.
In the simplest case, applied here, we use the so-called mutual information.
The mutual information I(X; Y ) of two random variables X and Y is given
by I(X; Y ) = H(X) + H(Y ) − H(X, Y ), where the entropies H(X), H(Y ),
H(X, Y ) are defined in the usual Shannonian sense [23]:

Let X and Y be random variables with sets of values Ξ and Υ , respectively,
probability distribution functions (PDF) p(x), p(y), and a joint PDF p(x, y).
The entropy H(X) of a single variable, say X, is defined as

H(X) = −
∑

x∈Ξ

p(x) log p(x), (10)

and the joint entropy H(X, Y ) of X and Y is
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H(X, Y ) = −
∑

x∈Ξ

∑

y∈Υ

p(x, y) log p(x, y). (11)

The mutual information I(X; Y ) then can be expressed as

I(X; Y ) =
∑

x∈Ξ

∑

y∈Υ

p(x, y) log
p(x, y)

p(x)p(y)
. (12)

A detailed account on relations between entropy rates and information-
theoretic functionals is given in [28, 29]. For a time series {x(t)}, considered
as a realization of a stationary and ergodic stochastic process {X(t)}, t =
1, 2, 3, . . ., we compute the mutual information I(x;xτ ) as a function of time
lag τ . We mark x(t) as x and x(t+ τ) as xτ . For defining the simplest form of
CER let us find τmax such that for τ ′ ≥ τmax, I(x; xτ ′) ≈ 0 for the analysed
datasets. Then, we define the norm of the mutual information

||I(x;xτ )|| = ∆τ

τmax − τmin + ∆τ

τmax∑
τ=τmin

I(x; xτ ) (13)

with τmin = ∆τ = 1 sample as a usual choice. The CER h1 is then defined as

h1 = I(x, xτ0)− ||I(x;xτ )||. (14)

It has been shown that the CER h1 provides the same classification of states
of chaotic systems as the exact KSE [28]. Since usually τ0 = 0 and I(x; x) =
H(X) which is given by the marginal probability distribution p(x), the sole
quantitative descriptor of the underlying dynamics is the mutual information
norm (13) which we will call the regularity index. Since the mutual information
I(x; xτ ) measures the average amount of information contained in the process
{X} about its future τ time units ahead, the regularity index ||I(x;xτ )|| gives
an average measure of predictability of the studied signal and is inversely
related to the signal’s entropy rate, i.e., to the rate at which the system (or
process) producing the studied signal “forgets” information about its previous
states.

There are plenty of approaches to estimate the mutual information I(x; xτ )
[30]. If we are not interested in an exact value, but rather in a relative com-
parison of values obtained from the tested data and from the surrogate set, a
simple box-counting approach based on marginal equiquantization [21, 28, 29]
is satisfactory. The latter means that the marginal boxes (bins) are not de-
fined equidistantly, but in a such a way that there is approximately the same
number of data points in each marginal bin.

2.4 Implementation of the enhanced MCSSA

We realize the enhanced MC SSA as follows:
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1. The studied time series undergoes SSA as briefly described above or in
[31], i.e., using an embedding window of length n, the n×n lag-correlation
matrix C is decomposed using the SVDCMP routine [32]. In the eigen-
spectrum, the position of each eigenvalue on the abscissa is given by the
dominant frequency associated with the related EOF, i.e., detected in the
related mode. That is, the studied time series is projected onto the partic-
ular EOF, the power spectrum of the projection (mode) is estimated, and
the frequency bin with the highest power is identified. This spectral co-
ordinate is mapped onto one of the n frequency bins, which equidistantly
divide the abscissa of the eigenspectrum.

2. An AR(1) model is fitted to the series under study, and the residuals are
computed.

3. The surrogate data are generated using the above AR(1) model, where
“scrambled” (randomly permutated in temporal order) residuals are used
as innovations, i.e., the noise term γz(i) in (9) .

4. Each realization of the surrogates undergoes SSA as described in step
1. Then, the eigenvalues for the whole surrogate set are sorted in each
frequency bin, and the values for the 2.5th and 97.5th percentiles are
found. In the eigenspectra, the 95% range of the surrogates’ eigenvalue
distribution is illustrated by a horizontal bar between the above percentile
values.

5. For each frequency bin, the eigenvalue obtained from the studied data is
compared with the range of the surrogate eigenvalues. If an eigenvalue lies
above the range given by the above percentiles, the null hypothesis of the
AR(1) process is rejected, i.e., there is a probability p < 0.05 that such an
eigenvalue as observed can emerge from the background of the null noise
model.

6. For each SSA mode (a projection of the data onto a particular EOF),
the regularity index is computed, as well as for each SSA mode for all
the realizations of surrogate data. The regularity indices are processed
and statistically tested in the same way as the eigenvalues. The regularity
index is based on mutual information obtained by a simple box-counting
approach with marginal equiquantization [21, 28, 29].

Performing MCSSA using the embedding window of the length n, there are
n eigenvalues in the eigenspectrum, and n statistical tests are done. Therefore,
in general, the problem of simultaneous statistical inference should be consid-
ered (see [21] and references therein). However, in many relevant applications
we are interested in a detection of a signal in a specific frequency band (and
not in rejecting the null hypothesis by a digression from the surrogate range
by an eigenvalue or a regularity index in any frequency band), therefore we
will not discuss this topic here.

Rejecting the null hypothesis of the AR(1) (or another appropriate) noise
model, one can infer that there is “something more” in the data than a re-
alization of the null hypothesis (noise) model. The rejection based on the
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eigenvalues indicates a different covariance structure than the noise model
used. The rejection based on the regularity index indicates that the studied
data contains a dynamically interesting signal with higher regularity and pre-
dictability than a mode obtained by linear filtration of the considered noise
model.

3 Numerical examples

3.1 A signal in AR(1) background
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Fig. 1. Numerically generated test data: (a) A periodic signal with randomly vari-
able amplitude was mixed with (b) a realization of an AR(1) process with a strong
slow component, obtaining the signal to noise ratio 1:2 (c), and 1:4 (d). Adapted
from Paluš & Novotná [31].

For an example of the application of the presented approach, let us consider
numerically generated data data – a periodic signal with randomly variable
amplitude (Fig. 1a) mixed with a realization of an AR(1) process with a strong
slow component (Fig. 1b). The used noise model is defined as xi = 0.933xi−1+
ξi, where ξi are Gaussian deviates with zero mean and unit variance. The
signal to noise ratios (i.e., the ratios of the respective standard deviations of
signal and noise component) obtained by mixing the signals were 1:2 (Fig. 1c),
and 1:4 (Fig. 1d). The latter two series are analyzed by the presented method.
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Fig. 2. The standard – eigenvalue based (a–c) and the enhanced – regularity index
based (d–f) MCSSA analysis of the numerical data, presented in Fig. 1. (a) The full
eigenspectrum and (b) the low-frequency part of the eigenspectrum – logarithms of
eigenvalues (“LOG POWER”) plotted according to the dominant frequency associ-
ated with particular modes, for the signal to noise ratio 1:2. (c) Low frequency part
of the eigenspectrum for the signal to noise ratio 1:4. (d) The regularity spectrum
and (e) its low frequency part for the signal to noise ratio 1:2. (f) Low frequency part
of the regularity spectrum for the signal to noise ratio 1:4. Bursts – eigenvalues or
regularity indices for the analysed data; bars – 95% of the surrogate eigenvalues or
regularity index distribution, i.e., the bar is drawn from the 2.5th to the 97.5th per-
centiles of the surrogate eigenvalues/regularity indices distribution. Adapted from
Paluš & Novotná [31].

The eigenspectrum of the time series consisting of the signal (Fig. 1a)
and the AR(1) noise (Fig. 1b) in the ratio 1:2 (Fig. 1c) is presented in
Fig. 2a, where logarithms of the eigenvalues are plotted as the bursts (“LOG
POWER”). The series is considered as unknown experimental data, so that
an AR(1) model is fitted on the data and the surrogates are generated as
described above. The vertical bars in the eigenspectrum represent the surro-
gate eigenvalue ranges from 2.5th to 97.5th percentiles, which were obtained
from 1500 surrogate realizations (here, as well as in the following example).
The eigenvalues of the AR(1) surrogates uniformly fill all the n frequency
bins (here, as well as in the following example, n = 100), while in the case of
the test data, some bins are empty, others contain one, two, or more eigen-
values. We plot the surrogate bars only in those positions, in which (an)
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eigenvalue(s) of the analyzed data exist(s). Note the 1/fα character of the
surrogate eigenspectrum, i.e., the eigenvalues plotted against the dominant
frequency associated with the related modes are monotonously decreasing in
a 1/fα way. The low-frequency part of the eigenspectrum from Fig. 2a is
enlarged in Fig. 2b. The two data eigenvalues related to the frequency 0.02
(cycles per time unit) are clearly outside the range of those from the sur-
rogates, i.e., they are statistically significant, the null hypothesis is rejected,
and a signal not consistent with the null hypothesis is detected. A close look
to the significant modes shows that they are related to the embedded signal
from Fig. 1a, in particular, one of the modes contains the signal together with
some noise of similar frequencies, and the other include an oscillatory mode
shifted by π/2 relatively to the former one. Note that the simple SSA based
on the mutual comparison of the data eigenvalues could be misleading, since
the AR(1) noise itself “produces” two or three eigenvalues which are larger
than the two eigenvalues related to the signal embedded in the noise.

The same analysis applied to the series possessing the signal/noise ratio
1:4 (Figs. 2c), however, fails to detect the embedded signal — all eigenvalues
obtained from the test data are well confined between the 2.5th and 97.5th
percentiles of the surrogate eigenvalues distributions. Applying the test based
on the regularity index to the mixture with the signal to noise ratio 1:2 (Figs.
2d,e), for one data eigenvalue, the regularity index has been found significantly
higher than the related surrogate indices. It was obtained from the mode re-
lated to the frequency bin 0.02, as in the case of the significant eigenvalues in
Figs. 2a, b. This is the mode which contains the embedded signal (Fig. 1a)
together with some noise of similar frequencies. The orthogonal mode, related
to the same frequency bin, which has a variance comparable to the former
one (Figs. 2a,b), has its regularity index close to the 97.5th percentile of the
surrogate regularity indices distribution. With other words, if a (nearly) peri-
odic signal is embedded in a (colored) noise background, the SSA approach,
in principle, is able to extract this signal together with some noise of neigh-
boring frequencies, and produces an orthogonal “ghost” mode which has a
comparable variance. However, its dynamical properties are closer to those
of the modes obtained from the pure noise (null model), as measured by the
regularity index (13). Nevertheless, the regularity index used as a test statis-
tic in the MCSSA manner is able to detect the embedded signal with a high
statistical significance in this case (signal:noise = 1:2), as well as in the case
of the signal to noise ratio 1:4 (Fig. 2f), when the standard (variance-based)
MCSSA failed (Fig. 2c). In the latter case, the orthogonal “ghost” mode did
not appear, and the regularity index of the signal mode was lower than in the
previous case, since the mode contains larger portion of the isospectral noise.
However, the signal mode regularity index is still safely above the surrogate
bar, i.e., significant with p < 0.05 (Fig. 2f).
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Fig. 3. Numerically generated test data: (a) The wavelet filtered signal from Fig.
1a was embedded into (b) a realization of a multifractal process, obtaining the
ratio of related wavelet coefficients 1:2 (c), and 0.5:0.5 (d). Adapted from Paluš &
Novotná [31].

3.2 A signal in multifractal background

As a more complex example we “embed” the test signal (Fig. 1a) into a real-
ization of a multifractal process (Fig. 3b) generated by a log-normal random
cascade on a wavelet dyadic tree [33] using the discrete wavelet transform [32].
Using wavelet decomposition, we embed the most significant part of the signal
(Fig. 1a) related to a particular wavelet scale – this wavelet-filtered signal is
illustrated in Fig. 3a. The mixing is done in the space of wavelet coefficients.
In the first case (in Fig. 3 referred to as “signal added to multifractal”), the
standard deviation (SD) of the signal wavelet coefficients is twice the SD of
the wavelet coefficients of the multifractal signal in the related scale (Fig. 3c),
i.e., the added signal deviates from the covariance structure of the “noise”
(multifractal) process. In the second case, we adjusted the SD of both sets
of wavelet coefficients to 50% of the SD of the wavelet coefficients of the
original multifractal signal in the associated scale (Fig. 3d), so that the total
variance in this scale (frequency band) does not exceed the corresponding vari-
ance of the “clean” multifractal. Then, it is not surprising, that the variance-
(eigenvalues)-based MCSSA test, using the AR(1) surrogate data (Fig. 4a,b),
clearly distinguishes the signal from the multifractal background in the first
case (Fig. 4a) including its orthogonal “ghosts”, while in the second case, no
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eigenvalue is outside the AR(1) surrogate range, but the slow trend mode
(Fig. 4b). The AR(1) process is unable to correctly mimic the multifractal
process - the slow mode (the zero frequency bin) scores as a significant trend
over the AR(1) surrogate range, while the variance on subsequent frequencies
is overestimated (Fig. 4a,b). On the other hand, even the AR(1) surrogate
model is able to detect the added signal in the first case (Fig. 4a). If we use
realizations of the same multifractal process as the surrogate data, the sig-
nal is detected in the first case (not presented, just compare the bursts on
frequency 0.02 in Fig. 4a and the related surrogate bar in Fig. 4c), while in
the second case, the eigenvalues-based MCSSA neglects the signal embedded
into the multifractal “noise” – all the data mixture eigenvalues (bursts) are
inside the multifractal surrogate bars (Fig. 4c). In the MCSSA tests using
the regularity index, the embedded signal is safely detected together with its
orthogonal “ghosts” and higher harmonics not only in the first case (Fig. 4d),
but also in the second case, either using AR(1) (Fig. 4e) or the multifractal
surrogate data (Fig. 4f), when it is, from the point of view of the covariance
structure, indistinguishably embedded into the multifractal process.
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Fig. 4. The low frequency parts of the MCSSA eigenspectra (a–c) and regularity
spectra (d–f) for the signal embedded into a multifractal process with wavelet coef-
ficient ratio 1:2 (a,d) and 0.5:0.5 (b,c,e,f). Bursts – eigenvalues or regularity indices
for the analysed data; bars – 95% of the surrogate eigenvalues or regularity index
distribution obtained from the AR(1) (a,b,d,e) and the multifractal (c,f) surrogate
data. Adapted from Paluš & Novotná [31].
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4 Detection of irregular oscillations in geophysical data

Temperature measurements are among the longest available instrumental data
characterizing the long term evolution of the atmosphere and climate in a par-
ticular location. For instance, the data from the Prague–Klementinum station
are available since 1775. On the other hand, large-scale circulation patterns
reflect a more global view on the atmospheric dynamics. The North Atlantic
Oscillation (NAO) is a dominant pattern of atmospheric circulation variability
in the extratropical Northern Hemisphere, accounting for about 60% of the
total sea-level pressure variance. The NAO has a strong effect on European
weather conditions, influencing meteorological variables including the temper-
ature [34]. The NAO – temperature relationship, however, is not straightfor-
ward and its mechanism is not yet fully understood.

The possible influence of the solar variability on the climate change has
been a subject of research for many years, however, there are still open ques-
tions and unsolved problems (for reviews, see e.g. [35, 36, 37]). Probably the
longest historical record of the solar variability are the well-known sunspot
numbers. After the sunspot numbers, aa index, the time series of the geomag-
netic activity provides the longest data set of solar proxies which goes back to
1868 [38]. Since there are no direct measurements of solar irradiance available
until the beginning of the 1980’s, the data of geomagnetic variations are used
for an additional study of solar activity, especially of irradiance.

It might be interesting if the atmospheric data, both the local and global,
and the geomagnetic and solar data possess any common, repeating variability
pattern such as cycles or oscillatory modes. The enhanced MCSSA can give
an answer to such a question.

4.1 The data

The NAO index is traditionally defined as the normalized pressure difference
between the Azores and Iceland. The NAO data used here and their descrip-
tion are available at http://www.cru.uea.ac.uk/cru/data/nao.htm.

Monthly average near-surface air temperature time series from ten Euro-
pean stations were used (see [31] for details), obtained from the Carbon Diox-
ide Information Analysis Center Internet server (ftp://cdiac.esd.ornl.gov/
pub/ndp041) as well as a time series from the Prague–Klementinum station
from the period 1781 – 2002. The long-term monthly averages were subtracted
from the data, so that the annual cycle was effectively filtered out.

The aa-index is defined by the average, for each 3-hour period, of the
maximum of magnetic elements from two near-antipodal mid-latitude stations
in Australia (Melbourne) and England (Greenwich). The data spanning the
period 1868–2005 were obtained from World Data Centre for Solar-Terrestrial
Physics, Chilton, http://www.ukssdc.ac.uk/data/wdcc1/wdc menu.html.
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The monthly sunspot data, spanning the period 1749–2006, has been ob-
tained from the SIDC-team, Royal Observatory of Belgium, Ringlaan 4, 1180
Brussels, Belgium, http://sidc.oma.be/DATA/monthssn.dat.

4.2 The results
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Fig. 5. Enhanced MCSSA analysis of the monthly NAO index (a,d) and monthly
average near-surface air temperature series from Prague–Klementinum (b,e) and
Berlin (c,f). Low-frequency parts of eigenspectra – logarithms of eigenvalues (“LOG
POWER”) (a,b,c) and regularity index spectra (d,e,f). Bursts – eigenvalues or reg-
ularity indices for the analysed data; bars – 95% of the surrogate eigenvalues or
regularity index distribution, i.e., the bar is drawn from the 2.5th to the 97.5th
percentiles of the surrogate eigenvalues/regularity indices distribution. The datasets
span the period 1824–2002, the embedding dimension n = 480 months was used.

Figure 5 presents the results from the enhanced MCSSA for the considered
monthly NAO index and the monthly average near-surface air temperature
time series from Prague (Prague–Klementinum station) and Berlin, obtained
using the embedding dimension n = 480 months. In the standard MCSSA,
the only eigenvalue undoubtedly distinct from the surrogate range is the trend
(zero frequency) mode in the temperature (Figs. 5b,c). Further, there are two
modes at the frequency 0.0104 just above the surrogate bar in the Prague
temperature and NAO test (Figs. 5a,b). These results, however, are still “on
the edge” of significance and are not very convincing. In the case of Berlin,
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the eigenvalues of the modes at the frequency 0.0104 are confined within the
surrogate range (Fig. 5c).

A quite different picture is obtained from the analyses based on the regu-
larity index (Figs. 5d,e,f). Several oscillatory modes have been detected with
a high statistical significance. The distinction of the regularity indices of these
modes from the related surrogate ranges is clear and even the simultaneous
statistical inference cannot jeopardize the significance of the results. The sig-
nificant modes in the NAO are located at the frequencies (in cycles per month)
0.004, 0.006, 0.0104, 0.014, 0.037 and 0.049, corresponding to the periods of
240, 160, 96, 73, 27 and 20 months, respectively. Besides the zero frequency
(trend) mode, the significant modes in the Prague temperature are located
at the frequencies 0.0104, 0.014, 0.016, 0.018, 0.025, 0.037 and 0.051, corre-
sponding to the periods of 96, 68, 64, 56, 40, 27 and 20 months, respectively.
In the case of Berlin, there are some differences, namely the modes with the
periods 20, 40, 56 and 64 months are missing, while modes with periods 23,
29 and 58 months, as well as a slow mode next to the zero frequency mode
appeared. The significant modes with the periods 27, 68 and 96 months were
detected in both the records.

The modes with a period of 8 years were extracted and analysed in [31],
their mean frequency was estimated with higher precision as 7.8 years. Besides
the latter modes (and the trend mode in the temperature), the highest regu-
larity index was obtained for the modes with a period of 27 months (frequency
0.037). This frequency lies within the range of the quasi-biennial oscillations
(QBO). The behavior of these modes was studied in some detail in [39].
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Fig. 6. Enhanced MCSSA analysis of the monthly aa index. The low-frequency
part of the eigenspectrum – logarithms of eigenvalues (“LOG POWER”) (a) and
the regularity index spectrum (b). Bursts – eigenvalues or regularity indices for the
analysed data; bars – 95% of the surrogate eigenvalues or regularity index distribu-
tion, i.e., the bar is drawn from the 2.5th to the 97.5th percentiles of the surrogate
eigenvalues/regularity indices distribution. The dataset spans the period 1868–2005,
the embedding dimension n = 480 months was used.
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The results of the enhanced MCSSA analysis of the aa index are presented
in Fig. 6. In the standard (eigenvalue) analysis (Fig. 6a), we can see significant
modes representing the trend, i.e., the zero frequency mode, and a mode
with a frequency of 0.0073 which corresponds to the period of 136 months,
i.e. to the 11-year solar activity cycle. The analysis based on the regularity
index (Fig. 6b) confirms the previous two modes and adds two more ones on
frequencies of 0.0104 and 0.016, corresponding to periods of 96 and 64 months.
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Fig. 7. The oscillatory modes with the approximately 8-year period extracted by
using SSA (a,c,e) and CCWT (b,d,f) from the near-surface air temperature (a,b),
the NAO index (c,d), and the aa index (e,f).

The mode with the period of 96 months or 8 years has been detected in
all the above analyzed data sets, i.e., in the near-surface air temperature,
the NAO index, and the geomagnetic aa index. The time series of the modes
extracted using the SSA, i.e., by projecting the input data on the particu-
lar EOF, are presented in Figs. 7a,c,e. When the modes are extracted using
SSA, there is an uncertainty of timing of the modes given by the embedding
window, and a part of the data equal to the embedding window is lost. We po-
sitioned the SSA modes on the time axis by maximizing the cross-correlation
between the mode and the original data. This approach, however, does not
always give unambiguous results. Therefore, Paluš & Novotná [39] studied the
possible relationships of the QBO modes from the temperature and NAO in-
dex not only using the SSA-extracted modes, but also using modes extracted
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from the data by means of complex continuous wavelet transform (CCWT)
[40]. Here we compare the modes with the period 96 months extracted by
SSA (Figs. 7a,c,e) with the modes obtained by using CCWT with the central
wavelet frequency set to the period of 96 months (Figs. 7b,d,f). The SSA mode
and the wavelet mode, obtained from the Prague temperature data (Fig. 7a
and Fig. 7b, respectively) are shifted by π (a half of the period), otherwise
their agreement is very good. The timing of the SSA and CCWT modes from
the NAO index (Fig. 7c and Fig. 7d, respectively) is consistent, however, the
wavelet transform performs stronger smoothing. In the aa index, the CCWT
mode is smoother and slightly shifted in time in comparison with the SSA
mode (Fig. 7f and Fig. 7e, respectively).

0 0.01 0.02 0.03 0.04 0.05

-2

0

2

4 (b)

LO
G 

PO
W

ER

ⓕ

ⓕ

ⓕ
ⓕ

ⓕ

ⓕ
ⓕ

ⓕ

ⓕⓕ
ⓕⓕ

ⓕ
ⓕⓕ

ⓕⓕ

ⓕ

ⓕ

ⓕ
ⓕⓕⓕ

ⓕⓕ

ⓕⓕ
ⓕⓕ

ⓕ
ⓕ

ⓕⓕ

ⓕⓕ

ⓕⓕ

ⓕ

ⓕⓕ

0 0.01 0.02 0.03 0.04 0.05

-2

0

2

4

0 0.01 0.02 0.03 0.04 0.05

-2

0

2

4 (a)

LO
G 

PO
W

ER

ⓕ

ⓕ

ⓕ

ⓕⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ
ⓕ

ⓕ

ⓕⓕ

ⓕ

ⓕ

ⓕ
ⓕ

ⓕ
ⓕⓕ

ⓕⓕⓕ
ⓕ

ⓕ

ⓕⓕ
ⓕⓕ

ⓕ
ⓕⓕ

ⓕⓕⓕ

ⓕⓕⓕ

ⓕⓕⓕ

0 0.01 0.02 0.03 0.04 0.05

-2

0

2

4

0 0.01 0.02 0.03 0.04 0.05

-2

0

2

4 (c)

DOMINANT FREQUENCY [CYCLES per MONTH]

LO
G 

PO
W

ER

ⓕ

ⓕ

ⓕⓕⓕⓕⓕ

ⓕⓕ

ⓕ

ⓕⓕ

ⓕⓕⓕ

ⓕ
ⓕ

ⓕ

ⓕ

ⓕ
ⓕⓕ
ⓕ
ⓕ
ⓕⓕ

ⓕ
ⓕ

ⓕⓕⓕ

ⓕ
ⓕ
ⓕⓕ

ⓕ
ⓕⓕ
ⓕⓕⓕⓕ

ⓕⓕ

ⓕ

0 0.01 0.02 0.03 0.04 0.05

-2

0

2

4

0 0.01 0.02 0.03 0.04 0.05

1

2

3

4
(d)

LO
G 

RE
GU

LA
RI

TY

ⓕ

ⓕ

ⓕ

ⓕⓕⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕⓕ

ⓕ

ⓕ

ⓕ

ⓕ
ⓕ

ⓕ

ⓕ

ⓕ
ⓕ
ⓕ
ⓕ

ⓕ

ⓕ

ⓕ

ⓕ
ⓕ

ⓕ

ⓕⓕ

ⓕ
ⓕ

ⓕ

ⓕ

ⓕ
ⓕ

ⓕ

ⓕⓕ

ⓕⓕ

ⓕ

ⓕ

ⓕ

0 0.01 0.02 0.03 0.04 0.05

1

2

3

4

Fig. 8. Enhanced MCSSA analysis of the monthly sunspot data. Low-frequency
parts of eigenspectra – logarithms of eigenvalues (“LOG POWER”) for the raw
sunspot data (a), the sunspot data after removal of the mode with the period 136
months (b), and for the sunspot data after removal of the modes with the peri-
ods 136, 120 and 106 months (c). (d): Low-frequency part of the regularity index
spectrum for the sunspot data after removal of the modes with the periods 136,
120 and 106 months. Bursts – eigenvalues or regularity indices for the analysed
data; bars – 95% of the surrogate eigenvalues or regularity index distribution, i.e.,
the bar is drawn from the 2.5th to the 97.5th percentiles of the surrogate eigen-
values/regularity indices distribution. The dataset spans the period 1749–2006, the
embedding dimension n = 480 months was used.
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Analyzing the monthly sunspot data, the only clear significance in both
the eigenspectrum (Fig. 8a) and the regularity index spectrum is the mode
with a period of 136 months. The long-term trend at the zero-frequency mode
lies at the edge of significance (Fig. 8a). After removal of the 136 month mode
and subsequent analysis of the data residuals, the zero frequency mode be-
comes highly significant and another slow mode, with a period about 80 years
emerges. Two new significant modes, related to the 11-year solar cycle appear
on the frequency bins following the frequency bin of the previously defined
mode with the period 136 months. Their periods are 120 and 106 months
(Fig. 8b). After removal of all three modes (i.e., the modes with the periods
136, 120 and 106 months) which can be considered as a decomposition of
the 11-year cycle, the standard MCSSA analysis of the sunspot data residuals
uncovers another interesting oscillatory mode in the frequency bin correspond-
ing to a period of 7.4 years (Fig. 8b). The enhanced MCSSA analysis of the
sunspot data residuals confirms all the modes from the standard MCSSA (zero
frequency and period 80 and 7.4 years) and adds two new significant modes
with the periods of 43.5 and 26 months (Fig. 8d).
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Fig. 9. Histograms of the instantaneous frequencies of the 7.8 yr temperature mode
(a) and the 7.4 yr sunspot mode (b). The thin vertical lines mark the frequencies
corresponding to the period of 8 and 7 years, reading from the left to the right side.

It is important to note that the frequency or period accuracy of the SSA
approach is limited by the number of frequency bins given by the embedding
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dimension. The accuracy of the frequency (or the period) of a particular mode
can be increased after the extraction of this mode from the original data and
its subsequent spectral or autocorrelation analysis, as Paluš & Novotná [22, 31]
have done for the temperature mode. On the other hand, oscillatory modes
from natural processes are never strictly periodic and their frequency is vari-
able. We illustrate this variability by presenting histograms of instantaneous
frequencies of the two close modes – the mode with the period 7.8 yr from
the Prague temperature (Fig. 9a), and the period 7.4 yr mode obtained from
the sunspot data residuals after modes related to the 11 yr cycle have been
previously removed (Fig. 9b). The instantaneous frequencies were obtained
by differentiation of the instantaneous phases [41, 42]. The latter can easily
be computed by applying the analytic signal approach to the two orthogonal
(shifted by π/2) components of each oscillatory mode, see Refs. [39, 43] for
details. Thus the presented histograms are not necessarily equivalent to the
power (Fourier) spectra, but they better reflect possibly nonstationary fluc-
tuations of the frequencies of the modes. We can see that the most probable
period of the sunspot mode is 7.4 years, with the slight tendency to higher
frequencies (Fig. 9b), while in the case of the temperature mode, the most
probable period is 7.8 years, with considerable weight on slower frequencies
(Fig. 9a). There is, however, a great deal of common frequencies of the two
modes, giving thus the possibility of interactions during some time intervals.

Considering both the available accuracy and the natural variability of the
frequency of the detected oscillatory modes, the periods given here should
be understood as limited accuracy estimates of average periods of particular
modes.

The common occurrence of the oscillatory modes with the periods of ap-
proximately 11, 5.5, and 2.2 years and in the range 7 – 8 years in the sunspot
numbers, the aa index, the near-surface air temperature and the NAO index
is summarized in Tab. 1.

Source Period [years]
data ≈ 11 7 – 8 ≈ 5.5 ≈ 2.2

sunspots + + – +
aa + + + –
T – + + +

NAO – + – +

Table 1. Occurrence of the most significant oscillatory modes with periods of ap-
proximately 11, 7 – 8, 5.5 and 2.2 years in the sunspot numbers, the aa index, the
average near-surface air temperature and the NAO index.
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Fig. 10. The oscillatory mode with the approximately 7.4 yr period obtained from
the sunspot data residuals after previously removed modes related to the 11 yr
cycle, extracted by using SSA (a) and CCWT with the central wavelet frequency
corresponding to periods 8 yr (b) and 7.4 yr (c).

We can see that the modes with a period in the range 7 – 8 years have been
detected in all the analysed datasets. These modes, obtained from the near-
surface air temperature, from the NAO index and the geomagnetic aa index
have already been presented in Fig. 7, the related modes from the sunspot
data are illustrated in Fig. 10. Again, we can compare the mode extracted
by SSA in the natural EOF base (Fig. 10a) with the modes obtained by
CCWT with the Morlet basis [40], using two close central wavelet frequencies
corresponding to the periods 8 yr (Fig. 10b) and 7.4 yr (Fig. 10c). We can see
that the wavelet extracted modes have a more limited frequency range and
the wavelets with different central frequency are able to better fit the mode
shapes in different temporal segments dominated by different frequencies.

5 Discussion and Conclusion

The Monte Carlo Singular System Analysis has been extended by evaluat-
ing and testing the regularity of the dynamics of the SSA modes against
the colored noise null hypothesis in addition to the test based on variance
(eigenvalues). The nonlinear approach to the measurement of regularity and
predictability of the dynamics, based on a coarse-grained estimate of the mu-
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tual information, gives a possibility to detect dynamical modes which are
more regular than those obtained by decomposition of colored noise. Using
numerical examples, we have demonstrated that such an enhanced MCSSA
test is more sensitive in detection of oscillatory modes hidden in a noisy back-
ground. There are, however, some facts about accuracy and consistency of
the results which should not be neglected. Already in the previous section,
we have discussed the accuracy of the estimation of the period of detected
oscillatory modes. We have stated that we are only able to provide a limited
accuracy estimate of an average period or frequency, since the frequency of
oscillatory modes in the studied natural phenomena is variable. One should
keep this fact in mind in comparisons of results found in the literature. Not
only frequency, but also the relative variance and the regularity of the oscilla-
tory modes is variable. Due to this nonstationary behaviour, any conclusion
about the existence and significance of a mode is dependent on the temporal
range of analysed data. Obtained eigenvalues and regularity indices give an
average quantification of the relative variance and regularity, respectively, for
the analysed time span of the data. It is possible that in some data segments,
the results can change. Thus it is reasonable to combine the MCSSA analysis
with a wavelet analysis, using the latter one as an exploratory tool and the
former one as a hypothesis testing tool.

Another important question is that of the relevance of the used null hy-
pothesis. While in many cases the simple AR(1) process seems to work satis-
factorily, for instance, in the case of the sunspot numbers, it is not generally
appropriate. In this case, the AR(1) process does not fit the long-range de-
pendence in the data, but the short-range correlation inside the 11yr cycle. As
a consequence, the covariance structures of the data and the null noise model
are not consistent (see Figs. 8a, b, c where the surrogate bars overestimate
the data eigenvalues). The situation is improved after removal of the modes
related to the 11yr cycle, and especially, in the case of the regularity test,
the null hypothesis seems to be consistent with the noise part of the data
(Fig. 8d). In the further development of the MCSSA, it is desirable to con-
sider also more sophisticated null hypotheses including long-range correlated,
fractal and multifractal models, since such properties have been observed in
geophysical data, especially in the long-term air temperature records [44, 45].

The enhanced MCSSA has been applied to records of monthly average
near-surface air temperature from several European locations, to the monthly
NAO index, as well as to the monthly aa index and the sunspot numbers. A
number of significant oscillatory modes have been detected in all the different
source data, some of them with common periods (Tab. 1). While the 11yr
solar cycle is shared by the solar and geomagnetic data, the quasi-biennial
mode is present in the atmospheric data and also in the solar data. The mode
with the period in the range 7 – 8 years is present in all the analysed data,
i.e., in the atmospheric temperatures, in the NAO index, in the aa index and
in the sunspot numbers.
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It is interesting to note that the oscillatory mode with a period of 7.8
years has been detected in the NAO, in the Arctic Oscillation (AO), in the
Uppsala winter near-surface air temperature, as well as in the Baltic Sea
ice annual maximum extent by Jevrejeva and Moore [46]. Applying MCSAA
on the winter NAO index, Gámiz-Fortis et al. [47] detected oscillations with
the period 7.7 years. Moron et al. [48] have observed oscillatory modes with
the period about 7.5 years in the global sea surface temperatures. Da Costa
and de Verdiere [49] have detected oscillations with the period 7.7 years in
interactions of the sea surface temperature and the sea level pressure. Unal
and Ghil [50] and Jevrejeva et al. [51] observed oscillations with periods 7 – 8.5
years in a number of sea level records. Feliks and Ghil [52] report the significant
oscillatory mode with the 7.8 year period in the Nile River record, Jerusalem
precipitation, tree rings and in the NAO index. Our first application of the
enhanced MCSSA [22] yielded the observation of the mode with the period
7.8 years in near-surface air temperature from several European locations.
Recently, the enhanced MCSSA analyses of the temperature data were refined
and the analysis of the NAO index was added [31]. In the present work the
number of processes containing the oscillatory mode with the period in the
range 7 – 8 years was extended by the geomagnetic activity aa index and the
sunspot numbers.

These findings give a solid basis for further research of relations among
the dynamics reflected in the analysed data and thus between the solar and
geomagnetic activity and the climate variability. The existence of oscillatory
modes open the possibility to apply the recently developed synchronization
analysis [53, 54] which already has found successful applications in studies of
relations between atmospheric phenomena. Maraun & Kurths [55] discovered
epochs of phase coherence between El Niño/Southern Oscillation and Indian
monsoon, while Paluš & Novotná [39] demonstrated phase synchronization or
phase coherence between the above mentioned QBO modes extracted from the
temperature and the NAO index. The analysis of instantaneous phases of oscil-
latory processes allows to detect very weak interactions [53] and also causality
relations if one oscillatory process drives the other one [56, 57]. In such analy-
sis, Mokhov & Smirnov [58] have demonstrated that the NAO interacts with
(or is influenced by) the other main global atmospheric oscillatory process –
the El Niño Southern Oscillation. We believe that the synchronization analy-
sis will help uncovering the mechanisms of the tropospheric responses to the
solar and geomagnetic activity and contribute to a better understanding of
the solar-terrestrial relations and their role in climate change.
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24 M. Paluš and D. Novotná
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