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Abstract. We show that for each p ∈ (0, 1] there exists a separable p-Banach
space Gp of almost universal disposition, that is, having the following extension
property: for each ε > 0 and each isometric embedding g : X → Y , where Y
is a finite dimensional p-Banach space and X is a subspace of Gp, there is an
ε-isometry f : Y → Gp such that x = f(g(x)) for all x ∈ X.

Such a space is unique, up to isometries, does contain an isometric copy of
each separable p-Banach space and has the remarkable property of being “locally
injective” amongst p-Banach spaces.

We also present a nonseparable generalization which is of universal dispo-
sition for separable spaces and “separably injective”. No separably injective
p-Banach space was previously known for p < 1.
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1. Introduction

1.1. Background. In 1965, Gurarĭı constructed a separable Banach space G of “almost
universal disposition for finite dimensional spaces”, that is, having the following extension
property: for every isometry g : X → Y , where Y is a finite dimensional Banach space and X
is a subspace of G, and every ε > 0 there is an ε-isometry f : Y → G such that f(g(x)) = x
for all x ∈ X. Here, (ε-)isometry is a shortcut for linear (ε-)isometric embedding.

It is almost obvious that if V is any other separable Banach space fitting in the definition,
then there is a linear isomorphism u : G→ V with ‖u‖ · ‖u−1‖ arbitrarily close to 1.

Gurarĭı’s creature spurred a considerable interest in Banach space theory and is still
an object of intense research. Amongst the main hits we find the following. The space G
constructed by Gurarĭı is isometrically unique, in the class of separable Banach spaces. This
was proved by Lusky [22]; see [21] for a simpler proof. The space G is a Lindenstrauss space,
that is, its dual space is isometric to an L1-space. Moreover, every separable Lindenstrauss
space is isometric to a subspace of G which is the range of a nonexpansive projection.
This was proved by Wojtaszczyk [28], see also [23, Proposition 8]. The Gurarĭı space is
complemented in no space of type C(K) and it is isomorphic to the space of all continuous
affine functions on the Poulsen simplex; see [6, Corollary 2] and [23].

We refer the reader to the survey paper [12] for more information and references reporting
recent work.

1.2. The plan of the paper. There is no clear intrinsic reason to restrict attention to
Banach spaces in studying the extension of isometries. In this paper we push the notion of
“universal disposition” and its relatives into the larger class of quasi-Banach spaces.

We shall construct, for each p ∈ (0, 1], a separable p-Banach space of almost universal
disposition for finite dimensional p-Banach spaces, which turns out to be unique, up to
isometries, and that we will call Gp. Our main tools are the push-out construction and
the notion of a direct limit, whose adaptations to the p-normed setting are presented in
Sections 1.4 and 1.5. The construction itself is carried out in Section 2.

In Section 3 we prove that any two separable p-Banach spaces of almost universal disposi-
tion for finite dimensional p-Banach spaces are isometric. As a consequence, Gp contains an
isometric copy of each separable p-Banach space, which improves a classical result by Kalton
and provides a complete solution to an old problem in the isometric theory of quasi-Banach
spaces. Up to this point the paper is rather elementary and self-contained.

In Section 4 we present a nonseparable generalization. We construct a p-Banach space
whose density character is the continuum and which is of universal disposition for separable
p-Banach spaces. We also mention a result of Ben Yaacov and Henson [5] with a simpler
argument provided by Richard Haydon, showing that it is impossible to reduce the size of
the space in the preceding result. We prove that these spaces contain isometric copies of all
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p-Banach spaces with density character ℵ1 or less and that they are all isometric under the
continuum hypothesis.

Section 5 studies the extension of operators with values in the spaces of (almost) universal
disposition. Let us pause a moment for some definitions. First, following a long standing
tradition, a quasi-Banach space E would be injective amongst p-Banach spaces if there is
a constant λ ≥ 1 such that for every p-Banach space X and every subspace Y of X every
operator t : Y → E extends to an operator T : X → E with ‖T‖ ≤ λ‖t‖. Also, we say
that E is separably injective amongst p-Banach spaces if the preceding condition holds for
X separable and we say that it is locally injective if it holds when X is finite dimensional.

After proving that there is no injective p-Banach space, apart from 0, we show that Gp is
locally (1+)-injective and also that any space of universal disposition for separable p-Banach
spaces is separably 1-injective. No separably injective p-Banach space had been previously
known for p < 1.

In Section 6 we show the existence of a nonexpansive projection on Gp whose kernel is
isometric to Gp. Moreover, this projection is universal in the sense that the class of all its
restrictions to closed subspaces contains (up to isometry) all possible nonexpansive operators
from separable p-Banach spaces into Gp.

Finally, the closing Section 7 contains some miscellaneous remarks and questions which
we found interesting.

1.3. Quasi-Banach spaces. We shall denote by K the field of scalars, which is fixed
to be either the field of real or complex numbers.

A quasinorm on a K-linear space X is a function ‖ · ‖ : X → R+ satisfying the following
conditions:

• If ‖x‖ = 0, then x = 0.
• ‖λx‖ = |λ|‖x‖ for every λ ∈ K and every x ∈ X.
• There is a constant C such that ‖x+ y‖ ≤ C(‖x‖+ ‖y‖) for all x, y ∈ X.

A quasinorm gives rise to a linear topology on X, namely the least linear topology for which
the unit ball B = {x ∈ X : ‖x‖ ≤ 1} is a neighborhood of zero. This topology is locally
bounded, that is, it has a bounded neighborhood of zero. Actually, every locally bounded
topology arises in this way. We refer the reader to [18, 26] for general information on locally
bounded spaces.

A quasinormed space is a linear space X equipped with a quasinorm. If X is complete
for the quasinorm topology we say that X is a quasi-Banach space.

Let p ∈ (0, 1]. A p-normed (respectively, p-Banach) space is a quasi-normed (respectively,
quasi-Banach) space whose quasinorm is a p-norm, that is, it satisfies the inequality ‖x +
y‖p ≤ ‖x‖p + ‖y‖p. The case p = 1 corresponds to the popular class of Banach spaces.
Observe that every p-norm is also a q-norm for each q ≤ p.
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It is an important result of Aoki and Rolewicz that every quasinorm is equivalent to a
p-norm for some p ∈ (0, 1] in the sense that they induce the same topology; see [18, Theorem
1.3] or [26, Theorem 3.2.1].

Let X and Y be quasinormed spaces. A linear map f : X → Y is a (bounded) operator
if there is a constant K such that ‖f(x)‖Y ≤ K‖x‖X for all x ∈ X. The infimum of the
constants K for which the preceding inequality holds is denoted by ‖f‖, the quasinorm of f .

If besides one has (1− ε)‖x‖X ≤ ‖f(x)‖Y ≤ (1 + ε)‖x‖X for some ε ∈ [0, 1) independent
of x ∈ X, then f is called an ε-isometry. If ‖f(x)‖Y = ‖x‖X for all x ∈ X, then f is called
an isometry. Isometries are not assumed to be surjective. However, we say that X and Y
are isometric if there is a surjective isometry f : X → Y .

Note that there is no quasi-Banach space containing, for every ε > 0 and every p ∈
(0, 1], a subspace ε-isometric to the 2-dimensional space `2

p, the space K2 with the p-norm

‖(s, t)‖p = (|s|p + |t|p)1/p. So, strictly speaking, the title of the paper is a bit exaggerated.

1.4. Push-outs. This section is an adaptation of [2, Section 2.1] to the p-normed set-
ting.

Let (Xγ)γ∈Γ be a family of p-Banach spaces, where Γ is a set of indices. We set

`p(Γ, Xγ) =

(xγ) ∈
∏
γ∈Γ

Xγ :

(∑
γ

‖xγ‖p
)1/p

<∞


with the obvious p-norm. If the family has two spaces only, say X and Y , we just write
X ⊕p Y . It is important to realize that this construction represents the direct sum in the
category of p-Banach spaces and nonexpansive operators in the obvious sense.

Let u : X → Y and v : X → Z be operators acting between p-normed spaces. The
associated push-out diagram is

(1)

X
u−−−→ Y

v

y yv′
Z

u′−−−→ PO

Here, PO = PO(u, v) is the quotient of the p-sum Y ⊕p Z by S, the closure of the
subspace {(u(x),−v(x)) : x ∈ X}. The map u′ : Z → PO is the inclusion of Z into Y ⊕p Z,
followed by the quotient map of Y ⊕p Z onto PO = (Y ⊕p Z)/S. The operator v′ is defined
analogously. The universal property behind this construction is that the preceding diagram
is “minimally commutative”, in the sense that if v′′ : Y → E and u′′ : Z → E are operators
such that u′′ ◦ v = v′′ ◦ u, then there is a unique operator w : PO→ C satisfying u′′ = w ◦ u′
and v′′ = w ◦ v′. Clearly, w((y, z) + S) = v′′(y) + u′′(z).

As for the quasinorm of the operators appearing in (1) it is obvious that both u′ and v′

are nonexpansive. The proof of the following remark is left to the reader.
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Lemma 1.1. Referring to Diagram 1, if u is an isometry and ‖v‖ ≤ 1, then u′ is an
isometry.

1.5. Direct limits. Let (Xα) be a family of p-Banach spaces indexed by a directed set
Γ whose preorder is denoted by ≤. Suppose that, for each α, β ∈ Γ with α ≤ β we have an
isometry fβα : Xα → Xβ in such a way that fαα is the identity on Xα for every α ∈ Γ and
fγβ ◦fβα = fγα provided α ≤ β ≤ γ. Then (Xα, f

β
α ) is said to be a directed system of p-Banach

spaces.
The direct limit of the system is constructed as follows. First we take the disjoint union⊔

αXα and we define an equivalence relation ∼ by identifying xα ∈ Xα and xβ ∈ Xβ if there
is γ ∈ Γ such that fγα(xα) = fγβ (xβ).

Then we may use the natural inclusion maps ıγ : Xγ →
⊔
αXα to transfer the linear

structure and the p-norm from the spaces Xα to
⊔
αXα/∼ thus obtaining a p-normed space

whose completion is called the direct limit of the system and is denoted by lim−→Xγ. The

universal property behind this construction is the following: if we are given a system of
nonexpansive operators uγ : Xγ → Y , where Y is a p-Banach space, which are compatible
with the fβα in the sense that uα = uβ ◦ fβα for α ≤ β, then there is a unique nonexpansive
operator u : lim−→Xγ → Y such that u ◦ ıα = uα for every α ∈ Γ.

2. Construction of p-Banach spaces of almost universal disposition

Let C be a class of quasi-Banach spaces. Following [13, Definition 2], let us say that a
quasi-Banach space U is of almost universal disposition for the class C if, for every ε > 0
and for every isometry g : X → Y , where Y belongs to C and X is a subspace of U , there
is an ε-isometry f : Y → U such that f(g(x)) = x for all x ∈ X.

Here is the main result of the paper.

Theorem 2.1. For every p ∈ (0, 1] there exists a unique separable p-Banach space of almost
universal disposition for finite dimensional p-Banach spaces, up to isometries. This space
contains an isometric copy of every separable p-Banach space.

From now on we fix p ∈ (0, 1] once and for all. We remark that everything in this paper
is well-known for p = 1. However, the spaces we shall construct have rather unexpected
properties when p < 1 and shed some light on a widely ignored paper by Kalton [16]; see
Proposition 5.2 below.

Concerning the last statement of Theorem 2.1, it is perhaps worth noticing that, while
it is well-known that the separable Banach space C[0, 1] (as well as G) contains an isometric
copy of every separable Banach space, there is no available proof of the corresponding fact
for p-Banach spaces for p < 1. In [15, Theorem 4.1(a)] it is stated without proof that for
0 < p < 1 there exists a separable p-Banach space which is “universal” for the class of
all separable p-Banach spaces. This result also appears in [26, Theorem 3.2.8] but, as far
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as we can understand, the rather involved proof only gives “universality with respect to
ε-isometries”.

Before embarking into the proof of Theorem 2.1, let us record the following remark.

Lemma 2.2. Let U be a p-Banach space. We assume that for every ε > 0 and every isometry
g : X → Y , where Y is a finite dimensional p-Banach space and X is a subspace of U , there
is an ε-isometry f : Y → U such that ‖f(g(x))− x‖ ≤ ε‖x‖ for all x ∈ X.

Then U is of almost universal disposition for finite dimensional p-Banach spaces.

Proof. This obviously follows from the fact that if B is a basis of Y , then for every
ε > 0 there is δ (depending on ε and B) such that if t : Y → U is linear map with ‖t(b)‖ ≤ δ
for every b ∈ B, then ‖t‖ ≤ ε. �

The following result, which should be compared to [16, Lemma 4.2] and the construction
in [2, Section 3], is the key step in our construction. It is assumed that the families J and
L are actually sets.

Lemma 2.3. Let E be a p-Banach space, J be a family of isometric embeddings between
p-Banach spaces and L a family of operators with values in E. Then there is a p-Banach
space E ′ and an isometry ı : E → E ′ having the following property: if u : A → B is in J
and f : A→ E is in L, then there is f ′ : B → E ′ such that f ′ ◦ u = ı ◦ f , with ‖f ′‖ = ‖f‖.
Moreover, if f is an ε-isometry, then f ′ is an ε-isometry too.

Proof. First of all we observe that one may assume that each operator in L is of norm
one: otherwise we may replace L by the new family {f/‖f‖ : f ∈ L} since f is an ε-isometry
if and only if 1− ε ≤ ‖f‖ ≤ 1 + ε and f/‖f‖ is a δ-isometry, with δ = 1− (1− ε)/‖f‖.

If f : X → Y is an operator, then we put dom(f) := X and cod(f) := Y . Note that
cod(f) may be larger than the range of f . Set Γ = {(u, t) ∈ J × L : dom(u) = dom(t)}.
We consider the spaces of p-summable families `p(Γ, dom(u)) and `p(Γ, cod(u)). We have an
isometry ⊕J : `p(Γ, dom(u)) → `p(Γ, cod(u)) given by ⊕J((x(u,t))(u,t)∈Γ) = (u(x(u,t)))(u,t)∈Γ.
In a similar vein, we can define a nonexpansive operator

∑
L : `p(Γ, dom(u)) → E by

letting
∑

L((x(u,t))(u,t)∈Γ) =
∑

(u,t)∈Γ t(x(u,t)). The notation is slightly imprecise because
both operators depend on Γ.

Now we can consider the push-out diagram

(2)

`p(Γ, dom(u))
⊕J−−−→ `p(Γ, cod(u))

∑
L

y (
∑

L)′
y

E
(⊕J)′−−−→ PO

Let us see that the lower arrow does the trick so that we may take E ′ = PO and ı = (⊕J)′.
We already know that (⊕J)′ is an isometry and also that (

∑
L)′ is nonexpansive.



QUASI-BANACH SPACES OF ALMOST UNIVERSAL DISPOSITION 7

Fix (v, s) in Γ. Put X = dom(v) = dom(s) and Y = cod(v). Let s′ be the inclusion
of Y into the (v, s)-th coordinate of `p(Γ, cod(u)) followed by (

∑
L)′. As Diagram (2) is

commutative, it is clear that s′ ◦ v = (⊕J)′ ◦ s and also that s′ is nonexpansive.
Now suppose s is an ε-isometry, that is, (1− ε)‖x‖X ≤ ‖s(x)‖Y ≤ ‖x‖X (recall that s is

nonexpansive). For y ∈ Y one has

‖s′(y)‖PO = ‖(ı(v,s)(y), 0) + S‖`p(Γ,cod(u))⊕pE,

where S = {((⊕J)((x(u,t))),−(
∑

L)((x(u,t)))) : (x(u,t)))(u,t)∈Γ ∈ `p(Γ, dom(u))}.
Clearly,

∥∥ı(v,s)(y)− (u(x(u,t)))(u,t)

∥∥p
`p(Γ,cod(u))

+

∥∥∥∥∥∥
∑

(u,t)∈Γ

t(xu,t)

∥∥∥∥∥∥
p

E

≥ ‖y − v(x)‖pY + ‖s(x)‖pE,

where x = x(v,s). Now, if ‖x‖X ≥ ‖y‖Y one has

‖y − v(x)‖pY + ‖s(x)‖pE ≥ ‖s(x)‖pE ≥ (1− ε)p‖x‖pX ≥ (1− ε)p‖y‖pY .

If ‖x‖X ≤ ‖y‖Y , then

‖y − v(x)‖pY + ‖s(x)‖pE ≥ ‖y‖
p
Y − ‖v(x)‖pY + (1− ε)p‖x‖pX

≥ ‖y‖pY − (1− (1− ε)p)‖x‖pX
≥ (1− ε)p‖y‖pY .

Thus, ‖s′(y)‖PO ≥ (1− ε)‖y‖Y and s′ is a nonexpansive ε-isometry. �

Lemma 2.4. Every separable p-Banach space is isometric to a subspace of a separable p-
Banach space of almost universal disposition.

Proof. Let F be a countable family of isometries between finite-dimensional p-normed
spaces having the following density property: for every isometry of finite-dimensional p-
normed spaces g : A → B and every ε ∈ (0, 1) there is f ∈ F and surjective ε-isometries
u : A→ dom(f) and v : B → cod(f) making commutative the square

A
g−−−→ B

u

y v

y
dom(f) −−−→

f
cod(f)

Let S be a separable p-Banach space. We shall construct inductively a chain of separable
p-Banach spaces based on the nonnegative integers

G0
ı1−−−→ . . . −−−→ Gn−1

ın−−−→ Gn
ın+1−−−→ Gn+1 −−−→ . . .
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as follows. We put G0 = S and, assuming that Gk and ık have been constructed for k ≤ n,
we take a countable set of operators Ln such that for every ε ∈ (0, 1), every f ∈ F and every
ε-isometry u : dom(f)→ Gn, there is v ∈ Ln satisfying ‖u− v‖ < ε.

Then, we apply Lemma 2.3 with E = Gn, J = F,L = Ln and we set Gn+1 = E ′ and
ın+1 = ı.

Finally, we consider the direct limit

Gp(S) = lim−→Gn

and we prove that it satisfies the hypothesis of Lemma 2.2.
So suppose we are given an isometry g : X → Y , where Y is a finite dimensional p-Banach

space and X is subspace of Gp(S) and ε > 0. We shall prove that there is an ε-isometry
f : Y → Gp(S) such that ‖f(g(x))− x‖ ≤ ε‖x‖ for all x ∈ X.

Let us fix δ > 0. The precise value of δ required here will be announced later.
First, there is an integer n and a linear map w : X → Gn such that ‖w(x)− x‖ ≤ δ‖x‖.

Moreover, we may take h ∈ F and δ-isometries u and v making the following diagram
commutative:

dom(h)
h−−−→ cod(h)

u

y yv
X

g−−−→ Y
In fact we can clearly assume that t = w ◦ u is in Ln and also that it is a δ-isometry.

Let t′ : cod(h) → Gn+1 be a δ-isometry extending t and set f = t′ ◦ v−1. Obviously
‖f(g(x))− x‖ = ‖w(x)− x‖ ≤ δ‖x‖ for all x ∈ X. Moreover,

(1− δ)2‖y‖ ≤ ‖f(y)‖ ≤ (1− δ)2‖y‖ (y ∈ Y )

and therefore taking δ =
√

1 + ε− 1 suffices. �

3. Uniqueness

The following result is the first step towards the proof of uniqueness in Theorem 2.1. It
is the p-convex analogue of [21, Lemma 2.1]. As the reader can imagine, the proof has to be
different here since one needs to avoid the use of linear functionals to work with p-normed
spaces.

Lemma 3.1. Let X and Y be p-normed spaces and f : X → Y an ε-isometry, with ε ∈ (0, 1).
Let i : X → X ⊕ Y and j : Y → X ⊕ Y be the canonical inclusions. Then there is a p-norm
on X ⊕ Y such that ‖f ◦ j − i‖ ≤ ε and both i and j are isometries.

Proof. Put

‖(x, y)‖p = inf {‖x0‖pX + ‖y1‖pY + εp‖x2‖pX : (x, y) = (x0, 0) + (0, y1) + (x2,−f(x2))} .
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It is easily seen that this formula defines a p-norm on X ⊕ Y . Let us check that ‖(x, 0)‖ =
‖x‖X for all x ∈ X. The inequality ‖(x, 0)‖ ≤ ‖x‖X is obvious. As for the converse, suppose
x = x0 + x2 and y1 = f(x2). Then

‖x0‖pX + ‖y1‖pY + εp‖x2‖pX = ‖x0‖pX + ‖f(x2)‖pY + εp‖x2‖pX
≥ ‖x0‖pX + (1− ε)p‖x2‖pX + εp‖x2‖pX
= ‖x0‖pX + ‖(1− ε)x2‖pX + ‖εx2‖pX
≥ ‖x‖pX ,

as required.
Next we prove that ‖(0, y)‖ = ‖y‖Y for every y ∈ Y . That ‖(0, y)‖ ≤ ‖y‖Y is again

obvious. To prove the reversed inequality assume x0 +x2 = 0 and y = y1− f(x2). As t→ tp

is subadditive on R+ for p ∈ (0, 1], we have

‖x0‖pX + ‖y1‖pY + εp‖x2‖pX = ‖x2‖pX + ‖y1‖pY + εp‖x2‖pX
≥ ‖y1‖pY + (1 + εp)‖x2‖pX
≥ ‖y1‖pY + (1 + ε)p‖x2‖pX
≥ ‖y1‖pY + ‖f(x2)‖pY
≥ ‖y‖pY .

To end, let us estimate ‖j ◦ f − i‖. We have

‖j ◦ f − i‖ = sup
‖x‖≤1

‖j(f(x))− i(x)‖ = sup
‖x‖≤1

‖(−x, f(x))‖ ≤ ε

and we are done. �

A linear operator f : X → Y is called a strict ε-isometry if for every x ∈ X,

(1− ε)‖x‖X < ‖f(x)‖Y < (1 + ε)‖x‖X ,

where ε ∈ (0, 1). Note that when X is finite dimensional, every strict ε-isometry is an
η-isometry for some η < ε.

Lemma 3.2. Let U be a p-Banach space of almost universal disposition for finite dimensional
p-Banach spaces and let f : X → Y be a strict ε-isometry, where Y is a finite-dimensional
p-Banach space, X is a subspace of U and ε ∈ (0, 1). Then for each δ > 0 there exists a
δ-isometry g : Y → U such that ‖g(f(x))− x‖ < ε‖x‖ for all x ∈ X.

Proof. Choose 0 < η < ε such that f is an η-isometry. Shrinking δ if necessary, we may
assume that δp + (1 + δ)pηp < εp. Let Z denote the direct sum X ⊕ Y equipped with the p-
norm given by Lemma 3.1 and let i : X → Z and j : Y → Z denote the canonical inclusions,
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so that ‖j ◦ f − i‖ < η. Let h : Z → U be a δ-isometry such that ‖h(i(x))− x‖ ≤ δ‖x‖ for
x ∈ X. Then g = h ◦ j is a δ-isometry from Y into U and we have

‖x− g(f(x))‖p ≤ ‖x− h(i(x))‖p + ‖h(i(x))− h(j(f(x))‖p

≤ δp‖x‖p + (1 + δ)p‖i(x)− j(f(x))‖pZ
≤ (δp + (1 + δ)pηp)‖x‖p < εp‖x‖p,

as required. �

We are now ready for the proof of the uniqueness. Note that the following result, together
with Lemma 2.4, completes the proof of Theorem 2.1.

Theorem 3.3. Let U and V be separable p-Banach spaces of almost universal disposition
for finite dimensional p-Banach spaces. Let f : X → V be a strict ε-isometry, where X
is a finite dimensional subspace of U and ε ∈ (0, 1). Then there exists a bijective isometry
h : U → V such that ‖h(x)− f(x)‖V ≤ ε‖x‖U for every x ∈ X. In particular, U and V are
isometrically isomorphic.

Proof. Fix 0 < η < ε such that f is an η-isometry and then choose 0 < λ < 1 such that

(?) ηp
1 + 3λp

1− λp
< ε.

Let εn = λnη. We define inductively sequences of linear operators (fn), (gn) and finite
dimensional subspaces (Xn), (Yn) of U and V , respectively, so that the following conditions
are satisfied:

(0) X0 = X, Y0 = f [X], and f0 = f ;
(1) fn : Xn → Yn is an εn-isometry;
(2) gn : Yn → Xn+1 is an εn+1-isometry;
(3) ‖gnfn(x)− x‖ < εn‖x‖ for x ∈ Xn;
(4) ‖fn+1gn(y)− y‖ < εn+1‖y‖ for y ∈ Yn;
(5) Xn ⊂ Xn+1, Yn ⊂ Yn+1,

⋃
nXn and

⋃
n Yn are dense in U and V , respectively.

We use condition (0) to start the inductive construction. Suppose that fi, Xi, Yi, for i ≤ n,
and gi for i < n, have been constructed. We easily find gn, Xn+1, fn+1 and Yn+1 using
Lemma 3.2.

To guarantee that Condition (5) holds, we may start by taking sequences (xn) and (yn)
dense in U and V , respectively and then we require first that Xn+1 contains both xn and
gn[Yn] and then that Yn+1 contains both yn and fn+1[Xn+1]. Thus, the construction can be
carried out.

Fix n ∈ ω and x ∈ Xn with ‖x‖ = 1. Using (4), we get

‖fn+1gnfn(x)− fn(x)‖p < εpn+1 · ‖fn(x)‖p ≤ εpn+1 · (1 + εn)p = (λn+1η)p · (1 + λnη)p.
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Using (3), we get

‖fn+1gnfn(x)−fn+1(x)‖p ≤ ‖fn+1‖p · ‖gnfn(x)−x‖p < (1+εn+1)p ·εpn = (λpη)p · (1+λn+1η)p.

These inequalities give

‖fn(x)− fn+1(x)‖p < (λnη + λnηλn+1η)p + (λnηλn+1η + λn+1η)p

< ηp(λnp + 2λ(n+1)p + λ(n+1)p) = ηp(λnp + 3λ(n+1)p).(??)

Now it is clear that (fn(x))n∈ω is a Cauchy sequence. Given x ∈
⋃
n∈ωXn, define h(x) =

limn≥m fn(x), where m is such that x ∈ Xm. Then h is an εn-isometry for every n ∈ ω,
hence it is an isometry. Consequently, it extends to an isometry on h : U → V that we do
not relabel. Furthermore, (?) and (??) give

‖f(x)− h(x)‖ ≤
∞∑
n=0

ηp(λnp + 3λ(n+1)p) = ηp
1 + 3λp

1− λp
< ε

It remains to see that h is a bijection. To this end, we check as before that (gn(y))n≥m is a
Cauchy sequence for every y ∈ Ym. Once this is done, we obtain an isometry g : V → U .
Conditions (3) and (4) tell us that g ◦h is the identity on U and that h ◦ g is the identity on
V . This completes the proof. �

4. Nonseparable generalizations

As the reader may expect, we say that a quasi-Banach space U is of universal disposition
for a given class of quasi-Banach spaces C if, whenever g : X → Y is an isometry, where
Y belongs to C and X is a subspace of U , then there is an isometry f : Y → U such that
f(g(x)) = x for all x ∈ X.

Using Gp as an isometrically universal separable p-Banach space and iterating Lemma 2.3
until the first uncountable ordinal ω1 we now proceed as in [2, Proposition 3.1(a)] to prove
the following.

Theorem 4.1. There is a p-Banach space of universal disposition for separable p-Banach
spaces and whose density character is the continuum.

Proof. Let ω1 be the first uncountable ordinal. We may regard ω1 as the set of all
countable ordinals equipped with the obvious order; see [11] for details. We are going to
define a transfinite sequence of p-Banach spaces (Gα

p , f
β
α ) indexed by ω1 having the following

properties:

(a) For each α ∈ ω1 the density character of Gα
p is at most the continuum.

(b) If β = α + 1 and g : X → Y is an isometry, where Y is a separable p-Banach
space and X is a subspace of Gα

p , then there is an isometry f : Y → Gβ
p such that

f(g(x)) = fβα (x) for all x ∈ X.
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We proceed by transfinite induction on α ∈ ω1. Let us fix an arbitrary p-Banach space
C with density 2ℵ0 . Then, we take G0

p = C to start.
The inductive step is as follows. We fix γ ∈ ω1 and we assume that the directed system

(Gα
p , f

β
α ) has been constructed for α, β < γ in such a way that (a) and (b) hold for α, β < γ.

We want to see that we can continue the system in such a way that (a) and (b) now hold
for α, β < γ + 1. We shall distinguish two cases.

First, assume γ is a limit ordinal. Then we take Gγ
p = lim−→α<γG

α
p and fγα = ıα. It is clear

that dens(Gγ
p) ≤ 2ℵ0 and there is nothing else to prove since γ cannot arise as α + 1 for

α < γ.
Now, suppose γ is a successor ordinal, say γ = δ + 1. To construct Gδ+1

p we consider the
set of all isometric embeddings between subspaces of Gp and we call it J and the set L of
all Gδ

p-valued isometries whose domain is a subpace of Gp – recall that Gδ
p is already defined

by the induction hypothesis. Now, we let E = Gδ
p and we apply Lemma 2.3 with ε = 0 to

get the push-out space Gδ+1
p = E ′ and f δ+1

δ = ı. Observe that Gδ+1
p has density character at

most c since it is a quotient of the direct sum of Gδ
p and `p(Γ, cod(u)), where Γ is a subset

of J× L, with |J|, |L| ≤ c and cod(u) separable.
Now, for α < δ we put f δ+1

α = f δ+1
δ ◦ f δα and the Principle of Transfinite Induction goes

at work.
The remainder of the proof is rather easy. We define U as the direct limit of the system

(Gα
p )α and we consider the natural isometries ıα : Gα

p → U , so that

U =
⋃
α∈ω1

ıα[Gα
p ].

Observe that it is not necessary to take closures here. Obviously, the density character of U
is at most the continuum.

Suppose g : X → Y is an isometry, where Y is a separable p-Banach space and X a
subspace of U . Then there is α ∈ ω1 so that X ⊂ ıα[Gα

p ]. It is straightforward from (c) that

there is an isometry f : Y → Gα+1
p such that ıα+1(f(g(x))) = x for every x ∈ X. �

The following result, due to Ben Yaacov and Henson [5], with a more straightforward
proof found by Richard Haydon, shows that it is impossible to reduce the size of the space
in Theorem 4.1. Formally, this result was stated and proved for p = 1, however an easy
adaptation gives exactly the same for any p ∈ (0, 1]. Namely, a p-Banach space of universal
disposition for the class of p-Banach spaces of dimension three or less must already have
density 2ℵ0 . This was asked in [2, Problem 2] for p = 1.

Proposition 4.2 (Ben Yaacov and Henson [5]). Let 0 < p ≤ 1, let H denote the 2-
dimensional Hilbert space and suppose X ⊃ H is a p-Banach space with the following prop-
erty:
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(SG) Given an isometric embedding i : H → F , where F is a 3-dimensional p-Banach
space, there exists an isometric embedding j : F → X such that j ◦ i is the inclusion
H ⊂ X.

Then the density of X is at least the continuum.

Proof. (Haydon) Let S be the positive part of the sphere of H. Given φ ∈ S, we define
a norm on H ⊕K (recall that K is the scalar field) by the formula

‖(x, λ)‖pφ = max
{
‖x‖p2, |λ|p + |(x|φ)|p

}
,

where (·|·) denotes the usual scalar product on H. Note that ‖(0, 1)‖φ = 1 and ‖ · ‖φ extends
the Euclidean norm ‖ · ‖2 of H, where x ∈ H is identified with (x, 0). Using (SG), for each
φ ∈ S we can find eφ ∈ X such that the map iφ : H ⊕K→ X, defined by iφ(x, λ) = x+λeφ,
is an isometric embedding with respect to ‖ · ‖φ.

Fix φ, ψ ∈ S such that φ 6= ψ and let ‖ · ‖ denote the p-norm of X. Fix µ > 0 and let
w = µφ ∈ H ⊂ X. Then

‖eφ − eψ‖p ≥ ‖eφ + w‖p − ‖eψ + w‖p = ‖(µφ, 1)‖pφ − ‖(µφ, 1)‖pψ.

Finally, observe that ‖(µφ, 1)‖pφ = 1 + µp and

‖(µφ, 1)‖pψ = max
{
µp, 1 + µp|(φ|ψ)|p

}
= µp,

whenever µ is big enough, because |(φ|ψ)| < 1 (recall that φ, ψ are distinct vectors from the
open unit hemisphere of H). Thus, we conclude that ‖eφ − eψ‖ ≥ 1 whenever φ 6= ψ, which
shows that the density of X is at least |S| = 2ℵ0 . �

A couple of additional remarks about Theorem 4.1 are in order. First, it is clear that
any p-Banach space of universal disposition for the class of all separable p-Banach spaces
must contain an isometric copy of every p-Banach space of density ℵ1. This is so because
every quasi-Banach space X of density ℵ1 can be written as X =

⋃
α∈ω1

Xα, where each Xα

is a separable subspace of X and Xα ⊂ Xβ whenever α ≤ β are countable. For the same
reason, if we assume the continuum hypothesis, then we can easily obtain uniqueness up to
isometries in Theorem 4.1. See Section 7.3 for more on this.

5. Some forms of injectivity for p-Banach spaces

In this Section we study the extension of operators with values in Gp and its nonseparable
relatives.

Definition 5.1. Let E be a p-Banach space.

(a) We say that E is injective amongst p-Banach spaces if for every p-Banach space
X and every subspace Y of X, every operator t : Y → E can be extended to an
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operator T : X → E. If this can be achieved with ‖T‖ ≤ λ‖t‖ for some fixed λ ≥ 1,
then E is said to be λ-injective amongst p-Banach spaces.

(b) E is said to separably injective or separably λ-injective amongst p-Banach spaces if
the preceding condition holds when X is separable.

(c) Finally, E is said to be locally injective amongst p-Banach spaces if there is a
constant λ such that every finite dimensional p-Banach space X and every subspace
Y of X, every operator t : Y → E can be extended to an operator T : X → E with
‖T‖ ≤ λ‖t‖.

These notions play a fundamental role in Banach space theory. As it is well-known,
a Banach space is injective (amongst Banach spaces) if and only if it is a complemented
subspace of `∞(I) for some set I. Also, a Banach space is locally injective if and only if it
is a L∞-space and it is locally injective with constant λ for every λ > 1 if and only if it is a
Lindenstrauss space.

As for separable injectivity, Sobczyk theorem asserts that c0 is separably 2-injective and
a deep result by Zippin states that every separable separably injective Banach space has
to be isomorphic to c0. Nevertheless, there is a large variety of (nonseparable) separably
injective Banach spaces, see [29, 3].

Let us call a p-Banach space E locally (1+)-injective if it satisfies (c) above with each
λ > 1.

Proposition 5.2. Let 0 < p < 1.

(a) No nonzero p-Banach space is injective amongst p-Banach spaces.
(b) Every space of almost universal disposition for finite dimensional p-Banach spaces,

in particular Gp, is locally (1+)-injective amongst p-Banach spaces.
(c) All spaces of universal disposition for separable p-Banach spaces, in particular those

appearing in Theorem 4.1, are separably 1-injective amongst p-Banach spaces.

Proof. (a) Let E be a p-Banach space with density character ℵ. Let µ denote Haar
measure on the product of a family of 2ℵ copies of T, the unit circle. Then there is no
nonzero operator from Lp(µ) to E (recall that p < 1). This was proved for ℵ = ℵ0 by Kalton
(see [16, p. 163, at the end of Section 3]) and by Popov in general [25, Theorem 1].

Thus, if we fix some nonzero e ∈ E and we consider the subspace K of constant functions
in Lp(µ), then the operator λ ∈ K 7→ λe ∈ E cannot be extended and E is not injective.

(b) Assume U is of almost universal disposition for finite dimensional p-Banach spaces.
Let X be a finite dimensional p-Banach space, Y a subspace of X and t : Y → U an operator
of norm one. We will prove that, for each ε > 0, there is an extension T : X → U with
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‖T‖ ≤ 1 + ε. Consider the push-out diagram

Y −−−→ X

t

y yt′
t[Y ]

ı−−−→ PO

where the unlabelled arrow is plain inclusion. As ı is an isometry, for each ε > 0, there is an
ε-isometry u : PO→ U such that ı(t(y)) = u(t(y)) for all y ∈ Y . Then u ◦ t′ is an extension
of t to X with norm at most 1 + ε.

(c) Replace “finite dimensional” by “separable”, take the closure of t(Y ), delete the word
“almost”, and put ε = 0 in the proof of (b). �

6. Universal operators on p-Gurarĭı spaces

Throughout this section, we again fix p ∈ (0, 1]. Our aim is to construct a nonexpansive
projection Pp : Gp → Gp whose kernel is isometric to Gp and the following condition is
satisfied:

(P) Given a nonexpansive operator T : X → Gp, where X is a separable p-Banach space,
there exists an isometry i : X → Gp such that Pp ◦ i = T .

This will show, in particular, that Gp has nontrivial projections.
For the remaining part of the section we fix a locally (1+)-injective separable p-Banach

space H. Note that, by Proposition 5.2, we may take H = Gp. In fact, besides obvious
variants like the c0-sum of Gp and its finite dimensional counterparts, we do not know
essentially different examples, unless p = 1, where being locally (1+)-injective is the same
as being a Lindenstrauss space and a projection satisfying (P) has already been described
in [20].

In order to present the announced construction, we shall define a special category involv-
ing H, which is actually a particular case of so-called comma categories. These ideas come
from a recent work of Pech & Pech [24] as well as from Kubís [20], where an abstract theory
of almost homogeneous structures has been developed. Namely, let K be the category whose
objects are pairs of the form 〈S, f〉, where f is a nonexpansive operator into H and S is
a finite-dimensional p-Banach space. A K-morphism from f : S → H into g : T → H is an
isometry i : S → T satisfying g ◦ i = f . Using the properties of push-outs, we easily obtain
the following fact.

Lemma 6.1. K has amalgamations. Namely, given two K-morphisms i, j with the same
domain, there exist K-morphisms i′, j′ such that i′ ◦ i = j′ ◦ j.

We also need the following strengthening of Lemma 3.1.

Lemma 6.2. Let f : X → Y be an ε-isometry between finite dimensional p-Banach spaces
and let R : X → H, S : Y → H be nonexpansive linear operators such that S ◦ f is ε-close to
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R. Let ‖ ·‖ be the p-norm on X⊕Y constructed in the proof of Lemma 3.1 and let i, j be the
canonical isometric embeddings of X and Y , respectively. Then the operator T : X⊕Y → H,
defined by T (x, y) = Rx+Sy, is nonexpansive and has the property that T ◦ i = R, T ◦j = S.
In particular, i, j become K-morphisms.

Proof. Fix (x, y) ∈ X⊕Y and assume x = x0 +x2, y = y1− f(x2). Using the fact that
‖R(x2)− S(f(x2))‖ ≤ ε‖x2‖, we get

‖T (x, y)‖p = ‖R(x0) +R(x2) + S(y1)− S(f(x2))‖p ≤ ‖x0‖pX + ‖y1‖pY + εp‖x2‖pX .
Recall that ‖(x, y)‖p is the infimum of all expressions as above, therefore ‖T (x, y)‖p ≤
‖(x, y)‖p. �

We now construct a sequence

u0 → u1 → u2 → . . .

where each un = 〈Un, Tn〉 is an object of K, each arrow in the diagram above is a morphism
in K, which we shall regard as inclusion of the corresponding space Un so, in particular, each
Tn+1 extends Tn, and the following condition is satisfied:

(†) Given n ∈ N, ε > 0, given an isometric embedding e : Un → V and a nonexpansive
operator Q : V → H satisfying Q◦e = Tn, there exist m > n and and an ε-isometric
embedding e′ : V → Um such that e′ ◦ e is ε-close to the identity of Un and Tm ◦ e′
is ε-close to Q.

The construction can be done either by following the lines of [20] or, simply, by repeating the
construction from the proof of Lemma 2.4, at each stage taking into account a fixed nonex-
pansive linear operator into H and having in mind the push-out property of p-Banach spaces
that provides necessary extensions of nonexpansive operators. Actually, it can be shown
that (†) specifies the sequence {un}n∈N uniquely, up to an isomorphism in the appropriate
category. Denote by U∞ the completion of the union

⋃
n∈N Un and let T∞ be the unique

linear operator extending all Tns. We claim that T∞ is a universal nonexpansive operator
onto H. The properties of T∞ are collected below.

Theorem 6.3. The operator T∞ has the following properties:

(1) It is nonexpansive and right-invertible (in particular, its range is H).
(2) Both its domain and kernel are linearly isometric to Gp.
(3) For every nonexpansive linear operator S : X → H such that X is a separable p-

Banach space, there exists a linear isometric embedding e : X → Gp such that

S = T∞ ◦ e.

Note that if H = Gp then Pp := T∞ is the announced universal projection.

Proof. Obviously, T∞ is nonexpansive, being the pointwise limit of nonexpansive oper-
ators. Condition (3) follows from property (†) of the sequence. Namely, given any operator
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S : X → H from a separable p-Banach space X, we can write S =
⋃
n∈N Sn, where each

Sn has a finite-dimensional domain and S0 = 0. Using (†), the amalgamation property,
Lemma 6.2 and induction, we get an isometric embedding e : X → U∞ such that T∞ ◦e = S.

More precisely, we set εn = 2−n and at each step we define an εn-isometric embedding
en : Xn → Ukn , where Xn is the domain of Sn and Tkn ◦ en is εn-close to Sn. Having defined
en, Lemma 6.2 followed by the amalgamation property gives us K-morphisms i : Ukn → V ,
j : Xn+1 → V with V a finite dimensional p-Banach space, such that i ◦ en is εn-close to j.
In particular, we also have a nonexpansive operator R : V → H so that 〈V,R〉 is a K-object
and R ◦ i = Tkn , R ◦ j = Sn+1. Property (†) gives us kn+1 > kn and an εn+1-isometry
` : V → Ukn+1 such that Tkn+1 ◦ ` is εn+1-close to R. Setting en+1 = ` ◦ j, we obtain an
εn+1-isometry from Xn+1 to Ukn+1 such that Tkn+1 ◦ en+1 is εn+1-close to Sn+1. Finally, the
sequence {en}n∈N converges to an embedding e satisfying T∞ ◦ e = S.

This partially shows (3), since we still need to argue that U∞ is isometric to Gp. Here
we use the property that H is a locally (1+)-injective p-Banach space, therefore, given an
isometric embedding i : Un → V we find an operator R : V → H that extends Tn and has
p-norm ≤ 1 + ε for any fixed ε > 0. Next, we “correct” the operator R so that it becomes
nonexpansive and we use (†) to obtain an ε-isometric embedding of V into U∞ that “almost
realizes” V . This shows that U∞ is the p-Gurarĭı space and completes the proof of (3) and
part of the proof of (2). Now consider the identity operator of H. By (3), it can be obtained
(up to isometry) as a restriction of T∞ to a subspace H of U∞. This shows that T∞ is
right-invertible, completing the proof of (1). It remains to show that kerT∞ is isometric to
Gp.

We come back to the sequence 〈Un, Tn〉 and define Vn = kerTn. Then {Vn}n∈N is a chain
of subspaces of U∞ such that the completion V∞ of its union is precisely the kernel of T∞. In
order to conclude that V∞ is of almost universal disposition for finite dimensional p-Banach
spaces, we proceed in exactly the same way as in the proof of Lemma 2.4 above. The only
new ingredient is “plugging” zero operators from finite dimensional spaces into H. This
completes the proof. �

Finally, note that the universal projection described above says that Gp is isomorphic to
Gp ⊕H. In particular, Gp is isomorphic to Gp ⊕Gp. We also have:

Corollary 6.4. Gp is isomorphic to c0(Gp), the space of all sequences converging to 0 in
Gp, endowed with the maximum p-norm.

Proof. Note that c0(Gp) is locally (1+)-injective, being the completion of the union of
a chain of spaces of the form Gp ⊕ · · · ⊕ Gp endowed with the maximum norm; all these
spaces are locally (1+)-injective, because Gp is so. Finally, Gp ⊕ c0(Gp) is isomorphic to
c0(Gp). �
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7. Miscellaneous remarks and questions

7.1. Mazur’s “rotations” problem. A quasi-Banach space is said to be almost
isotropic if the orbits of the isometry group are dense in the unit sphere: if ‖x‖ = ‖y‖ = 1,
then for every ε > 0 there is a surjective isometry u such that ‖y − u(x)‖ ≤ ε. If this
condition holds even for ε = 0, the space is said to be isotropic: the isometry group acts
transitively on the sphere.

A notorious problem that Banach attributes to Mazur in his “Théorie des Opérations
Linéaires” asks whether `2 is the only separable isotropic Banach space. This is the problem
mentioned by Gurarĭı in the title of [13] and, as far as we know, is still open. We may refer
the reader to [8, 4] for two complementary surveys on the topic.

The following remark is immediate from Theorem 3.3.

Corollary 7.1. The space Gp is almost isotropic. �

It is well-known that G (“our” Gp when p = 1) is not isotropic. However the standard
argument depends on Mazur’s theorem about the existence of smooth points on any separable
Banach space and we do not know how to proceed when p < 1.

It is worth remarking that the notion of “almost isotropic space” that Gurarĭı manages
in [13] is different than ours. Anyway, it is clear from the proof of [13, Theorem 3] that the
spaces Gp are “isotropic” in Gurarĭı ’s sense for all p ∈ (0, 1].

7.2. Ultrapowers of Gp. There is an alternative proof of Theorem 4.1 which is based
on the ultraproduct construction; see [17]. Let (Xi) be a family of p-Banach spaces indexed
by I and let U be a countably incomplete ultrafilter on I. Then the space of bounded
families `∞(I,Xi) with the quasi-norm ‖(xi)‖ = supi ‖xi‖ is a p-Banach space and cU0 (Xi) =
{(xi) : limU ‖xi‖ = 0} is a closed subspace of `∞(I,Xi). The ultraproduct of the family
(Xi) with respect to U , denoted by [Xi]U , is the quotient space `∞(I,Xi)/c

U
0 (Xi) with the

quotient quasinorm. The class of the family (xi) in (Xi)U is denoted by [(xi)].
The quasinorm in [Xi]U can be computed as ‖[(xi)]‖ = limU ‖xi‖.
When all the spaces Xi are the same, say X, the ultraproduct is called the ultrapower

of X following U . One has the following generalization of [2, Proposition 5.7] for which we
provide a simpler proof.

Proposition 7.2. If U is a countably incomplete ultrafilter on the integers, then [Gp]U
is a p-Banach space of universal disposition for separable p-Banach spaces whose density
character is the continuum.

Proof. We denote by I the index set supporting U . Let X be a separable subspace of
[Gp]U and g : X → Y an isometry, where Y is any separable p-Banach space. We will prove
that there is an isometry f : Y → [Gp]U such that f(g(x)) = x for every x ∈ X. Clearly, we
may and do assume that Y/X has dimension one.
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So, let (xn) be a normalized, linearly independent sequence whose linear span is dense
in X and y0 ∈ Y \X. Let Xn be the subspace spanned by (x1, . . . , xn) in Xn and Y n the
subspace spanned by g[Xn] and y0 in Y .

Also, let us fix representatives (xni ) so that xn = [(xni )] for every n. We may assume
‖xni ‖ = 1 for every n and every i. For i ∈ I and n ∈ N, let us denote by Xn

i the subspace of
Gp spanned by (x1

i , . . . , x
n
i ). We define a linear map n,i : Xn → Xn

i by letting n,i(x
k) = xki

for 1 ≤ k ≤ n and linearly on the rest.
To proceed, we observe that the sets

Inε = {i ∈ I such that n,i : Xn → Xn
i is a strict ε-isometry}

are in U for every n and every ε > 0. Let (Jn) be a sequence of subsets of U with
⋂
n Jn = ∅.

For each i ∈ I, set n(i) = max{n ∈ N : i ∈ Jn ∩ In1/n} and observe that n(i)→∞ along U .

Let us form the ultraproducts [Xn(i)]U , [X
n(i)
i ]U and [Y

n(i)
i ]U . It is obvious that [Xn(i)]U

and [X
n(i)
i ]U are isometric through the ultraproduct operator [(n(i),i)]. Moreover, there is a

linear isometry κ : X → [Xn(i)]U that we may define taking κ(x) = [(xi)], where xi ∈ Xn(i) is

any point minimizing the “distance” from x to Xn(i) and the same applies to Y and [Y
n(i)
i ]U .

For each i ∈ I consider the composition g ◦ −1
n(i),i which is a strict (1/n(i))-isometry from

X
n(i)
i into Y n(i). On account of Lemma 3.2 we may find an (1/n(i))-isometry fi : Y n(i) → Gp

such that ‖fi(g(−1
n(i),i(x)))− x‖ ≤ ‖x‖/n(i) for every x ∈ Xn(i)

i . It is now obvious that if f :

Y → [Gp]U denotes the composition of the embedding Y → [Y
n(i)
i ]U with the ultraproduct

operator [(fi)] one obtains an isometry with f(g(x)) = x for every x ∈ X. �

Notice that, while it is unclear whether the spaces arising in the proof of Theorem 4.1 are
isotropic or not, it follows from Corollary 7.1 and rather standard ultraproduct techniques
that every ultrapower of Gp built over a countably incomplete ultrafilter is isotropic.

7.3. Universal spaces. As we have already mentioned, under the continuum hypoth-
esis, all the spaces having the properties appearing in Theorem 4.1 are isometric. It was
observed in [2, Proposition 4.7] that, in the Banach space setting, the uniqueness cannot be
proved in ZFC, the usual setting of set theory, with the axiom of choice. This depends on the
fact that it is consistent with ZFC that there is no Banach space of density 2ℵ0 containing an
isometric copy of all Banach spaces of density 2ℵ0 , a recent result by Brech and Koszmider
[7]. Whether or not the same happens to p-Banach spaces is left open to reflection.

7.4. Vector-valued Sobczyk’s theorem without local convexity. Sobczyk’s the-
orems states that c0, the Banach space of all sequences converging to zero with the sup
norm is separably injective – amongst Banach spaces, of course. More interesting for us is
that if E is a separably injective Banach space, then so is c0(E) – the space of sequences
converging to 0 in E. Several proofs of this fact are available. Some of them made strong use
of local convexity. For instance, Johnson-Oikhberg’s argument in [14] is based on M -ideal
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theory, while Castillo-Moreno proof in [10] uses the bounded approximation property, a very
rare property outside the Banach space setting. It seems, however, that Rosenthal proof in
[27] would survive for p-Banach spaces and in any case the proof in [9] applies verbatim to
p-Banach spaces. So we have the following.

Proposition 7.3. If E is separably injective amongst p-Banach spaces, then so is c0(E).

We do not know whether there is a nontrivial separable space, separably injective amongst
p-Banach spaces when p < 1, but our guess is no. In any case, such a space would necessarily
be a complemented subspace of Gp.

7.5. Operators on Gp when p < 1. It is a classical result in quasi-Banach space theory
that every operator from Lp to a q-Banach space for p < q ≤ 1 is zero. It follows easily that
the same is true replacing Lp by Gp. In particular, the dual of Gp is trivial. In a similar
vein, there is no nonzero operator from Gp into any Lq (here q can be 0) and there is no
compact operator on Gp; the first statement follows from the fact that there is no nonzero
operator from Lp/Hp to L0, see [1] and the second one from the fact that every operator
defined on Lp is either zero or an isomorphism on a copy of `2, see [18, Theorem 7.20] for
which is perhaps the simplest proof.

We do not know whether Gp is isomorphic to all its quotients or complemented subspaces.
In particular we don’t know whether Gp is isomorphic to its quotient by a line.

This is clearly connected to the notion of a K-space. Recall that a quasi-Banach space
X is said to be a K-space if whenever Z is a quasi-Banach space with a subspace L of
dimension one such that Z/L is isomorphic to X, then L is complemented in Z and so Z is
isomorphic to K⊕X.

It would be interesting to know whether the spaces Gp are K-spaces or not. The case
p = 1 is solved in the affirmative by a deep result of Kalton and Roberts [19, Theorem 6.3],
who proved that every L∞-space, and in particular the Gurarĭı space, is a K-space.

Acknowledgments. The proof of Proposition 4.2 is due to Richard Haydon who pre-
sented it to the third named author during the Workshop on Forcing Axioms and their
Applications held at the Fields Institute, Toronto, 22 – 26 October 2012. We thank Richard
Haydon for this elegant argument.
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