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a b s t r a c t

This paper focuses on a dynamical model for the motion of a visco-elasto-plastic body in
contact with an elasto-plastic obstacle. The elastoplastic constitutive laws as well as the
contact boundary condition are stated in terms of hysteresis operators. Under appropriate
regularity assumptions on the initial data, we show that the resulting partial differential
equation with hysteresis possesses a unique solution which is constructed by Galerkin
approximations and the Minty trick. In the 1D case, the existence and uniqueness proof
can be carried out without the viscosity assumption, and the necessary a priori estimates
are derived from a hysteresis second order energy inequality.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

This paper aims to give some new mathematical results on existence and uniqueness for dynamic (visco)-elasto-plastic
contact problems. The situations involving contact abound in industry, especially in engines or transmissions. For this reason
a considerable engineering and mathematical literature deals with dynamic and quasi-static frictional contact problems.
Note that the quasi-static contact problems arise when the forces applied to the system vary slowly in time and so that
the accelerations are negligible. The first existence result was obtained for a quasi-static elasto-plastic frictionless contact
problem in [12]. The author uses a Yosida regularizationwhich leads to smooth systems and he shows that a priori estimates
stay uniform in the regularization parameter. A time semi-discretizationmethod for solving the variational inequality in the
quasi-static frictional problemwith normal compliance was successfully used in [3], the reader is also referred to [5,13] and
the references therein. Note that the normal compliance may be considered as regularization of the usual, idealized, contact
conditions, as was explained in [20]. The finite dimensional dynamic problem with friction and persistent contact has been
solved via the theory of differential inclusions in [18]. Notice that contact problems with nonlinear viscoelastic or elasto-
plastic materials were intensively studied in [24,2,21,22,1,23]. Finally, the uniqueness of the solution of contact problems
in linearized elasto-statics with small Coulomb friction is discussed in [4]. Concerning the dynamic contact problems for
(visco)-elasto-plastic bodies with friction, the mathematical problem is typically stated as a variational inequality in a
Sobolev space, and the existence of solutions is established by a sophisticated choice of penalty method, see e.g. [10,11],
and, in particular, the comprehensive monograph [8].

In this paper, we propose a completely different approach to dynamic contact problems. It is based on the theory of
hysteresis operators. As an example, we consider the motion of a (visco)-elasto-plastic body in contact with an elasto-plastic
obstacle. In particular, we are interested in the situation that the body penetrates into the obstacle as on Fig. 1. We derive
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Fig. 1. Remanent deformation of an elasto-plastic obstacle.

a mathematical model valid in any dimension d ≥ 1 and prove existence and uniqueness results under the condition that
the moving body is visco-elasto-plastic with a constant positive viscosity coefficient. For d = 1, existence and uniqueness
are obtained even if viscosity is absent, provided the contact condition is more regular.

The proofs rely substantially on the idea to solve the constitutive variational inequality as well as the (quasi)-variational
inequality on the contact surface separately from the equation of motion, and to derive as much as possible information
about the associated input–output operators. They are in fact hysteresis operatorswith very convenient analytical properties
(Lipschitz continuity in suitable function spaces, monotonicity, first and second order energy inequalities). The momentum
balance then is stated as a partial differential equation with hysteresis operators, which can be solved by conventional
methods like Galerkin approximations and the Minty trick.

The paper is organized as follows. In Section 2, we present the mathematical models and we show the connection to
hysteresis operators as solution operators of the underlying (quasi)-variational inequalities. Section 3 is devoted to proving
existence and uniqueness results for the visco-elasto-plastic case. In Section 4, we treat the 1D case without viscosity and
show how the hysteresis second order energy inequalities can be exploited for the existence and uniqueness proof.

2. Description of the model

Our aim here is to model the dynamic behavior of a visco-elasto-plastic body in contact with an elasto-plastic obstacle.
On the contact surface, we observe remanent plastic deformations as on Figs. 1 and 2. The body itself, represented by a
bounded Lipschitzian domainΩ ⊂ Rd, d ≥ 1, is assumed to obey the constitutive relation

σ
def
= P [ε] + νεt (2.1)

between the strain tensor ε def
={εij} and stress tensor σ def

={σij} in the space of symmetric tensors Td×d
s , where P is a

constitutive operator of elasto-plasticity satisfying the hypotheses of Section 3.1 below, ν ≥ 0 is a constant viscosity
coefficient (·)t

def
=

∂
∂t (·). Typically, we have in mind the Prandtl–Reuss model characterized by the following variational

inequalityσ
p(t) ∈ K for all t ∈ [0, T ],
σ p(0) = ProjK (Aε(0)),
(εt(t)− A−1σ

p
t (t)) : (σ p(t)− y) ≥ 0 a.e. for all y ∈ K ,

(2.2)

where K ⊂ Td×d
s is a convex closed admissible stress domain containing the origin, A def

={aijkl} is a constant elasticity matrix,
which is symmetric and positive definite with respect to the canonical scalar product ‘‘:’’ in Td×d

s and ProjK denotes the

projection onto a convex set K . Recall that this scalar product is defined as σ : ε
def
= tr(σ Tε) for σ , ε ∈ Td×d

s , and the corre-

sponding norm is given by |σ |
2 def
= σ : σ . Here, (·)T denotes the transpose of the tensor, and tr(·) is the trace of thematrix (·).

A unique solution σ p
∈ W1,1(0, T ; Td×d

s ) to (2.2) exists for every ε ∈ W1,1(0, T ; Td×d
s ). We now define the operator P0

as the solution operator P0[ε]
def
= σ p. The extension of P0 to a continuous operator P : C0([0, T ]; Td×d

s ) → C0([0, T ]; Td×d
s )

if K has nonempty interior, is established in [15]. A canonical representative of the operator P in (2.1) is the elasto-plastic
constitutive law with linear kinematic hardening

P [ε] = P0[ε] + Bε (2.3)

with a constant symmetric positive semidefinite matrix B. If the viscosity coefficient ν is positive, we allow also B = 0, that
is, no hardening.
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Fig. 2. (a) Referential state. (b) Deformation under the effect of normal and tangential load.

Let u def
={ui} be the displacement vector. We assume small deformations, that is, ε def

= ∇su
def
=

1
2 (∇u + ∇uT) ∈ Td×d

s . Let
ρ > 0 be a constant mass density. The equation of motion in variational form reads as follows

∀φ ∈ W1,2(Ω; Rd) :


Ω

(ρuttφ + σ : ∇sφ) dx =


∂Ω

(σn) · φ dS, (2.4)

where n def
={ni} is the unit outward normal vector.

The main issue is to prescribe the boundary conditions. We assume that the boundary ∂Ω is divided into two nonin-
tersecting parts ΓC (contact surface) and ΓE (surface subject to external load). Furthermore, the boundary ΓC is flat in the
reference state, and

ΓC ⊂ {xd = 0} and Ω ⊂ {xd > 0}. (2.5)

We require

(σn)i
def
=


j

σijnj = −pi(t) on ΓE and (σn)i = −fi[u] on ΓC . (2.6)

Here, p is a given time dependent external force, and f def
={fi} is a boundary contact operator satisfying the energy inequality

f [u] · ut − (e[u])t ≥ 0 (2.7)

with a potential e[u] ≥ 0. The corresponding mathematical problem for the unknown function u is stated as a partial dif-
ferential equation of the form

∀φ ∈ W1,2(Ω; Rd) :


Ω

(ρuttφ + (P [∇su] + ν∇sut) : ∇sφ) dx = −


ΓC

f [u] · φ dS −


ΓE

p · φ dS, (2.8)

with operators P and f that we describe below. We couple (2.8) with initial conditions

u(x, 0) = u0(x) and ut(x, 0) = v0(x) (2.9)

where u0 and v0 are given data.
Let us start with describing the boundary contact operator f on ΓC . We decompose the normal stress vector σ̄ def

= σn
into the sum σ̄ = σ̄N + σ̄T of a normal component σ̄N

def
= σNn, where we denote σN

def
= σ̄ · n, and a tangential component

σ̄T
def
= σ̄− σ̄N orthogonal to n. Similarly, the displacement u is decomposed into the orthogonal sum u = uNn+uT of a normal

component uNn and a tangential component uT . On ΓC , we have n = (0, . . . , 0,−1), σN = σdd, uN = −ud, and, omitting
the last vanishing component, we can write

σ̄T =


−σ1d
. . .

−σ(d−1)d


and uT =

 u1
. . .
ud−1


.

Our aim is to model the following phenomena:

(a) The obstacle touching the body Ω at ΓC is elasto-plastic. We assume that initially at time t = 0, the obstacle is at the
referential unperturbed state, that is, contact takes place if uN ≥ 0 and does not take place if uN < 0.

(b) As a result of remanent plastic deformation in the normal direction, the next contact may occur for some positive value
of uN .

(c) If no contact takes place, we have σN = σ̄T = 0.
(d) In case of contact, there exists a bounded admissible domain K(σN) ⊂ Rd−1 for tangential stresses σ̄T . For large normal

stresses σN , the domain is larger, and it reduces to {0} if σN = 0.
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(e) If σ̄T is in the interior of K(σN), the contact is elastic in the tangential direction. If σ̄T attains the boundary of K(σN),
sliding in the tangential direction takes place (cf. Fig. 2).

Mathematically, this can be achieved in the following way. Let b > a > 0 and c > 0 be given numbers, and let S be for
any input function v ∈ W1,1(0, T ) the solution operatorw = S[v] of the variational inequality

w(t)− av(t) ≤ c for every t ∈ [0, T ],
w(0) = min{av(0)+ c, bv(0)},
(bvt(t)− wt(t))(w(t)− av(t)− z) ≥ 0 a.e. for every z ≤ c.

(2.10)

Let us mention a classical Lipschitz continuity result related to (2.10) that goes back to [15], namely that the operator S can
be extended to the space C0([0, T ]) of continuous functions endowed with seminorms

|u|[0,t] = max{|u(s)| : s ∈ [0, t]}, (2.11)

and that it is Lipschitz continuous in the sense

|w1 − w2|(t) ≤ L1 |v1 − v2|[0,t] , (2.12)

for every v1, v2 ∈ C0([0, T ]) and every t ∈ [0, T ] with a constant L1 > 0.
We give here a simple alternative proof of this fact in the following more general form. For a closed interval [α, β] ⊂ R,

we denote by Q[α,β] the projection of R onto [α, β], that is,

Q[α,β](z) = min{β,max{α, z}} for z ∈ R. (2.13)

Lemma 2.1. Let α, β, u ∈ W1,1(0, T ) be given functions, α(t) ≤ β(t) for all t ∈ [0, T ]. Then there exists a unique solution
ξ ∈ W1,1(0, T ) of the variational inequalityu(t)− ξ(t) ∈ [α(t), β(t)] for every t ∈ [0, T ],

ξ(0) = u(0)− Q[α(0),β(0)](u(0)),
ξt(t)(u(t)− ξ(t)− z) ≥ 0 a.e. for every z ∈ [α(t), β(t)].

(2.14)

Moreover, if αi, βi, ui ∈ W1,1(0, T ), i = 1, 2 are arbitrary input data, then the corresponding solutions satisfy for all τ ∈ [0, T ]

the inequality

|ξ1(τ )− ξ2(τ )| ≤ |u1 − u2|[0,τ ] + max{|α1 − α2|[0,τ ] , |β1 − β2|[0,τ ]}. (2.15)

Proof. The existence result goes back to [19]. To prove (2.15) (which implies uniqueness),we fix τ ∈ [0, T ], and for t ∈ [0, τ ]
define the function

V (t) = max{|ξ1(t)− ξ2(t)|2, (|u1 − u2|[0,τ ] + max{|α1 − α2|[0,τ ] , |β1 − β2|[0,τ ]})
2
}.

We have |ξ1(0)− ξ2(0)| ≤ |u1(0)− u2(0)| + max{|α1(0)− α2(0)|, |β1(0)− β2(0)|}. The statement will thus be proved if
we check that Vt(t) ≤ 0 a.e. Assume that this is not the case, and that there exists a Lebesgue point t ∈ (0, τ ) of the first
derivatives of all functions appearing in (2.15) such that Vt(t) > 0. Then, interchanging possibly the indices, we have

ξ1(t)− ξ2(t) > |u1 − u2|[0,τ ] + max{|α1 − α2|[0,τ ] , |β1 − β2|[0,τ ]}, (2.16)

ξ1,t(t)− ξ2,t(t) > 0. (2.17)

Hence, we necessarily have ξ1,t(t) > 0 or ξ2,t(t) < 0. In the former case, we obtain from (2.14) that

u1(t)− ξ1(t)− Q[α1(t),β1(t)](u2(t)− ξ2(t)) ≥ 0,

hence,

ξ1(t)− ξ2(t) ≤ u1(t)− u2(t)+

u2(t)− ξ2(t)− Q[α1(t),β1(t)](u2(t)− ξ2(t))


. (2.18)

It is easy to see that for z ∈ [α′, β ′
], we have

|z − Q[α,β](z)| ≤ max{|α − α′
|, |β − β ′

|}.

We conclude from (2.18) that

ξ1(t)− ξ2(t) ≤ |u1(t)− u2(t)| + max{|α1(t)− α2(t)|, |β1(t)− β2(t)|},

which contradicts (2.16). Hence, V is nonincreasing, and the assertion of Lemma 2.1 holds. The other case ξ2,t(t) < 0 is fully
symmetric and we argue in a similar way. �
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Fig. 3. Normal deformation of the obstacle.

Variational inequality (2.10) is indeed of the form (2.14), if we put u(t) = (b − a)v(t), ξ(t) = bv(t) − w(t), β(t) =

c, α(t) = −Rwith R > (b − a) |v|[0,T ]. We thus obtain (2.12) with L1 = 2b − a.

Let w+ denote the positive part of w ∈ R, that is, w+ def
= max{w, 0}. We claim that the normal components behave as

described in the above items (a)–(b) provided we define

σN
def
=(S[uN ])+. (2.19)

Let the body touch at some time t1 the obstacle for some value u1
N ≥ 0 of the normal displacement uN , see Fig. 3, and let it

continue increasing. The response of the obstacle is first elastic with slope b, but if uN(t) attains the yield limit, σN(t) follows
the irreversible pathwith slope a (that is, plastic with kinematic hardening) till some value σN(t2) corresponding to an input
value u2

N = uN(t2). Let now uN(t) start decreasing after t2. Then σN(t) follows the reversible elastic path with slope b until
reaching the value u3

N , which represents a remanent deformation of the obstacle. In the next cycle, contact between the body
and the obstacle is only established at the larger value u3

N of the normal displacement.

This can easily be seen if we examine more closely the variational inequality (2.10). Put v def
= uN and w def

= S[v]. At time
t = t2, we havew(t2)− av(t2) = c andw(t2) = b(v(t2)− u3

N). We claim that

d
dt
(w(t)− b(v(t)− u3

N))
+

≤ 0 (2.20)

for almost every t > t2. Indeed, by virtue of (2.10), we have wt(t) − bvt(t) ≤ 0 almost everywhere, and (2.20) follows. In
particular, (w(t)− b(v(t)− u3

N))
+

≤ (w(t2)− b(v(t2)− u3
N))

+
= 0 for t > t2, hence σN(t) = (w(t))+ = 0 if v(t) ≤ u3

N for
t ≥ t2. In particular, repeating the argument with t2 = 0 and u3

N = 0, we have the inequalityw(t) ≤ bv(t), which implies

uN(t) ≤ 0 H⇒ σN(t) = 0 (2.21)
for all t ∈ [0, T ].

The tangential ‘‘flow rule’’ in the case d > 1 is defined similarly. We consider the variational inequalityW (t) ∈ K(r(t)) for all t ∈ [0, T ],
W (0) = ProjK(r(0))(µV (0)),
(µVt(t)− Wt(t)) · (W (t)− Z) ≥ 0 a.e. for all Z ∈ K(r(t)),

(2.22)

in Rd−1 with a moving convex closed constraint K(r) depending on a scalar function r ∈ C0([0, T ]), with input V ∈ W1,1

(0, T ; Rd−1) and outputW . The parameterµ is assumed constant and represents the shear modulus of the obstacle. Further-
more, ProjK(r(0)) is the orthogonal projection ofRd−1 onto K(r(0)). LetQ denote the solution operatorW def

= Q[V , r] of (2.22).
Assuming e.g.

K(r) def=[−γ1(r), γ1(r)] × · · · × [−γd−1(r), γd−1(r)] (2.23)
with bounded Lipschitz continuous nondecreasing functions γi vanishing for r ≤ 0, we can apply Lemma 2.1 component-
wise and check that the operator Q admits an extension to the space C0([0, T ]; Rd−1) of continuous functions and that it is
Lipschitz continuous in the sense

|Q(V1, r1)− Q(V2, r2)|(t) ≤ L2(|V1 − V2|[0,t] + |r1 − r2|[0,t]) (2.24)
for every t ∈ [0, T ], with a constant L2 > 0. In fact, inequality (2.24) holds whenever K(r(t)) is a polyhedron with constant
normal vectors and moving facets, see [17], but does not hold for general geometries, e.g. balls, see [15,16].

We now define the operators fi, i = 1, . . . , d, in (2.6) as

fd[u]
def
= −S[−ud]

+ and

 f1[u]
. . .

fd−1[u]


def
= Q

 u1
. . .
ud−1


, |fd[u]|


, (2.25)

and we see that the behavior indicated in items (c)–(e) above is well reproduced.
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It remains to construct the potential e[u] such that the energy inequality (2.7) holds. This is easy for the first two com-
ponents. Directly from (2.22) we obtain (µVt − Wt)W ≥ 0, hence

Q

 u1
. . .
ud−1


, |fd[u]|

 u1,t
. . .

ud−1,t


−

1
2µ

d
dt

Q
 u1

. . .
ud−1


, |fd[u]|


2

≥ 0.

For the last component, we first notice that fd[u]ud,t = S[uN ]
+(uN)t . Set for simplicity v def

= uN , w
def
= S[v], and consider

σN
def
= g(w) with a nondecreasing function g . Indeed, this is in agreement with (2.19) if we choose g(w) = w+. As a conse-

quence of (2.10), we have (bvt − wt)(w − av) ≥ 0, which we rewrite as

(bvt − wt)


w −

a
b − a

(bv − w)


≥ 0.

Since g is nondecreasing, we obtain

(bvt − wt)


g(w)− g


a

b − a
(bv − w)


≥ 0. (2.26)

Put G(s) def=
 s
0 g(z) dz. Then (2.26) can be written as

vtg(w)−
1
b

d
dt


G(w)+

b − a
a

G


a

b − a
(bv − w)


≥ 0. (2.27)

Hence, for g(w) = w+, inequality (2.7) holds for the following choice

e[u] =
1
2µ

Q
 u1

. . .
ud−1


, |fd[u]|


2

+
1
2b
(S[uN ]

+)2 +
a

2b(b − a)


(buN − S[uN ])+

2
.

3. Existence and uniqueness results

We state and prove here existence and uniqueness results for the equation (2.8) for the viscous problem ν > 0. The case
ν = 0 and d = 1 without viscosity will be considered in Section 4.

3.1. Mathematical hypotheses

We consider general operators f andP in (2.8) with analytical properties specified below. Themodel derived in Section 2
is only a special case. In particular, multiyield plasticity and more complex hysteresis branching can be included.

(A1) The operator f : C0([0, T ]; Rd) → C0([0, T ]; Rd) is Lipschitz continuous in the following sense

|f [u1] − f [u2]|(t) ≤ Lf |u1 − u2|[0,t] (3.1)

with a constant Lf > 0 for every t ∈ [0, T ] and every u1, u2 ∈ C0([0, T ]; Rd).
(A2) The operator P : W1,1(0, T ; Td×d

s ) → C0([0, T ]; Td×d
s ) is Lipschitz continuous in the following sense

|P [ε1](t)− P [ε2](t)| ≤ LP

 t

0
|ε1,t(τ )− ε2,t(τ )| dτ + |ε1(0)− ε2(0)|


(3.2)

with a constant LP > 0 for every t ∈ (0, T ) and every input ε1, ε2 ∈ W1,1(0, T ; Td×d
s ).

(A3) There exist two potential energy operators V : W1,1(0, T ; Td×d
s ) → W1,1(0, T ; R+) and e : W1,1(0, T ; Rd) → W1,1

(0, T ; R+), where R+

def
=[0,∞), such that

V[ε](t) ≥ c0|P [ε](t)|2, V[ε](0) ≤ c1|ε(0)|2 and e[u](0) ≤ c1|u(0)|2,

with constants c0, c1 > 0, and the inequality (2.7) together with

P [ε](t)εt(t)−
d
dt

V[ε](t) ≥ 0 (3.3)

hold for almost every t ∈ (0, T ) and for arbitrary inputs u ∈ W1,1(0, T ; Rd) and ε ∈ W1,1(0, T ; Td×d
s ).
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(A4) The operator P is monotone in the sense that there exists a mapping V : W1,1(0, T ; Td×d
s ) × W1,1(0, T ; Td×d

s ) →

W1,1(0, T ; R+) such that for all ε1, ε2 ∈ W1,1(0, T ; Td×d
s )we have

(P [ε1](t)− P [ε2](t)) : (ε1,t(t)− ε2,t(t)) ≥
d
dt
V[ε1, ε2](t) a.e., (3.4)

with the upper boundV[ε1, ε2](0) ≤ c1|ε1(0)− ε2(0)|2. (3.5)

We now check that the operator P defined in (2.3) has the above properties. By (2.2), we have

(ε1,t − ε2,t) : (P0[ε1] − P0[ε2]) ≥
1
2

d
dt

A−1(P0[ε1] − P0[ε2]) : (P0[ε1] − P0[ε2]),

hence

(ε1,t − ε2,t) : (P [ε1] − P [ε2]) ≥
1
2

d
dt


A−1(P0[ε1] − P0[ε2]) : (P0[ε1] − P0[ε2])+ B(ε1 − ε2) : (ε1 − ε2)


,

and Assumptions (A2)–(A4) easily follow. Operators P from the Prandtl–Ishlinskii class also satisfy the hypotheses, see [9].
Wemay infer from (A1) and (A2) that the initial values of the operatorsP and f can be represented bymappingsf : Rd

→ Rd

and P : Td×d
s → Td×d

s in the sense that P [ε](0) = P (ε(0)), f [u](0) =f (u(0)) for all time dependent inputs ε, u, and that
these functions satisfy the Lipschitz conditions

|f (u1(0))−f (u2(0))| ≤ Lf |u1(0)− u2(0)|, (3.6)

and

|P (ε1(0))− P (ε2(0))| ≤ LP |ε1(0)− ε2(0)|. (3.7)

As usual, Korn’s inequality will play a role in the mathematical analysis developed below. We have assumed that ∂Ω is
smooth enough, so we have

∃cKorn > 0, ∀u ∈ W1,2
0 (Ω) : ∥ε(u)∥2

L2(Ω) ≥ cKorn∥u∥2
W1,2(Ω)

, (3.8)

for further details on Korn’s inequality, the reader is referred to [14,7].

3.2. General existence and uniqueness theorem

For simplicity, we denote here and in the sequel Qt = Ω × (0, t) for t ∈ [0, T ].

Theorem 3.1. Let d ≥ 1, ν > 0, and assume that Hypotheses (A1)–(A4) hold. Let p ∈ L2(0, T ;ΓE), and initial conditions
u0

∈ W1,2(Ω; Rd) and v0 ∈ L2(Ω; Rd) be given. Then there exists a unique u ∈ L2(QT ; Rd) such that ∇sut ∈ L2(QT ; Td×d
s ), utt ∈

L2(0, T ;W−1,2(Ω; Rd)), and satisfying (2.8) with initial conditions (2.9) almost everywhere.

Proof. We construct approximate solutions by Galerkin approximations. Let {ωk}k∈N be the complete system of eigenfunc-
tions ωk ∈ W1,2(Ω; Rd), orthonormal in L2(Ω; Rd), of the problem

∀φ ∈ W1,2(Ω; Rd) :


Ω

∇sωk : ∇sφ dx = λk


Ω

ωk · φ dx. (3.9)

We have indeed λ0 = 0 and λk > 0 for all k > 0. For a given integerm > 0, we consider the approximation for u of the form

u(m)(x, t) def=

m
k=0

uk(t)ωk(x) (3.10)

with functions uk ∈ W2,2(0, T ) satisfying the system
Ω


ρu(m)tt · ωk +


P [∇su(m)] + ν∇su

(m)
t


: ∇sωk

dx = −


ΓC

f [u(m)] · ωk dS −


ΓE

p · ωk dS (3.11)

for every eigenfunction ωk, k = 0, 1, . . . ,m. This can be rewritten as

ρuk,tt(t)+ νλkuk,t +


Ω

P [∇su(m)] : ∇sωk dx = −


ΓC

f [u(m)] · ωk dS −


ΓE

p · ωk dS (3.12)
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for every k = 0, 1, . . . ,m, with initial conditions given by

uk(0) =


Ω

u0
· ωk dx and uk,t(0) =


Ω

v0 · ωk dx. (3.13)

This is a system of ordinary differential equations with a Lipschitz continuous right hand side, hence it admits a unique
solution on [0, T ] for everym ∈ N.

We test (3.11) by uk,t and sum over kwhich yields
Ω


ρu(m)tt · u(m)t +


P [∇su(m)] + ν∇su

(m)
t


: ∇su
(m)
t

dx +


ΓC

f [u(m)] · u(m)t dS = −


ΓE

p · u(m)t dS. (3.14)

Using (3.3) and (2.7) into (3.14), we obtain

1
2

d
dt


Ω


ρ|u(m)t |

2
+ V[∇su(m)]


dx +


ΓC

e[u(m)] dS


+ ν


Ω

|∇su
(m)
t |

2 dx ≤ −


ΓE

p · u(m)t dS. (3.15)

For v = u(m)t , Korn’s inequality (3.8) and the trace embedding inequality imply that there exists C1 > 0 such that
∂Ω

|v|2 dS ≤ C1


Ω


|v|2 + |∇sv|

2 dx. (3.16)

Hence, (3.15) yields a uniform bounds independent of m for u(m)t in L∞(0, T ; L2(Ω; Rd)), for P [∇su(m)] in L∞(0, T ; L2

(Ω; Td×d
s )), and for∇su

(m)
t in L2(QT ; Td×d

s ). By comparison, we obtain from (3.11) a bound for u(m)tt independent ofm in L2(0,
T ;W−1,2(Ω; Rd)).

We now let m tend to +∞, and denote by the symbol⇀ the weak convergence, by
∗

⇀ the weak-* convergence, and by
→ the strong convergence. Selecting a subsequence if necessary, still indexed by m, we find elements u ∈ L2(QT ; Rd) with
∇sut ∈ L2(QT ; Td×d

s ), utt ∈ L2(0, T ;W−1,2(Ω; Rd)), and ξ ∈ L∞(0, T ; L2(Ω; Td×d
s )), such that

∇su
(m)
t ⇀ ∇sut in L2(QT ; Td×d

s ), (3.17a)

u(m)t
∗

⇀ ut in L∞(0, T ; L2(Ω; Rd)), (3.17b)

P [∇su(m)]
∗

⇀ ξ in L∞(0, T ; L2(Ω; Td×d
s )), (3.17c)

u(m)t |∂Ω ⇀ ut |∂Ω in L2(0, T ; L2(∂Ω; Rd)), (3.17d)
Ω

u(m)tt · ωk dx⇀

Ω

utt · ωk dx in L2(0, T )for every k, (3.17e)

u(m)|∂Ω → u|∂Ω in L2(∂Ω; C0([0, T ]; Rd)). (3.17f)

Furthermore, we claim that f [u(m)] → f [u] in L2(ΓC ; C0([0, T ]; Rd)) strongly. Indeed, by (3.1) we have
ΓC

f [u(m)](x, ·)− f [u](x, ·)
2
[0,T ]

dS ≤ L2f


ΓC

u(m)(x, ·)− u(x, ·)
2
[0,T ]

dS → 0.

We can pass to the limit in (3.11) asm tends to +∞ and obtain
Ω

(ρutt · φ + (ξ + ν∇sut) : ∇sφ) dx = −


ΓC

f [u] · φ dS −


ΓE

p · φ dS (3.18)

first for φ = ωk for every k = 0, 1, 2, . . . and then, by density, for every φ ∈ W1,2(Ω; Rd). Furthermore, by using a
standard argument, we prove that u satisfies the initial conditions (2.9) almost everywhere. Indeed, by (3.10) and (3.13),
u(m)(·, 0) → u0 and u(m)t (·, 0) → v0 strongly in L2(Ω). Using the fact that the function t → ut(·, t) is weakly continuous in
L2(Ω) and t → ∥ut(·, t)∥2

L2(Ω)
is continuous (a proof of the latter statement in the context of general convex lower semi-

continuous functionals can be found in [6, Proposition 4.2]), we conclude that both functions t → u(·, t), t → ut(·, t) are
continuous in L2(Ω), hence the initial conditions are meaningful.

It remains to check that ξ can be replaced with P [∇su] in (3.18). This will be done by a variant of the classical Minty
trick. Testing (3.18) by ut and integrating over (0, τ ), we find

ρ

2


Ω

(|ut(·, τ )|
2
− |ut(·, 0)|2) dx +

 τ

0


Ω

(ξ + ν∇sut) : ∇sut dx dt

+

 τ

0


ΓC

f [u] · ut dS dt = −

 τ

0


ΓE

p · ut dS dt. (3.19)
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We integrate (3.14) over (0, τ ), we obtain

ρ

2


Ω

(|u(m)t (·, τ )|2 − |u(m)t (·, 0)|2) dx +

 τ

0


Ω

(P [∇su(m)] + ν∇su
(m)
t ) : ∇su

(m)
t dx dt

+

 τ

0


ΓC

f [u(m)] · u(m)t dS dt = −

 τ

0


ΓE

p · u(m)t dS dt. (3.20)

We now pass to the limit in (3.20) as m tends to +∞. The initial and boundary terms converge to the corresponding ones
in (3.19) by virtue of (3.17). Consequently, for every τ ∈ [0, T ], we have

ρ

2


Ω

|ut(·, τ )|
2 dx +

 τ

0


Ω

(ξ + ν∇sut) : ∇sut dx dt

= lim
m→∞

ρ

2


Ω

|u(m)t (·, 0)|2 dx +

 τ

0


Ω

(P [∇su(m)] + ν∇su
(m)
t ) : ∇su

(m)
t dx dt. (3.21)

The weak convergence in (3.17) yields
Ω

|ut(·, τ )|
2 dx ≤ lim inf

m→+∞


Ω

|u(m)t (·, τ )|2 dx,

and  τ

0


Ω

|∇sut |
2 dx dt ≤ lim inf

m→+∞

 τ

0


Ω

|∇su
(m)
t |

2 dx dt.

In particular, we have T

0


Ω

ξ : ∇sut dx dt ≥ lim inf
m→+∞

 T

0


Ω

P [∇su(m)] : ∇su
(m)
t dx dt. (3.22)

For each v with ∇svt ∈ L2(QT ; Td×d
s ), we have P [∇sv] ∈ L2(Ω; C0([0, T ]; Td×d

s )). Indeed, for almost every x ∈ Ω , the

function t → P [∇sv(x, t)] is continuous, and denoting P0(t)
def
= P [0](t) ∈ C0([0, T ]; Td×d

s ) (the image of the constant zero
function), we obtain from (3.2) that

Ω

|P [∇sv] − P0|2[0,T ]
dx ≤ 2L2P


T

Ω

 T

0
|∇svt |

2 dt dx +


Ω

|∇sv(x, 0)|2 dx

.

We now choose v = u − κtωk with some constant κ and any k, and use (3.4) to obtain T

0


Ω

(P [∇su(m)] − P [∇sv]) : (∇su
(m)
t − ∇svt) dx dt ≥ −


Ω

V[∇su(m),∇su](x, 0) dx. (3.23)

By (3.5), (3.10), and (3.13), the right hand side of (3.23) converges to 0. Form → +∞ this yields by virtue of (3.22) that T

0


Ω

(ξ − P [∇sv]) : (∇sut − ∇svt) dx dt ≥ 0, (3.24)

or, equivalently,

κ

 T

0


Ω

(ξ − P [∇su − κt∇sωk]) : ∇sωk dx dt ≥ 0. (3.25)

Choosing κ > 0 and κ < 0, letting κ tend to 0, and using (3.2), we conclude that T

0


Ω

(ξ − P [∇su]) : ∇sωk dx dt = 0 (3.26)

for all k = 0, 1, 2, . . . . Comparing (3.26) with (3.18), we see that u is the desired solution of (2.8).

Assume now that u1 and u2 are two solutions with the prescribed regularity. We denote ū def
= u1

− u2, and test the differ-
ence of (2.8) by ūt . We obtain

Ω

(ρūtt · ūt + (P [∇su1
] − P [∇su2

]) : ∇sūt + ν|∇sūt |
2) dx = −


ΓC

(f [u1
] − f [u2

]) · ūt dS. (3.27)
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Using assumptions (A1) and (A4) produces

1
2

d
dt


Ω

ρ|ūt |
2 dx +


Ω

ν|∇sūt |
2 dx ≤ Lf


ΓC

|ū|[0,t] |ūt | dS

≤ Lf


τ


ΓC

 τ

0
|ūt |

2 dt dS

1/2
ΓC

|ūt |
2 dS

1/2

. (3.28)

We now use embedding inequality (3.16) and Gronwall’s argument to conclude that ūt = 0, and the proof is complete. �

4. The 1D case

As mentioned earlier, in the 1D case, we can obtain the existence and uniqueness of solutions without the assumption
that viscosity is present in the constitutive law under further assumptions on the contact boundary condition and on the
regularity of the data.

We consider an elasto-plastic bar of length Lwhich vibrates longitudinally. The bar is free tomove on the one end as long
as it does not hit a material obstacle, while on the other end a force is applied. Let u(x, t) be the displacement at time t of
the material point of spatial coordinate x ∈ Ω withΩ def

=(0, L). The motion is governed by the equation

ρutt − (P [ux])x = 0, (4.1)

with Cauchy initial data

u(x, 0) = u0(x) and ut(x, 0) = v0(x), (4.2)

and boundary conditions at x = 0 and x = L, t > 0, given by

P [ux(0, ·)](t) = −p(t) and P [ux(L, ·)](t) = −f [u(L, ·)](t), (4.3)

where (·)x
def
=

∂(·)

∂x and P and f are the constitutive operator of elastoplasticity and the boundary contact operator, respec-
tively. In order to simplify the notation, we have, indeed, reversed the roles of the boundary points with respect to (2.5), that
is, contact with the obstacle takes place at x = L. For simplicity, we assume the canonical form of P defined by the scalar
version of (2.3) that we write in the form

P [ε] = λε + P0[ε], (4.4)

where P0 is the solution operator σ p
= P0[ε] of the scalar counterpart of (2.2), that is,σ

p(t) ∈ K for all t ∈ [0, T ],
σ p(0) = ProjK (Eε(0)),
(Eεt(t)− σ

p
t (t))(σ

p(t)− y) ≥ 0 a.e. for all y ∈ K ,
(4.5)

where σ p corresponds to the plastic stress componentwith yield point r > 0 and elasticity domain K def
=[−r, r], the constant

E > 0 is the elasticity modulus, and λ > 0 is the kinematic hardening modulus.
Again, for simplicity, we choose the boundary contact operator f in the form f [u] = g(S[u]) as in Section 2, where S is the

solution operator of (2.10), and g is a twice continuously differentiable nondecreasing function, which vanishes for negative
arguments. The function g(w) = w+, which appears in (2.19), does not allow to use the second order energy inequality
which we need here, and has to be regularized. Physically, this corresponds to the existence of a thin contact layer with
progressive elasticity modulus before full contact is established.

The initial value mappings P andf from R to R associated with the operators P and f (cf. (3.6)–(3.7)) can be written
explicitly here in the form

P (ε) def= λε + min{r,max{−r, Eε}}, f (u) def= g(max{au + c, bu}). (4.6)

Putting uN(t) = u(L, t), we rewrite (4.1)–(4.3) in variational form as
Ω

(ρuttφ(x)+ P [ux]φ
′(x)) dx + g(S[uN ](t))φ(L) = p(t)φ(0). (4.7)

We first establish some preliminary results that will be used in the proof of existence and uniqueness for (4.7) and
concerning a higher order energy estimate (related to the convexity of hysteresis loops, cf. [16]). Here, we use a simplified
version which follows from the monotone character of the variational inequalities (2.10) and (4.5).

Let v1, v2 ∈ W1,1(0, T ) be given, and letwi
def
= S[vi], i = 1, 2, be solutions of (2.10). Then we have

((bv1,t − w1,t)− (bv2,t − w2,t))((w1 − av1)− (w2 − av2)) ≥ 0 a.e.,
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hence,

(w1 − w2)(v1,t − v2,t) ≥
d
dt


1

2(b − a)
((w1 − av1)− (w2 − av2))2 +

a
2
(v1 − v2)

2


a.e. (4.8)

Similarly, if σi = P [εi], i = 1, 2, are as in (4.4), then

(σ1 − σ2)(ε1,t − ε2,t) ≥
d
dt


λ

2
(ε1 − ε2)

2
+

1
2E
(P0[ε1] − P0[ε2])

2


a.e. (4.9)

Lemma 4.1. Let v ∈ W2,2(0, T ) be given, and let w = S[v] be as in (2.10). Then for every nonnegative test function ψ ∈

W1,2(0, T ) and for almost every τ ∈ (0, T ), we have τ

0
wtvttψ dt +

1
2

 τ

0


1

b − a
(wt − avt)2 + av2t


ψt dt

≥
1
2


1

b − a
(wt − avt)2 + av2t


(τ )ψ(τ)−


2b −

3a
2


vt(0)2ψ(0). (4.10)

Proof. Let τ < T be such that limh→0+
1
h (w(τ + h) − w(τ)) = wt(τ ). We now use (4.8) with v1(τ ) = v(τ) and v2(τ ) =

v(τ +h). Put vh(τ )
def
=

1
h (v(τ +h)−v(τ)) andwh(τ )

def
=

1
h (w(τ +h)−w(τ)). From (4.8) we obtain, integrating by parts, that τ

0
whvh,tψ dt +

1
2

 τ

0


1

b − a
(wh − avh)2 + av2h


ψt dt

≥
1
2


1

b − a
(wh − avh)2 + av2h


(τ )ψ(τ)−

1
2


1

b − a
(wh − avh)2 + av2h


(0)ψ(0). (4.11)

We have

|(bv − w)(h)− (bv − w)(0)| ≤ (b − a) max
t∈[0,h]

|v(t)− v(0)|,

hence,

|(avh − wh)(0)| ≤
2
h
(b − a) max

t∈[0,h]
|v(t)− v(0)|,

which yields

lim sup
h→0+


1

b − a
(wh − avh)2 + av2h


(0) ≤ (4b − 3a)vt(0)2,

and the assertion is obtained from (4.11) when passing to the limit as h → 0+. �

We have a similar result for the operator P in (4.4).

Lemma 4.2. Let ε ∈ W2,2(0, T ) be given, and let σ p
= P0[ε], σ = P [ε] = λε + σ p. Then for every nonnegative test function

ψ ∈ W1,2(0, T ) and for almost every τ ∈ (0, T ), we have τ

0
σtεttψ dt +

1
2

 τ

0


1
E
(σ

p
t )

2
+ λε2t


ψt dt

≥
1
2


1
E
(σ

p
t )

2
+ λε2t


(τ )ψ(τ)−


2E +

λ

2


εt(0)2ψ(0). (4.12)

Proof. We proceed as in the proof of Lemma 4.1, using (4.9) and the inequality

|σ p(h)− σ p(0)| ≤ 2E max
t∈[0,h]

|ε(t)− ε(0)|,

and the desired result follows. �



136 P. Krejčí, A. Petrov / J. Math. Anal. Appl. 408 (2013) 125–139

We are now ready to prove the main result of this section.

Theorem 4.3. Assume that (A1)–(A4) hold, and let p ∈ W2,2(0, T ), u0
∈ W2,2(Ω), and v0 ∈ W1,2(Ω) be given. Assume that

the compatibility conditionsP (u0
x(0))+ p(0) = 0 and P (u0

x(L))+f (u0(L)) = 0

hold, where P andf are as in (4.6). Then there exists a unique u ∈ L2(QT ) such that uxt and utt belong to L∞(0, T ; L2(Ω)) and
satisfy (4.7) with initial conditions u(·, 0) = u0 and ut(·, 0) = v0 almost everywhere.

Proof. Once again we proceed by Galerkin approximations to prove the existence result. To this aim, we denote by {ωk :

k = 0, 1, . . .} the complete system of eigenfunctions ωk ∈ W1,2(Ω), orthonormal in L2(Ω), of the problem

∀φ ∈ W1,2(Ω) :


Ω

ω′

kφ
′ dx = λk


Ω

ωkφ dx. (4.13)

For any integer m > 0, we define u(m) similarly as in (3.10), taking into account the compatibility conditions. More specif-
ically, we define real numbers α and β by the formula

α
def
= P −1

(−p(0)) and β
def
=

1
2L

P −1(−f (u0(L)))− P −1(−p(0))

. (4.14)

This is indeed admissible, as by virtue of (4.6), the function P is Lipschitz continuously invertible. Put

∀x ∈ [0, L] : u0(x) def= u0(x)− αx − βx2. (4.15)

The motivation for this choice is to guarantee thatu0 satisfies the homogeneous Neumann boundary conditionsu0
x(0) =u0

x(L) = 0. We define the Fourier coefficients ofu0 by

uj =


Ω

u0(x)wj(x) dx for j = 0, 1, . . . .

Let us observe that for all x ∈ Ω , the seriesu0(x) =


+∞

j=0 ujωj(x) andu0
x(x) =


+∞

j=1 ujω
′

j(x) are uniformly convergent and
+∞

j=0 λ
2
ju2

j = ∥u0
xx∥

2
L2(Ω)

< +∞. Formula (3.10) is replaced here by

u(m)(x, t) def=

m
k=0

uk(t)ωk(x)+ αx + βx2, (4.16)

with functions uk ∈ W2,2(0, T ) satisfying the system
Ω

(ρu(m)tt ωk + P [u(m)x ]ω′

k)(x, t) dx + g(S[u(m)N ](t))ωk(L) = p(t)ωk(0), (4.17)

with initial conditions uk(0) = uk and uk,t(0) =

Ω
v0ωk dx, for every k = 0, 1, . . . ,m, where u(m)N (t) = u(m)(L, t). The

existence of a unique solution to (4.17) is again obvious.
The energy estimate is obtained by testing (4.17) with uk,t and summing over k = 0, 1, . . . ,m, we get

Ω

(ρu(m)tt u(m)t + P [u(m)x ]u(m)xt ) dx + g(S[u(m)N ](t))u(m)N,t (t) = p(t)u(m)t (0, t). (4.18)

Note that the inequality (3.3) holds with V[ε] =
λ
2 ε

2
+

1
2E P0[ε]

2 as in (4.9), and

g(S[v](t))vt −
d
dt

e[v] ≥ 0 (4.19)

holds with e[v] =
1
b


G(w)+ b−a

a G
 a
b−a (bv −w)


as in (2.27). We integrate (3.14) over (0, τ ), thus according to (4.19), we

may deduce that there exists C1 > 0 independent ofm such that

1
2


Ω

(ρ|u(m)t |
2
+ λ|u(m)x |

2)(x, τ ) dx ≤ C1 + p(τ )u(m)(0, τ )−

 τ

0
pt(t)u(m)(0, t) dt. (4.20)
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It follows that there exists C2 > 0 independent ofm such that

ρ∥u(m)t (·, τ )∥2
L2(Ω) + λ∥u(m)x (·, τ )∥2

L2(Ω) ≤ C2. (4.21)

We now differentiate (4.17) with respect to t and we test by uk,tt(t) to get
Ω

(ρu(m)ttt u(m)tt + P [u(m)x ]tu
(m)
xtt )(x, t) dx + g(S[u(m)N ](t))tu

(m)
N,tt(t) = pt(t)u

(m)
tt (0, t). (4.22)

We integrate (4.22) over (0, τ ), it comes by using Lemma 4.2 with ψ ≡ 1, and Lemma 4.1 with v = u(m)N , w = S[v] and
ψ = g ′(w), together with the elementary inequality |wt(t)| ≤ b|vt(t)|, that there exists C3 > 0 independent ofm such that

1
2


Ω

(ρ|u(m)tt |
2
+ λ|u(m)xt |

2)(x, τ ) dx ≤
1
2


Ω

(ρ|u(m)tt |
2
+ λ|u(m)xt |

2)(x, 0) dx

+ C3

 τ

0
(1 + |u(m)t (L, t)|3) dt + pt(τ )u

(m)
t (0, τ )

−

 τ

0
ptt(t)u

(m)
t (0, t) dt. (4.23)

We observe that

∥u(m)xt (·, 0)∥L2(Ω) ≤ ∥v0x∥L2(Ω), (4.24)

∥u(m)tt (·, 0)∥L2(Ω) ≤ C4(|p(0)| + ∥u0
∥L2(Ω) + ∥u0

xx∥L2(Ω)), (4.25)

with a constant C4 > 0 independent ofm. Note that (4.25) can be derived from (4.17) and from the compatibility conditions
in the following way. We first rewrite (4.17) for t = 0 after integration by parts as

ρuk,tt(0) =


Ω

[P (u(m)x (x, 0))]xωk(x) dx − [P (u(m)x (x, 0))ωk]
L
0 −f (u(m)(L, 0))ωk(L)+ p(0)ωk(0). (4.26)

We have by (4.13) that ω′

k(0) = ω′

k(L) = 0 for all k = 0, 1, . . . , hence u(m)x (0, 0) = P −1(−p(0)) = α and u(m)x (L, 0) =

α + 2Lβ = P −1(−f (u0(L))), see (4.14). In particular, we have

−P (u(m)x (L, 0))ωk(L)−f (u(m)(L, 0))ωk(L) = (f (u0(L))−f (u(m)(L, 0)))ωk(L),P (u(m)x (0, 0))ωk(0)+ p(0)ωk(0) = 0.

Then it follows by using (4.15) and (4.16) that

ρ|uk,tt(0)| ≤


Ω

[P (u(m)x (x, 0))]xωk(x) dx
+ |(f (u0(L))−f (u(m)(L, 0)))ωk(L)|

≤


Ω

[P (u(m)x (x, 0))]xωk(x) dx
+ Lf

u0(L)−

m
j=0

ujwj(L)

 . (4.27)

We estimate now the two terms on the right hand side of (4.27). On the one hand, we definev(m)(x) def=[P (u(m)x (x, 0))]x andvk def
=

Ω
v(m)(x)ωk(x) dx for k = 0, 1, 2, . . . . Clearly, we have

m
k=0

|vk|2 ≤

+∞
k=0

|vk|2 = ∥vm∥
2
L2(Ω) ≤ L2P ∥u(m)xx (·, 0)∥

2
L2(Ω). (4.28)

Furthermore we observe that u(m)xx (·, 0) = −
m

k=0ukλkωk + 2β , then

∥u(m)xx (·, 0)∥L2(Ω) ≤

+∞
k=0

ukλkωk


L2(Ω)

+ 2|β|L ≤ ∥u0
xx∥L2(Ω) + 4|β|L.

Therefore by employing (4.14), we may infer that there exists C5 > 0 such that

∥u(m)xx (·, 0)∥L2(Ω) ≤ C5(|p(0)| + ∥u0
∥L2(Ω) + ∥u0

xx∥L2(Ω)). (4.29)
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On the other hand, there exists Cω > 0 such that ωk(x) ≤ Cω for all k and all x. Hence by using Cauchy–Schwarz’s
inequality, we find

u0(L)−

m
j=0

ujωj(L)


ωk(L)

 ≤ C2
ω

+∞
j=m+1

|uj|

≤ C2
ω


+∞

j=m+1

λ2ju2
j

1/2
+∞

j=m+1

1
λ2j

1/2

≤ C2
ω∥u0

xx∥L2(Ω)


+∞

j=m+1

1
λ2j

1/2

,

and the estimate for ∥u(m)tt (·, 0)∥2
L2(Ω)

=
m

k=0 |uk,tt(0)|2 in (4.25) follows from the facts that limm→+∞ m


+∞

j=m+1
1
λ2j

= 0

and (4.29) holds.
The remaining terms on the right hand side of (4.23) are estimated using the identity

|u(m)t (L, t)|2 − |u(m)t (x, t)|2 = 2
 L

x
u(m)t (x′, t)u(m)xt (x

′, t) dx′. (4.30)

Hence integrating again over x and using Cauchy–Schwarz’s inequality, we deduce that there exists C6 > 0 such that

|u(m)t (L, t)|2 ≤
1
L
∥u(m)t (·, t)∥2

L2(Ω) + 2∥u(m)t (·, t)∥L2(Ω)∥u
(m)
xt (·, t)∥L2(Ω)

≤ C6(1 + ∥u(m)xt (·, t)∥L2(Ω)) (4.31)

as a consequence of (4.21). The left hand side of (4.23) is thus dominating the right hand side, it follows that there exists
C7 > 0 such that

∀τ ∈ [0, T ] : ρ∥u(m)tt (·, τ )∥
2
L2(Ω) + λ∥u(m)xt (·, τ )∥

2
L2(Ω) ≤ C7. (4.32)

We now proceed as in the proof of Theorem 3.1, passing to the limit and using the Minty trick, to construct a solution with
the regularity as in Theorem 4.3. We leave the details to the reader. Let us just point out that the stresses σ (m) = P [u(m)x ]

do not converge uniformly, and the boundary conditions are satisfied only in the limit asm tends to +∞.
It remains to check that the solution is unique. Assume that u1 and u2 are two solutions of (4.7) with the same initial

conditions, and with the properties as in Theorem 4.3. In particular, u1
t and u2

t are uniformly bounded in Q̄T . We subtract
(4.7) for u1 and u2, denote by ū = u1

− u2 and ūN = u1
N − u2

N , and test with ūt to obtain
Ω

(ρūtt ūt + (P [u1
x ] − P [u2

x ])ūxt) dx + (g(S[u1
N ](t))− g(S[u2

N ](t)))ūN,t(t) = 0. (4.33)

We integrate (4.33) over (0, τ ), and using (4.9), we get

1
2


Ω

(ρū2
t + λū2

x)(·, τ ) dx +

 τ

0
(g(S[u1

N ])− g(S[u2
N ]))(t)ūN,t(t) dt ≤ 0. (4.34)

Putw1
N = S[u1

N ], w2
N = S[u2

N ], and w̄N = w1
N − w2

N . We have τ

0
(g(S[u1

N ])− g(S[u2
N ]))(t)ūN,t(t) dt = (g(w1

N)− g(w2
N))(τ )ūN(τ )− g ′(w1

N)(τ )w̄N(τ )ūN(τ )

+

 τ

0
g ′(w1

N)(t)w̄N(t)ūN,t(t) dt

−

 τ

0
(g ′(w1

N)− g ′(w2
N))(t)w

2
N,t(t)ūN(t) dt

+

 τ

0
g ′′(w1

N)(t)w
1
N,t(t)w̄N(t)ūN(t) dt.

In the term
 τ
0 g ′(w1

N)(t)w̄N(t)ūN,t(t) dt we use inequality (4.8), integrate by parts, and using the L∞-boundedness of w1
N,t

andw2
N,t , we conclude from (2.12) that there exists C8 > 0 such that τ

0
(g(S[u1

N ])− g(S[u2
N ]))(t)ūN,t(t) dt ≥ −C8 |ūN |

2
[0,τ ]

for all τ ∈ [0, T ]. An analogous argument to (4.30) leads to

ρ

2
∥ūt(·, τ )∥

2
L2(Ω) +

λ

2
∥ūx(·, τ )∥

2
L2(Ω) ≤ C8 |ūN |

2
[0,τ ] ≤ Cδ

∥ū∥2
L2(Ω)


[0,τ ]

+ δ

∥ūx∥
2
L2(Ω)


[0,τ ]

(4.35)
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for all τ ∈ [0, T ], with any (small) constant δ > 0 and some suitable Cδ > 0. Choosing δ < λ/2, we obtain from Gronwall’s
lemma that ū = 0, which completes the proof. �
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