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INTRODUCTION

Interacting dynamical systems
Statistical physics
Graph theory
COMPLEX NETWORKS
Multivariate time series −→ networks

Nodes: measuring sites
Edges: dependence, “connectivity” measures

weighted graph
threshold → binary graph
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INTRODUCTION

Multivariate time series −→ networks
Edges: dependence, “connectivity” measure
linear cross-correlation – the measure of first choice

correlation – linearity – Gaussianity
Nonlinearity? hidden connectivity patterns?
Factors influencing connectivity measures

dynamics (serial correlations)
temporal and spatial sampling (time lags)

Factors influencing network structure
uniform thresholding or individual statistical testing
thresholding Z-score, significance function
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CLIMATE NETWORKS
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CLIMATE NETWORKS

Multivariate time series: gridded “reanalysis data” of
atmospheric variables: air temperature, pressure, humidity,
precipitation...
Here: near-surface air temperature anomalies
subtraction of seasonal means (mean Jan, mean Feb ...)
removal of the annual cycle
= fluctuations around seasonal means
grid 2.5◦ x 2.5◦ −→ 104 nodes
Pearson correlation −→ weighted network
thresholding −→ binary network
−→ graph-theoretical analysis
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Connectivity vs. dynamics

Area Weighted Connectivity % = 0.005 for

NCEP/NCAR SAT anomalies – absolute correlations
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Connectivity vs. dynamics

n discrete random variables X1, . . . ,Xn
values (x1, . . . , xn) ∈ Ξ1 × · · · × Ξn

PDF for an individual Xi is p(xi) = Pr{Xi = xi}, xi ∈ Ξi

joint distribution for the n variables X1, . . . ,Xn is
p(x1, . . . , xn) = Pr{(X1, . . . ,Xn) = (x1, . . . , xn)}
the joint entropy of the n variables X1,. . . , Xn with the joint
distribution p(x1, . . . , xn):

H(X1, . . . ,Xn) = −
∑

x1∈Ξ1

· · ·
∑

xn∈Ξn

p(x1, . . . , xn) log p(x1, . . . , xn)
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stochastic process {Xi}:
indexed sequence of random variables, characterized by
p(x1, . . . , xn)

entropy rate of {Xi} is defined as

h = lim
n→∞

1
n

H(X1, . . . ,Xn)

dynamical systems: Kolmogorov-Sinai entropy
for a Gaussian process with spectral density function f (ω)

hG =
1

2π

∫ π

−π
log f (ω)dω
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Connectivity vs. dynamics

autoregressive process

yt = c
10∑

k=1

akyt−k + σet , (1)

where ak=1,..,10 = 0,0,0,0,0, .19, .2, .2, .2, .2, σ = 0.01 and
et are Gaussian deviates with zero mean and unit variance
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Connectivity vs. dynamics

autoregressive process

yt = c
10∑

k=1

akyt−k + σet
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Connectivity vs. dynamics

correlations of INDEPENDENT realizations of

yt = c
10∑

k=1

akyt−k + σet
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Connectivity vs. dynamics

mean ABSOLUTE correlations of INDEPENDENT realizations
of

yt = c
10∑

k=1

akyt−k + σet
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Connectivity vs. dynamics
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Dynamical entropy (inverse to regularity) of temperature
anomaly time series for each node.
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Connectivity vs. dynamics: significance of
dependence

SURROGATE DATA / BOOTSTRAP
generated by a model
obtained by manipulation (randomization) of the original
data (surrogate data)

IID (scrambled) surrogate data
FT (AAFT, IAAFT ...) surrogate data
wavelet
recurrence
constrained randomization ...

FT surrogates: preserve magnitudes of Fourier coefficients
(spectra), randomize Fourier phases
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Significance testing using surrogate data

Use of bootstrap-like strategy (surrogate time series)
Ideally preserve all properties except tested (coupling)
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Connectivity vs. dynamics
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Surrogate cross-correlation for high-ER (green, blue) and
low-ER (orange, red) NCEP/NCAR grid-points. FT (green,
orange), AAFT (blue, red).
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Connectivity vs. dynamics

Mean absolute correlation of NCEP/NCAR SAT anomalies

with FT surrogate data
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Connectivity vs. dynamics

Correct for dynamics (serial correlations):

For each link a statistical test with FT surrogate data

evaluated by using Z-score

Zi,j =
ci,j−mean[ci,j (surr)]

SD[ci,j (surr)]

Z-score Zi,j used instead of ci,j for the link weights
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Connectivity vs. dynamics

Area Weighted Connectivity, NCEP/NCAR SATA, % = 0.005

Z-score for absolute correlations + FT surrogate data
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Simple dependence measures

two variables X and Y :

x̄ =
1
N

N∑
i=1

xi

σ2 =
1

N − 1

N∑
i=1

(xi − x̄)2

x̃i =
xi − x̄
σ

correlation between x and y is

c(x , y) =
1
N

N∑
i=1

x̃i ỹi
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Simple dependence measures

two variables X and Y :
p(x), H(X), p(y), H(Y), joint PDF p(x,y), joint entropy H(X,Y)
mutual information

I(X ; Y ) = H(X ) + X (Y )− H(X ,Y )

static p(x) – entropy H(X)
characterization of dynamics – entropy rate

static joint p(x,y) – mutual information I(X;Y) (correlation)
similarity of dynamics – mutual information rate
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Mutual information rate

stochastic processes {Xi}, {Yi}, characterized by
p(x1, . . . , xn) and p(y1, . . . , yn)

mutual information rate

i(Xi ; Yi) = lim
n→∞

1
n

I(X1, . . . ,Xn; Y1, . . . ,Yn)
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Mutual information rate

for Gaussian stochastic processes {Xi}, {Yi},
characterized by power spectral densities (PSD) ΦX (ω),
ΦY (ω) and cross PSD ΦX ,Y (ω)

mutual information rate

i(Xi ; Yi) = − 1
4π

∫ 2π

0
log(1− |γX ,Y (ω)|2)dω

magnitude-squared coherence

|γX ,Y (ω)|2 =
|ΦX ,Y (ω)|2

ΦX (ω)ΦY (ω)
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AR process - remainder

mean ABSOLUTE correlations of INDEPENDENT realizations
of

yt = c
10∑

k=1

akyt−k + σet
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MUTUAL INFORMATION RATE

mean (Gaussian) MRI of 1000 INDEPENDENT realizations of

yt = c
10∑

k=1

akyt−k + σet
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Gaussian ER and nonlinear DS
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Gaussian ER and nonlinear DS
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Route to synchronization

unidirectionally coupled Rössler systems

ẋ1 = −ω1x2 − x3

ẋ2 = ω1x1 + a1 x2

ẋ3 = b1 + x3(x1 − c1)

ẏ1 = −ω2y2 − y3 + ε(x1 − y1)

ẏ2 = ω2y1 + a2 y2

ẏ3 = b2 + y3(y1 − c2)

a1 = a2 = 0.15, b1 = b2 = 0.2, c1 = c2 = 10.0
frequencies ω1 = 1.015, ω2 = 0.985.
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Route to synchronization and MIR, ER
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Route to synchronization and MIR, ER

Synchronization as adjustment of information rates: Detection from bivariate time series

Milan Paluš
Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod voda´renskou veˇžı́ 2, 182 07 Prague 8, Czech Republic

Vladimı́r Komárek, Zbyněk Hrnčı́ř, and Katalin Sˇ těrbová
Clinic of Paediatric Neurology, 2nd Medical Faculty of Charles University, V u´valu 84, 150 06 Prague 5–Motol, Czech Republic

~Received 5 July 2000; revised manuscript received 4 December 2000; published 28 March 2001!

An information-theoretic approach for studying synchronization phenomena in experimental bivariate time
series is presented. ‘‘Coarse-grained’’ information rates are introduced and their ability to indicate generalized
synchronization as well as to establish a ‘‘direction of information flow’’ between coupled systems, i.e., to
discern the driving from the driven~response! system, is demonstrated using numerically generated time series
from unidirectionally coupled chaotic systems. The method introduced is then applied in a case study of
electroencephalogram recordings of an epileptic patient. Synchronization events leading to seizures have been
found on two levels of organization of brain tissues and ‘‘directions of information flow’’ among brain areas
have been identified. This allows localization of the primary epileptogenic areas, also confirmed by magnetic
resonance imaging and pasitron emission tomography scans.

DOI: 10.1103/PhysRevE.63.046211 PACS number~s!: 05.45.Tp, 05.45.Xt, 89.70.1c

I. INTRODUCTION

During the last decade there has been considerable inter-
est in the study of the cooperative behavior of coupled cha-
otic systems@1#. Synchronization phenomena have been ob-
served in many physical and biological systems, even in
cases where the chaotic nature of the scrutinized processes
has not been proven or is in doubt, e.g., in the case of car-
diorespiratory synchronization@2,3# or synchronization of
neural signals@4–7#. In such physiological and neurophysi-
ological systems it is important not only to detect synchro-
nized states, but also to identify causal~drive-response! re-
lationships between studied~sub!systems. Although several
methods have been proposed and successfully applied, espe-
cially in the field of neurophysiology@4–7#, this problem is
far from being trivial and some claims of successful detec-
tion of the causal relationships are based on contradictory
assumptions@4,5#. Also, measures of synchronization based
on infinitesimal properties and performing well on artificial
systems can fail when applied to noisy experimental data.
We propose to start a study of synchronization in such data
with statistical, coarse-grained measures with a basis in in-
formation theory, which could provide an indication of syn-
chronization as well as of causal relationships if present in
the systems scrutinized.

In Sec. II the definitions of entropy, information, and in-
formation rates are briefly reviewed. More details can be
found, e.g., in Ref.@8#. Then, the concept of ‘‘coarse-grained
entropy rates,’’ originally introduced in Ref.@12# is summa-
rized and extended by defining the coarse-grained informa-
tion rates~CIR’s! and their mutual and conditional versions.
In Sec. III the CIR’s are applied to bivariate time series
generated by unidirectionally coupled chaotic systems
~Hénon maps, Ro¨ssler and Lorenz systems! in order to dem-
onstrate how the CIR’s can detect synchronization and drive-
response relationships. An application of the approach intro-
duced is demonstrated in Sec. IV by a case study of

electroencephalogram~EEG! recordings of an epileptic pa-
tient. A conclusion is given in Sec. V.

II. COARSE-GRAINED INFORMATION RATES

Consider discrete random variablesX and Y with sets of
valuesJ andY, respectively, probability distribution func-
tions ~PDF’s! p(x) and p(y), and joint PDFp(x,y). The
entropy H(X) of a single variable, sayX, is defined as

H~X!52 (
xPJ

p~x!log p~x!, ~1!

and thejoint entropy H(X,Y) of X andY is

H~X,Y!52 (
xPJ

(
yPY

p~x,y!log p~x,y!. ~2!

The conditional entropy H(YuX) of Y given X is

H~YuX!52 (
xPJ

(
yPY

p~x,y!log p~yux!. ~3!

The average amount of common information, contained in
the variablesX andY, is quantified by themutual information
I (X;Y), defined as

I ~X;Y!5H~X!1H~Y!2H~X,Y!. ~4!

The conditional mutual informationI (X;YuZ) of the vari-
ablesX, Y given the variableZ is given as

I ~X;YuZ!5H~XuZ!1H~YuZ!2H~X,YuZ!. ~5!

For Z independent ofX andY we have

I ~X;YuZ!5I ~X;Y!. ~6!

PHYSICAL REVIEW E, VOLUME 63, 046211

1063-651X/2001/63~4!/046211~6!/$20.00 ©2001 The American Physical Society63 046211-1
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Route to synchronization and MIR, ER
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Connectivity vs. dynamics in climate network

Area Weighted Connectivity % = 0.005 for

NCEP/NCAR SAT anomalies – absolute correlations
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Connectivity vs. dynamics in climate network

Area Weighted Connectivity % = 0.005 for

NCEP/NCAR SAT anomalies – mutual information rate
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Spurious small-world networks

Small-world topology of functional connectivity in randomly connected
dynamical systems

J. Hlinka, D. Hartman, and M. Paluš
Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Vodarenskou Vezi 2,
18207 Prague, Czech Republic

(Received 15 March 2012; accepted 18 June 2012; published online 11 July 2012)

Characterization of real-world complex systems increasingly involves the study of their topological

structure using graph theory. Among global network properties, small-world property, consisting in

existence of relatively short paths together with high clustering of the network, is one of the most

discussed and studied. When dealing with coupled dynamical systems, links among units of the

system are commonly quantified by a measure of pairwise statistical dependence of observed time

series (functional connectivity). We argue that the functional connectivity approach leads to

upwardly biased estimates of small-world characteristics (with respect to commonly used random

graph models) due to partial transitivity of the accepted functional connectivity measures such as

the correlation coefficient. In particular, this may lead to observation of small-world characteristics

in connectivity graphs estimated from generic randomly connected dynamical systems. The

ubiquity and robustness of the phenomenon are documented by an extensive parameter study of its

manifestation in a multivariate linear autoregressive process, with discussion of the potential

relevance for nonlinear processes and measures. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4732541]

In the field of complex systems study, new measurement

and computational resources have lead to increased inter-

est in analysis of large networks. These networks are

observed across many disciplines spanning from social

sciences through biology to climate research. For charac-

terization of the structure of these networks, graph-

theoretical measures have proven to be useful. These

characteristics capture some global features of the net-

work topology such as the density or level of clustering

(tendency of neighbors of a node to be also neighbors to

each other) as well as specific roles of important nodes

serving as “hubs” in the network. Among the interesting

properties of many real-world networks belongs the small-

world property, a global property of a network character-

ized by a relatively high level of clustering while conserv-

ing on average short paths among nodes of the network,

compared to a random network of corresponding density.

This small-world property has been related to some con-

venient properties of the network including efficiency of

information transfer, and therefore reports of small-world

architecture in real-world networks have received much

attention. In some complex dynamical systems, including

global climate or human brain, the knowledge of physical

connections among its subsystems is far from perfect, and

therefore other methods of characterizing interactions

among these have been extensively applied. In particular,

interactions among the areas are commonly quantified by

a dependence measure such as the linear correlation

between the local time series of variables of interest. This

gives rise to the so-called functional connectivity matrix of

a system. Applying the graph-theoretical approach to

functional connectivity matrices has lead to reports of

small-world properties of many real-world systems. How-

ever, as we document in this report, even for a simplistic

dynamical system with linear dynamics and random cou-

pling matrix, the functional connectivity approach gener-

ates networks with small-world characteristics. These

spurious detections of small-world topology are related to

partial transitivity of functional connectivity measures

such as the correlation coefficient.

I. INTRODUCTION

Characterization of complex systems commonly

includes the study of their structure using graph theory. This

typically involves identification of the systems subunits

(nodes of a network) and assessment of existence (or

strength) of pair-wise relations among those, leading to rep-

resentation of the system by a (weighted) graph. The local,

mesoscale, or global topology of the graph (or alterations

thereof) is subsequently studied using various graph-

theoretical measures with a goal of identifying systems prop-

erties key to its function. The most widely discussed proper-

ties are modularity, scale-freeness, or small-world topology.

Since the paradigmatic publication of Watts and Stro-

gatz in Nature,1 the small-world property entailing relatively

short graph paths and high clustering has received much

attention in many application areas dealing with complex

systems. This includes such diverse fields as neuroscience2

and climate science.3

When working with such complex dynamical systems,

for both practical and theoretical reasons, the links among

nodes are commonly quantified by the dependence of the

observed time series rather than the underlying physical or

coupling network of connections. In the neuroscience

1054-1500/2012/22(3)/033107/7/$30.00 VC 2012 American Institute of Physics22, 033107-1

CHAOS 22, 033107 (2012)

Downloaded 05 Sep 2012 to 147.231.6.9. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions
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Spurious small-world networks

4

FIG. 1. An example of binary functional connectivity matrix (right) generated from random structural connectivity matrix
(left) by thresholding the correlation matrix of AR-model generated time series (center, light shades of gray indicate higher
correlation values). Network with N = 100 nodes shown. Note that the functional connectivity matrix shows a specific structure
although the entries of the generating structural connectivity matrix were chosen randomly. See text for further details.

{0.2, 0.5, 0.75, 0.9, 0.99}, α ∈ {0, 1}. We further varied
pSC and pFC logarithmically in 24 steps within the (0, 1)
interval – more exactly both variables are defined as 2n

where n is an arithmetic progression from 0 to −6.9 with
step −0.3. The lowest density was therefore smaller than
0.01.
For robustness of evidence, for each parameter setting

we compute 20 independent realizations of the coupling
matrix, and each of the resulting matrices FC is com-
pared to its own corresponding realization of the random
Erdős-Rényi matrix G (and secondarily also to Maslov-
Sneppen random graph model5, see discussion). The
computations were carried out using the NDW-Graph
Toolbox (http://ndw.cs.cas.cz/software/ndw-graph), a
C++/MATLAB toolbox for complex network analysis
developed within the authors’ NDW group and available
to the public under GPL license.

III. RESULTS

The simulations have shown that the studied effect
(small-world property of functional connectivity matrix
of a randomly connected dynamical system) is present
throughout the covered parameter space, although with
a variable strength. A representative selection of results
is shown in Figure 2, obtained for network size N = 500
nodes, s = 0.75 and α = 1. The results for other investi-
gated parameter choices are qualitatively similar and are
summarized for completeness in Figures 1 and 2 of the
Supplemental Material17.
Within the studied parameter range, we have observed

values of small-world index σ up to the order of hun-
dreds. The effect has also proven statistically robust with
respect to different realizations of the structural matrix
SC. In particular, we observed relatively low spread of
the σ values, with σ > 1 in all 20 assessed realizations
of the process (4) for overwhelming majority of param-
eter vector values. This corresponds to robust statis-

tical significance in most cases (p-values < 10−5, sign
test of hypothesis of median equal to 1, no correction for
multiple comparisons; similar results obtained for t-test).
The only exceptions were observed for the case of exactly
equal densities of structural and functional connectivity
matrix, when this commong density was very low (e.g.
only for pFC = pSC . 0.03 for the specific settings in
Figure 2), where the σ values were relatively close to 1;
this special case is discussed later.

In general, σ increases with increasing thresholding
(that is decreasing density pFC of the FC matrix). The
dependence on the density of the underlying structural
connectivity pSC is not monotonous (see Figure 2). Ap-
proximately, the effect is weakest if the density of the
binarized functional connectivity matrix is the same as
of the underlying structural connectivity matrix, but the
depth of this minimum further depends on the value of
parameter α. The values of σ are comparable for both
α = 1 and α = 0, with the exception of the above-
described non-monotonicity being more pronounced with
α = 1. With other parameters fixed, network size N and
strength of coupling s do not affect σ strongly within the
sampled parameter region (see Supplemental Material17

Figure 1).

However, for small networks (especially N = 50) and
small densities of the FC matrix pFC < 0.1, the σ is often
not well defined, mostly due to zero values of the clus-
tering coefficient of the corresponding random matrix.
Moreover, in a part of the parameter space, the result-
ing graphs are not connected. This generally happens
for small density, however the exact threshold is further
modulated by network size and other network parame-
ters.

The interpretation of some graph-theoretical measures
for disconnected graphs and their comparison to con-
nected graphs is not straightforward. In practice, for
disconnected graphs the average path length is computed
only for the largest component of the graph1, or rede-
fined as the mean of the finite elements of the distance
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NETWORKS FROM MULTIVARIATE TIME SERIES

interesting, useful, dangerous
(partial) transitivity connectivity measure→
→ spurious small-world network topology
biased connectivity measure→
→ spurious highly connected hubs
stability of connectivity, network structure
significance of changes in time and space
(climate) network variability vs. external influence
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Dependence and directional coupling in time series

bias due to different level of dynamical complexity in
different nodes

symmetric measures: relate dynamics not static PDF
use MIR rather than MI, corr

directional measures: the same problem, only partial
solution

surrogate data
test individually each direction
existence of directional coupling
but not its strength !
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CONCLUSION
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