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Abstract

We discuss the problem of well-posedness of the compressible (barotropic) Euler system in
the framework of weak solutions. The principle of maximal dissipation introduced by C.M.
Dafermos is adapted and combined with the concept of admissible weak solutions. We use the
method of convex integration in the spirit of the recent work of C.DeLellis and L.Székelyhidi
to show various counterexamples to well-posedness. On the other hand, we conjecture that the
principle of maximal dissipation should be retained as a possible criterion of uniqueness as it is
violated by the oscillatory solutions obtained in the process of convex integration.

Keywords: Maximal dissipation; compressible Euler system; weak solution

1 Introduction

The problem of well-posedness for general systems of (nonlinear) hyperbolic equations remains largely
open, despite an enormous amount of literature and a few particular situations, where rigorous results
are available, see e.g. Benzoni-Gavage, Serre [1], Bressan [2], Dafermos [7], LeFloch [14], Serre [18]
for a review of the state-of-art. The inevitable presence of singularities that may develop in a finite
time, no matter how smooth and/or “small” the data are, gave rise to several concepts of weak
(distributional) solutions, supplemented with various admissibility criteria to pick up the physically

∗The research of E.F. leading to these results has received funding from the European Research Council under the
European Union’s Seventh Framework Programme (FP7/2007-2013)/ ERC Grant Agreement 320078.
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relevant solution. As is well known, nonlinear hyperbolic systems are not well-posed in the class of
weak solutions and may admit typically infinitely many distributional solutions emanating from the
same initial data, among them some apparently non-physical violating certain underlying principles
as, for instance, the Second law of thermodynamics.

The issue of admissibility of weak solutions has been examined recently in the light of the new
results of DeLellis and Székelyhidy [10], [11] in the context of gas dynamics. Adapting the method of
convex integration (see Müller and Šverák [15]) DeLellis an Székelyhidy constructed infinitely many
solutions of the incompressible Euler system emanating from the same initial data and satisfying
the standard admissibility criterion based on mechanical energy dissipation. These results provided
simple examples of non-uniqueness even in the context of compressible fluids and were later extended
in this direction by Chiodaroli [3].

The weak solutions obtained via convex integration are “oscillatory”, or more precisely, their
construction is based on accummulation of infinitely many oscillatory components. Roughly speaking,
the construction starts with a subsolution, for which the density of a physical quantity and the
corresponding flux satisfy a linear equation, where the strict constitutive relation is replaced by a kind
of convex relaxation. The solution are then obtained by modulating on a given subsolution a family
of oscillatory increments that successively “improve” the approximate constitutive relation. Being
constructed by accumulating oscillations, these weak solutions are likely to violate the admissibility
criteria based on energy dissipation, in particular the standard mechanical energy balance. On the
other hand, however, the method produces (non-smooth) initial data, for which the energy inequality
and/or similar admissibility criteria do hold. As a matter of fact, the kinetic energy of these solutions
is fully controlled in the process of construction and could be fixed as an arbitrary function of time,
see Chiodaroli [3], Chiodaroli, DeLellis, and Kreml [4], DeLellis and Székelyhidi [10].

In 1973, Dafermos [6] proposed an admissibility criterion based on maximal dissipation - the
physical solutions are those for which the entropy is produced at the highest possible rate. Several
variants of this principle appeared in the literature, see e.g. Krejč́ı and Straškraba [13], and the
unique physical solutions were identified in a number of cases, in particular for problems in the
simplified 1-D geometry of the physical space, see Dafermos [6]. Although maximal dissipation may
not be always the desired property for certain models (see Dafermos [8]), it seems relevant in the
context of fluid dynamics.

In this paper, we discuss the implications of the principle of maximal dissipation in the context
of the method of convex integration applied to the barotropic Euler system. First, extending the
results of Chiodaroli [3], we identify a rich family of initial data for which the method of convex
integration yields infinitely many global-in-time entropy admissible solutions. Next, we show that
neither of these solutions meets the principle of maximal dissipation. The last observation can be
interpreted as an argument in favour of maximal dissipation as a suitable admissibility criterion in
mathematical fluid dynamics.
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1.1 Euler system for a barotropic compressible fluid

Ignoring the thermal effects we introduce the Euler system in the form

∂t%+ divx(%u) = 0, (1.1)

∂t(%u) + divx(%u⊗ u) +∇xp(%) = 0, (1.2)

where % = %(t, x) is the mass density, u = u(t, x) the velocity, and p = p(%) the pressure, describing
the time evolution of a compressible inviscid fluid. To avoid problems connected with the presence
of a kinematic boundary, we adopt the standard simplification assuming that the motion is space-
periodic, with the underlying physical domain Ω identified with the flat torus

Ω =
(
[−1, 1]|{−1;1}

)N
, N = 2, 3 (1.3)

The problem (1.1 - 1.3) is supplemented with the initial conditions

%(0, ·) = %0, u(0, ·) = u0, %0 > 0 in Ω. (1.4)

Remark 1.1 We have deliberately excluded the case N = 1, where the method of convex integration
fails.

As is well known, solutions to the system (1.1), (1.2) may develop singularities (shocks) in a
finite time no matter how smooth and “small” the initial data are. Thus if we still believe the
system describes the fluid motion also for large times, a kind of generalized (weak) solutions must
be considered. We say that [%,u] is a weak solution to the problem (1.1 - 1.4) in [0, T ]× Ω if:∫

Ω

(
%(τ, ·)ϕ(τ, ·)− %0ϕ(0, ·)

)
dx =

∫ τ

0

∫
Ω

(
%∂tϕ+ %u · ∇xϕ

)
dx dt (1.5)

for any τ ∈ [0, T ], and any ϕ ∈ C∞([0, T ]× Ω);∫
Ω

(
(%u)(τ, ·) ·ϕ(τ, ·)− %0u0 ·ϕ(0, ·)

)
dx =

∫ τ

0

∫
Ω

(
%u · ∂tϕ+ %u⊗u : ∇xϕ+ p(%)divxϕ

)
dx dt (1.6)

for any τ ∈ [0, T ], and any ϕ ∈ C∞([0, T ]× Ω;RN).
The weak solutions considered in this paper are always bounded measurable functions, in partic-

ular, the quantities

% ∈ Cweak([0, T ];L1(Ω)), (%u) ∈ Cweak([0, T ];L1(Ω;RN))

have well defined instantaneous values %(t, ·), (%u)(t, ·).
We say that [%,u] is a weak solution on the time interval [0,∞) (global-in-time weak solution) if

it is a weak solution on any interval [0, T ], T > 0 finite.
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1.2 Admissible weak solutions

The weak solutions of the system (1.1 - 1.4) are, in general, not unique for given initial data. In order
to pick up the physically relevant solutions, we recall the mechanical energy equation, multiplying
(1.2) on u:

∂t

(
1

2
%|u|2 + P (%)

)
+divx

[(
1

2
%|u|2 + P (%)

)
u
]

+divx(p(%)u) = 0, with P (%) = %
∫ %

1

p(z)

z2
dz. (1.7)

We assume that the pressure is an increasing function of the density, specifically,

p ∈ C[0,∞) ∩ C1(0,∞), p(0) = 0, p′(%) > 0 for all % > 0. (1.8)

Consequently, the potential P = P (%) is strictly convex.
Although relation (1.7) can be deduced from the original system as long as the solution is smooth,

it may be violated by some weak solutions of the same problem. This motivates the introduction of
a class of admissible weak solutions satisfying the energy inequality

∂t

(
1

2
%|u|2 + P (%)

)
+ divx

[(
1

2
%|u|2 + P (%)

)
u
]

+ divx(p(%)u) ≤ 0,

or, more appropriately, its weak form:∫ T

0

∫
Ω

[(
1

2
%|u|2 + P (%)

)
∂tϕ+

(
1

2
%|u|2 + P (%)

)
u · ∇xϕ+ p(%)u · ∇xϕ

]
dx dt (1.9)

+
∫

Ω

(
1

2
%0|u0|2 + P (%0)

)
ϕ(0, ·) dx ≥ 0

for any ϕ ∈ C∞c ([0, T )× Ω), ϕ ≥ 0.
Unlike the state variables [%,u], the energy

t 7→
(

1

2
%|u|2 + P (%)

)
(t, ·)

may not be weakly continuous, however, using (1.9) we can still uniquely identify the limits

E(τ+), E(τ−) ∈ L∞(Ω),∫
Ω
E(τ+)ϕ dx = ess lim

t→τ+

∫
Ω

(
1

2
%|u|2 + P (%)

)
(t, ·)ϕ dx for ϕ ∈ C∞(Ω), τ ∈ [0, T ),

and, similarly,∫
Ω
E(τ−)ϕ dx = ess lim

t→τ−

∫
Ω

(
1

2
%|u|2 + P (%)

)
(t, ·)ϕ dx for ϕ ∈ C∞(Ω), τ ∈ (0, T ].
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It is easy to check that the mapping τ 7→ E(τ) is a sum of a weakly continuous and a monotone
(non-increasing) component, in particular,

E(τ+) ≤ E(τ−) for all τ ∈ (0, T ),

where the identity holds with a possible exception of at most countable set of times. Moreover,∫
Ω
E(τ2−) dx ≤

∫
Ω
E(τ1+) dx whenever 0 ≤ τ1 < τ2 ≤ T.

Remark 1.2 Since the density % and the momentum (%u) are weakly continuous in t, the energy

t 7→ 1

2
%|u|2 + P (%) =

1

2

|%u|2

%
+ P (%)

is weakly lower semi-continuous, in particular,

1

2
%|u|2 + P (%)(τ, ·) ≤ E(τ+) for all τ ∈ (0, T ), (1.10)

and
1

2
%|u|2 + P (%)(τ, ·) = E(τ−) = E(τ+) for a.a. τ ∈ (0, T ).

Moreover, it follows from the energy inequality (1.9) that

E(0+) =
1

2
%0|u0|2 + P (%0)

1.3 Principle of maximal dissipation

Adapting slightly the original definition of Dafermos [6], we say that an admissible weak solution
[%,u] of the Euler system (1.1 - 1.4) satisfies the principle of maximal dissipation if the following
holds:

Let τ ∈ [0, T ) and let [%̃, ũ] be another weak solution of (1.1 - 1.4), defined in [0, T̃ ], τ < T̃ ≤ T ,
such that

% = %̃, %u = %̃ũ in [0, τ ]× Ω.

Then there exists a sequence {τn}∞n=1, τn > τ , τn → τ such that∫
Ω
Ẽ(τn+) dx ≥

∫
Ω
E(τn+) dx for all n = 1, 2, . . . ,

where E, Ẽ is the mechanical energy associated with u, ũ, respectively.

In other words, the admissible solutions that comply with the principle of maximal dissipation
loose their mechanical energy at the highest possible rate.
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1.4 Main results

DeLellis and Székelyhidi [10, Theorem 2] showed the existence of initial data [%0,u0] for which the
problem (1.1-1.4) possesses infinitely many global-in-time admissible weak solutions. As a matter
of fact, they take % ≡ 1 and look for solutions of the incompressible Euler system with constant
pressure. Chiodaroli [3] used a refined but still similar approach, with the ansatz % = %0, where %0 is
a given (smooth) function, and where the solutions have constant (in time) density and the pressure
p(%0). In this case, the mechanical energy is changing with time and the energy inequality (1.9) is
valid only on a possibly short interval. As a result, the weak solutions constructed by Chiodaroli [3]
are admissible only locally in time.

In this paper we show the existence of global-in-time admissible solutions for any smooth initial
distribution of the density %0 with sufficiently small ∇x%0, meaning %0 exhibits small oscillations
around a positive constant state. The precise statement of our result reads:

Theorem 1.1 Let the pressure p = p(%) satisfy the hypothesis (1.8). Let %0 ∈ C1(Ω) be given,

0 < % ≤ %0(x) ≤ % for all x ∈ Ω.

Then there exists ε > 0, depending only on the bounds %, %, and the structural properties of p,
and an initial distribution of the velocity

u0 ∈ L∞(Ω;RN)

such that the problem (1.1 - 1.4) admits infinitely many admissible weak solutions [%,u] in [0,∞)×Ω
whenever

sup
x∈Ω
|∇x%0(x)| < ε.

The main idea behind the proof of Theorem 1.1 is a simple observation, already exploited in [5],
that the time evolution of the density % is driven by the acoustic component of the velocity field,
namely

∂t% = −∆Ψ,

where ∇xΨ is the gradient part in the Helmholtz decomposition of the momentum %u. Thus pre-
scribing a priori % = %(t, ·), with the associated acoustic potential Ψ, we can construct the desired
global-in-time solutions applying the technique of convex integration only to the solenoidal compo-
nent of the velocity (momentum).

Next, we turn attention to the way how the solutions are constructed. Roughly speaking, the
solenoidal part v of the momentum belongs to the Cweak([0, T ], L2(Ω;RN))-closure of the set X0,e of
subsolutions,

X0,e[0, T ] =
{
v ∈ Cweak([0, T ], L2(Ω;RN))

∣∣∣ v(0, ·) = v0, v(T, ·) = vT ;
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v ∈ C1((0, T )× Ω;RN), ∂tv + divxU = 0 for a certain U ∈ C1((0, T )× Ω;RN×N
sym ),

1

2%
|v(t, x) +∇xΨ(t, x)|2 ≤ H

(
%,Ψ,v(t, x),U(t, x)

)
< e(t, x) in (0, T )× Ω

}
,

where H = H(·,v,U) is a suitable convex function, and e ∈ C([0, T ]×Ω) is a given “kinetic energy”,
see Section 2 for details.

The key ingredient in the construction of admissible solutions is the following result:

Theorem 1.2 Suppose that v ∈ X0,e[0, T ].
Then for any τ ∈ (0, T ) and any ε > 0 there exists τ ∈ (0, T ),

|τ − τ | < ε,

and w ∈ X0,e[τ , T ] satisfying w(τ , ·) = wτ , w(T, ·) = vT ,

1

2
|wτ +∇xΨ(τ , ·)|2 = e(τ , ·), w(t, ·) = v(t, ·) in a left neighbourhood of T. (1.11)

As we shall see in Section 4, the function w obtained in Theorem 1.2 is used as a subsolution
in the process of construction of global-in-time admissible solutions to the problem (1.1 - 1.4). In
particular, we immediately deduce the following conclusion (see Section 5 for details and further
discussion):

Corollary 1.1 The admissible solutions of the problem (1.1 - 1.4) constructed in the proof of Theo-
rem 1.1 by the method of convex integration do not comply with the principle of maximal dissipation.

The general outline of the paper is as follows. In Section 2, we reformulate the problem in the
form suitable for a direct application of the method of convex integration. Section 3 contains a
variant of a fundamental lemma on the construction of oscillatory solutions. In Section 4, we first
prove Theorem 1.2 and then complete the proof of Theorem 1.1. Finally, Section 5 reveals how
the solutions constructed in the course of the proof of Theorem 1.1 violate the principle of maximal
dissipation. What is more, for each such solution it is possible to construct another one that dissipates
more kinetic energy on any subset of Ω of positive measure.

2 Preliminaries

Similarly to [5], it is convenient to express the momentum %u in terms of its Helmholtz projection
H and the acoustic potential Ψ, namely

%u = v +∇xΨ, v = H[%u], divxv = 0.
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Accordingly, we rewrite the system (1.1), (1.2) in the form

∂t%+ ∆Ψ = 0, (2.1)

∂tv + divx

(
(v +∇xΨ)⊗ (v +∇xΨ)

%

)
+∇x

(
∂tΨ + p(%)− χ

)
= 0, (2.2)

with a suitable spatially homogeneous function χ = χ(t) chosen to satisfy (3.2) below.

2.1 Time evolution of the density

For %0 as in Theorem 1.1, we take

%(t, x) = h(t)%0(x) + (1− h(t))%̃, t ∈ [0, T ], (2.3)

where

%̃ =
1

|Ω|

∫
Ω
%0 dx, h ∈ C∞[0, T ], 0 ≤ h ≤ 1, h(t) = 1 for t ∈ [0,

T

4
], h(t) = 0 for t ∈ [

3

4
T, T ].

Accordingly, the potential Ψ is the unique solution of the elliptic problem

−∆Ψ = ∂t% = h′(t)
(
%0 − %̃

)
,
∫

Ω
Ψ dx = 0. (2.4)

Note that

Ψ(t, ·) = 0 for t ∈
[
0,
T

4

]
∪
[
3

4
T, T

]
.

2.2 Kinetic energy

For %, Ψ satisfying (2.3), (2.4), we introduce the “kinetic energy”

e(t, x) = χ(t)− N

2
∂tΨ(t, x)− N

2
p(%(t, x)) (2.5)

= χ(t) + h′′(t)
N

2
∆−1[%0 − %]− N

2
p
(
h(t)%0(x) + (1− h(t))%̃

)
, e ∈ C1([0, T ]× Ω).

Now, following DeLellis and Székelyhidi [10], we introduce the necessary tools to apply the ma-
chinery of convex integration. Let λmax[A] denote the maximal eigenvalue of a symmetric matrix
A ∈ RN×N

sym . We define the set of subsolutions

X0,e[0, T ] =
{
v ∈ Cweak([0, T ];L2(Ω;RN)

∣∣∣ v(0, ·) = v0, v(T, ·) = vT , divxv = 0,
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v ∈ C1((0, T )× Ω;RN), ∂tv + divxU = 0 for a certain U ∈ C1((0, T )× Ω;RN×N
sym,0),

N

2
λmax

[
(v +∇xΨ)⊗ (v +∇xΨ)

%
− U

]
< e in (0, T )× Ω

}
,

where e is given by (2.5). Note that (see [10])

N

2
λmax

[
(v +∇xΨ)⊗ (v +∇xΨ)

%
− U

]
≥ 1

2

|v +∇xΨ|2

%
,

where equality holds only if

U =
(v +∇xΨ)⊗ (v +∇xΨ)

%
− 1

N

|v +∇xΨ|2

%
I.

The functional λmax can be viewed as a norm on the space RN×N
sym,0 of symmetric traceless tensors.

Finally, we introduce a functional

I[v] =
∫ T

0

∫
Ω

(
1

2

|v +∇xΨ|2

%
− e

)
dx dt.

The functional I measures the distance between a subsolution and the topological boundary of the
set X0,e. As we shall see below, the weak solutions claimed in Theorem 1.1 correspond to the points of
continuity of I on the closure of X0,e. The crucial result providing such a conclusion is the oscillatory
lemma discussed in the next section.

3 Oscillatory lemma and convex integration

We report here a crucial result which can be viewed as a variable-coefficients version of [10, Propo-
sition 3].

Lemma 3.1 Suppose that v ∈ X0,e[0, T ] and that 0 ≤ τ1 < τ2 ≤ T are given.
Then there exist sequences

{wn}∞n=1 ⊂ C∞c ((τ1, τ2)× Ω;RN), {Un}∞n=1 ⊂ C∞c ((τ1, τ2)× Ω;RN)

such that the functions v + wn belong to X0,e[0, T ], with the associated tensor fields U + Un,

wn → 0 in Cweak([0, T ];L2(Ω;RN)),
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and

lim inf
n→∞

‖wn‖2
L2((0,T )×Ω) ≥ Λ

∫ τ2

τ1

∫
Ω

(
e− 1

2

|v +∇xΨ|2

%

)2

dx dt, Λ > 0, (3.1)

where the constant Λ depends only on N and the norm of the quantities %, %−1,∇xΨ, e in L∞((0, T )×
Ω).

We refer to [5, Lemma 3.2] for a complete proof of Lemma 3.1.
With Lemma 3.1 at hand, we can construct solutions of the problem (1.1 - 1.4) in [0, T ] × Ω

repeating step by step the arguments of DeLellis and Shékelyhidi [10] (see also [5, Section 3]).

Step 1. Taking v0 = vT = 0, we fix the function χ ∈ C1[0, T ] in (2.5) in such a way that

v = 0 with U = 0 belong to X0,e[0, T ],

specifically, we need

χ(t) >
N

2

(
∂tΨ(t, x) + p(%)(t, x) + λmax

[
∇xΨ(t, x)⊗∇xΨ(t, x)

%(t, x)

])
for all (t, x) ∈ [0, T ]× Ω. (3.2)

In particular, the set of subsolutions X0,e[0, T ] is non-empty.

Step 2. Using the oscillatory lemma (Lemma 3.1) we show that solutions of (2.1), (2.2)
can be identified with the points of continuity of the functional I on the closure of X0,e[0, T ] in
Cweak([0, T ];L2(Ω;RN)). In particular, these solutions satisfy

v(0, ·) = v(T, ·) = 0, % = %0 in [0,
T

4
], % = %̃ in [

3

4
T, T ], (3.3)

1

2

|v +∇xΨ|2

%
= e = χ(t)− N

2
∂tΨ(t, x)− N

2
p(%(t, x)) a.a. in (0, T )× Ω, (3.4)

where Ψ = 0 in [0,
T

4
] ∪ [

3T

4
, T ].

Step 3. Exactly as in [5, Section 3] we conclude that there are infinitely many solutions to the
problem (2.1), (2.2) - the points of continuity of I - satisfying (3.3), (3.4) provided χ is chosen as in
(3.2).

Remark 3.1 The solutions constructed in the above are obviously not admissible, as they start from
the initial state v0 = 0 and produce mechanical energy. They can be viewed as analogues of the
solutions to the incompressible Euler system obtained by Scheffer [17] and Shnirelman [19].

In order to obtain admissible weak solutions, we have to construct subsolutions, with the associ-
ated mechanical (kinetic) energy left-continuous at the point t = 0. This will be done in the next
section.
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4 Infinitely many admissible solutions

Our goal in this section is to complete the proof of Theorem 1.1. To this end, we first identify a class
of suitable initial data for which we can construct subsolutions with the associated mechanical energy
continuous at t = 0. This is basically the claim of Theorem 1.2 so we we start by its proof, which
can be seen as an extension of [10, Proposition 5] to the case of non-constant energy and variable
coefficients. The proof is quite illustrative since it shows how the machinery of convex integration
works, accumulating small oscillatory increments to a given subsolution.

4.1 Proof of Theorem 1.2

For a fixed energy function e ∈ C1([0, T ]×Ω), we identify a suitable class of initial velocities v0, for
which the kinetic energy is right-continuous at t = 0 (cf. (1.11). In accordance with the hypotheses
of Theorem 1.2, we suppose that the set of subsolutions X0,e[0, T ] contains at least one element v.

4.1.1 Oscillatory sequence

In order to construct a suitable subsolution, we apply successively the oscillatory lemma (Lemma
3.1). More specifically, the function w, the existence of which is claimed in Theorem 1.2, is obtained
as a limit of a sequence {wk}∞k=1 ⊂ X0,e[0, T ],

wk → w in Cweak([0, T ];L2(Ω;RN)),

where we take
w0 = v ≡ v0,

and fix
τ0 = τ, ε0 = ε.

The functions wk are defined recursively by the following procedure:

1. the increment wk − wk−1 is compactly supported in a small neighborhood of the point τk−1,
specifically,

wk ∈ X0,e[0, T ], supp[wk −wk−1] ⊂ (τk−1 − εk, τk−1 + εk), where 0 < εk <
εk−1

2
; (4.1)

2. wk −wk−1 is small in the topology of the space Cweak([0, T ];L2(Ω;RN)), we take

11



d(wk,wk−1) <
1

2k
, sup
t∈(0,T )

∣∣∣∣∣
∫

Ω

1

%
(wk −wk−1) ·wm dx

∣∣∣∣∣ < 1

2k
for all m = 0, . . . , k − 1, (4.2)

for k = 1, . . ., where the symbol d denotes the metric induced by the weak topology on bounded
sets of L2(Ω;RN);

3. the sequence {wk}∞k=0 is oscillatory around a point τk,

τk ∈ (τk−1 − εk, τk−1 + εk),

meaning ∫
Ω

1

2

|wk +∇xΨ|2

%
(τk, ·) dx ≥

∫
Ω

1

2

|wk−1 +∇xΨ|2

%
(t, ·) dx+

λ

ε2
k

α2
k (4.3)

≥
∫

Ω

1

2

|wk−1 +∇xΨ|2

%
(τk−1, ·) dx+

λ

2ε2
k

α2
k for all t ∈ (τk−1 − εk, τk−1 + εk),

where

αk =
∫ τk−1+εk

τk−1−εk

∫
Ω

(
e− 1

2

|wk−1 +∇xΨ|2

%

)
dx dt > 0,

and λ > 0 is constant independent of k.

With w0, . . . ,wk−1 already constructed, our goal is to find wk enjoying the properties (4.1 - 4.3).
To this end, we compute

αk =
∫ τk−1+εk

τk−1−εk

∫
Ω

(
e− 1

2

|wk−1 +∇xΨ|2

%

)
dx dt for 0 < εk <

εk−1

2

and observe that
αk
2εk

=
1

2εk

∫ τk−1+εk

τk−1−εk

∫
Ω

(
e− 1

2

|wk−1 +∇xΨ|2

%

)
dx dt

→
∫

Ω

(
e− 1

2

|wk−1 +∇xΨ|2

%

)
(τk−1) dx > 0 for εk → 0

as the function wk−1 is smooth in (0, T ).
Next, we take εk > 0 small enough so that

1

2εk

∫ τk−1+εk

τk−1−εk

∫
Ω

1

2

|wk−1 +∇xΨ|2

%
dx dt+

Λ(‖%, %−1,∇xΨ, e‖L∞(0,T )×Ω))

4ε2
k

α2
k (4.4)

12



≥
∫

Ω

1

2

|wk−1 +∇xΨ|2

%
(t, ·) dx+

Λ(‖%, %−1,∇xΨ, e‖L∞(0,T )×Ω))

8ε2
k

α2
k

≥
∫

Ω

1

2

|wk−1 +∇xΨ|2

%
(τk−1, ·) dx+

Λ(‖%, %−1,∇xΨ, e‖L∞(0,T )×Ω))

16ε2
k

α2
k

for all t ∈ (τk−1 − εk, τk−1 + εk),

where Λ(‖%, %−1,∇xΨ, e‖L∞(0,T )×Ω)) > 0 is the universal constant from Lemma 3.1.
Applying Lemma 3.1 we can construct a function wk ∈ X0,e such that

supp[wk −wk−1] ⊂ (τk−1 − εk, τk−1 + εk),

d(wk,wk−1) <
1

2k
, sup
t∈(0,T )

∣∣∣∣∣
∫

Ω

1

%
(wk −wk−1) ·wm dx

∣∣∣∣∣ < 1

2k
, m = 0, . . . , k − 1 (4.5)

and ∫ τk−1+εk

τk−1−εk

∫
Ω

1

2

|wk +∇xΨ|2

%
dx dt ≥

∫ τk−1+εk

τk−1−εk

∫
Ω

1

2

|wk−1 +∇xΨ|2

%
dx dt+

Λ

2εk
α2
k, (4.6)

where the last integral in (3.1) has been estimated from below by Jensen’s inequality. The relations
(4.4), (4.6) yield (4.3) for some τk ∈ (τk−1 − εk, τk−1 + εk), and with λ = Λ/16.

4.1.2 A suitable subsolution

It follows from (4.2) that there is w such that

wk → w in Cweak([0, T ];L2(Ω;RN)). (4.7)

Moreover, by virtue of (4.1),
τk → τ ∈ (0, T ), |τ − τ | < ε.

Finally, for any δ > 0, there is k = k0(δ) such that

w(t, ·) = wk(t, ·) = wk0(t, ·) for all t ∈ (0, τ − δ) ∪ (τ + δ, T ), k ≥ k0. (4.8)

In particular, we deduce from (4.8) that

w ∈ X0,e[τ , T ] with w(τ , ·) ∈ L∞(Ω;RN), and w ≡ v, Uw ≡ 0 in a (left) neighborhood of T.
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4.1.3 Continuity of the initial energy

Our ultimate goal is to show that the subsolution w is continuous from the left at τ in the strong
topology of L2(Ω;RN), which is equivalent to (1.11). To this end, we first observe that (4.3) implies

∫
Ω

1

2

|wk−1 +∇xΨ|2

%
(t, ·) dx↗ Z uniformly for t ∈ (τk−1 − εk, τk−1 + εk), (4.9)

therefore
αk
εk

=
1

εk

∫ τk−1+εk

τk−1−εk

∫
Ω

(
e− 1

2

|wk−1 +∇xΨ|2

%

)
dx dt→ 0; (4.10)

whence, finally, ∫
Ω

1

2

|wk +∇xΨ|2

%
(τ , ·) dx↗

∫
Ω
e(τ , ·) dx. (4.11)

Combining the relations (4.11) with (4.2), (4.7) we may infer that

wk(τ , ·)→ w(τ , ·) in L2(Ω;RN)

which yields (1.11). Indeed we have ∫
Ω

1

%
|wn −wm|2(τ , ·) dx

=
∫

Ω

1

%
|wn|2(τ , ·) dx−

∫
Ω

1

%
|wm|2(τ , ·) dx− 2

∫
Ω

1

%
(wn −wm) ·wm(τ , ·) dx for all n > m,

where, by virtue of (4.2),

∫
Ω

1

%
(wn −wm) ·wm(τ , ·) dx =

n−m−1∑
k=0

∫
Ω

1

%
(wk+1 −wk) ·wm(τ , ·) dx→ 0 for m→∞.

We have proved Theorem 1.2.

4.2 Proof of Theorem 1.1

With Theorem 1.2 at hand, we may use the machinery of convex integration to produce admissible
weak solutions to the compressible Euler system, meaning the weak solution that dissipate mechanical
energy. To this end, we first refine our requirements concerning the function e appearing in the
definition of X0,e.
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4.2.1 Mechanical energy revisited

The weak solutions constructed in Section 3 as limits of subsolutions in X0,e[0, T ] have the energy
defined (3.4), with χ satisfying (3.2).

Accordingly, the energy inequality (1.9) takes the form

∂tχ(t)− N

2
∂2
t,tΨ(t, x)− N

2
∂tp(%)(t, x) + ∂tP (%)(t, x) = ∂t [e+ P (%)] (4.12)

≤ −divx

[
(e+ P (%) + p(%))

v +∇xΨ

%

]

= −χ(t)divx

[
v +∇xΨ

%

]
+ divx

[(
N

2
∂tΨ +

(
N

2
− 1

)
p(%) + P (%)

)
v +∇xΨ

%

]
.

We note that, in view of (3.3), (3.4), the relation (4.12) reduces to

∂tχ(t) ≤ 0 as soon as
3

4
T ≤ t ≤ T. (4.13)

On the other hand, since %, Ψ were fixed by (2.3), (2.4), relation (4.12) follows as soon as χ
satisfies

∂tχ ≤ −χ(t)

[
C1(%,Ψ) + divx

(
v

%

)]
+ v ·C2(%,Ψ)− C3(%,Ψ), t ∈ (0, T ). (4.14)

Moreover, the relation (3.4) yields

|v(t, x)| ≤ C5(%,Ψ)
(

1 +
√
χ(t)

)
.

Thus, seeing that divxv = 0, we can find a smooth function χ satisfying both (3.2) and (4.12) on
the whole time interval [0, T ] as soon as

sup
x∈Ω
|∇x%0(x)| < ε, with ε > 0 small enough,

in accordance with the hypotheses of Theorem 1.1.

4.2.2 Adjusting the initial data

At this stage, we are ready to complete the proof of Theorem 1.1. To this end, we fix the functions
%, Ψ as in (2.3), (2.4), and choose χ and e satisfying (3.2), (4.12). In view of (4.13), the functions
χ and e can be extended by constant beyond the time T so that (3.2), (4.12) remain valid on the
unbounded interval [0,∞).
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At this stage, we take τ ∈ [0, T
8
) and set v0 = w(τ), vT = 0, where w is the subsolution

constructed in Theorem 1.2 belonging to the set X0,ε[τ , T ], τ ∈ [0, T
8
].

Finally, performing a simple time shift τ → 0 we define a space of subsolutions X0,e[0, T ], where
e satisfies (4.12), and

%(0, ·) = %0, %(T, ·) = %̃, v0 = w(τ),
1

2

|v0 +∇xΨ(0, ·)|2

%0

=
1

2

|v0|2

%0

= e(0, ·), vT = 0. (4.15)

By virtue of Theorem 1.2, the space X0,e[0, T ] is non-empty; whence we may use the arguments
of convex integration discussed in Section 3 to construct infinitely many admissible weak solutions
to the problem (2.1), (2.2), or, equivalently, to the problem (1.1 - 1.4) on the time interval [0, T ]
satisfying

%(0, ·) = %0, %u(0, ·) = %0v0, %(T , ·) = %̃, u(T, ·) = 0

as long as |∇x%0| is small enough. We recall that these solutions are indeed admissible, as they
satisfy the energy inequality in (0, T ) thanks to (4.12), while the initial energy is correctly adjusted
by (4.15).

Finally, it is easy to check that each of these solutions, extended to be

%(t, x) = %̃, u(t, x) = 0 for t > T , x ∈ Ω,

is a global-in-time admissible weak solution of the same problem. Thus we have completed the proof
of Theorem 1.1.

Remark 4.1 As a matter of fact, the construction of the density in the proof of Theorem 1.1 could
be modified in order to reach an arbitrary density distribution %(T ) at the time T satisfying only
natural the natural mass constraint ∫

Ω
%0 dx =

∫
Ω
%(T, ·) dx.

In particular, we have solved a kind of control problem:

For a given initial distribution of the density %0, find a velocity field u0 such that the correspond-
ing solution of the compressible Euler system reaches the equilibrium state [%̃, 0] at the time T , see
Nersisyan [16], and Ervedoza et al. [12] for related results in the viscous case.

Remark 4.2 We have constructed the global-in-time solutions by extending them to coincide with
the equilibrium [%, 0] beyond the time T . Using the technique od DeLellis and Székelyhidi [10] for the
incompressible Euler system, we may construct a different extension (as a matter of fact inifinitely
many), namely

% = %̃, u(T, ·) = 0, |u(t, ·)| = α > 0 for all t > T,
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where α is chosen small enough so that

E(T−) ≥ E(T+) =
∫

Ω

1

2
%α2 + P (%̃) dx.

Obviously, the kinetic (mechanical) energy is not continuous at the point T , we have∫
Ω
%|u(T, ·)|2 + P (%̃) dx < min{E(T−), E(T+)}.

5 Maximal dissipation

The global-in-time solutions with positive kinetic energy discussed in Remark 4.2 obviously do not
satisfy the principle of maximal dissipation. Clearly, the admissible solutions that coincide with the
equilibrium state [%̃, 0] dissipate more energy beyond the time T . As a matter of fact, we can show
the following result:

Proposition 5.1 Let [%,u] be an admissible weak solution of the problem (1.1 - 1.4) in [0, T ] × Ω
satisfying the principle of maximal dissipation. Suppose that the system (1.1 - 1.2) admits a smooth
solution [%̃, ũ] in [τ1, τ2], 0 ≤ τ1 < τ2 ≤ T such that

%(τ1, ·) = %̃(τ1, ·), u(τ1, ·) = ũ(τ1, ·).

Then
% = %̃, u = ũ in [τ1, τ2].

Proof:
If τ1 = 0, the proof reduces to the standard weak-strong uniqueness principle (see Dafermos [9]).
Suppose that τ1 > 0. In order to apply the weak-strong uniqueness result, we have only to show

that ∫
Ω

[
1

2

|(%u)|2

%
+ P (%)

]
(τ1, ·) dx ≥

∫
Ω
E(τ1+) dx = ess lim

t→τ1+

∫
Ω

[
1

2

|(%u)|2

%
+ P (%)

]
(t, ·) dx.

Assuming the contrary we would have

lim
t→τ1+

∫
Ω
E(t+) dx >

∫
Ω

[
1

2

|(%u)|2

%
+ P (%)

]
(τ1, ·) dx =

∫
Ω

[
1

2

|(%̃u)|2

%̃
+ P (%̃)

]
(t, ·) dx for all t ∈ [τ1, τ2]

as the smooth solution conserves the energy. This contradicts the principle of maximal dissipation
for [%,u].
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Q.E.D.

In the light of Proposition 5.1, it is obvious that only the solutions obtained in the proof of
Theorem 1.1 that coincide with the equilibrium after certain time might comply with the principle
of maximal dissipation. However, even this is false as we can easily deduce from the process of their
construction. Inspecting step by step the proof of Theorem 1.1 we recall the procedure of convex
integration:

1. fix % and the acoustic potential Ψ;

2. find suitable χ = χ(t) ∈ C1[0, T ], with the associated kinetic energy e,

e = e(t, x) = χ(t)− N

2
∂tΨ(t, x)− N

2
p(%(t, x))

so that the weak solutions constructed by the method of convex integration may be admissible;

3. find a suitable initial solenoidal part of the velocity v0 satisfying

1

2

|v0 +∇xΨ(0, ·)|2

%0

= e(0, ·) in Ω

and such that the set of subsolutions

X0,e[0, T ] =
{
v ∈ Cweak([0, T ];L2(Ω;RN)

∣∣∣ v(0, ·) = v0, v(T, ·) = 0, divxv = 0,

v ∈ C1((0, T )× Ω;RN), ∂tv + divxU = 0 for a certain U ∈ C1((0, T )× Ω;RN×N
sym,0),

N

2
λmax

[
(v +∇xΨ)⊗ (v +∇xΨ)

%
− U

]
< e in (0, T )× Ω

}
be non-empty;

4. apply the argument of convex integration to deduce the existence of infinitely many admissible
weak solutions [%,u] satisfying

1

2
%|u|2 = e a.a. in (0, T )× Ω, %(0, ·) = %0,u(0, ·) = v0 +∇xΨ(0, ·). (5.1)

As the function χ (and e) is continuous in t (even continuously differentiable), we can choose χ̃
with the associated ẽ in such a way that

χ(0) = χ̃(0), χ̃(t) < χ(t) in (0, T ),
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with a non-empty set of subsolutions X0,ẽ[0, T ]. Clearly, the weak solutions obtained from the space
X0,ẽ[0, T ] by the process of convex integration satisfy the same system of equations with the same
initial data, however, in accordance with (5.1), with a strictly larger rate of dissipation than those
obtained from X0,e[0, T ]. We may therefore infer that solutions constructed in such a way cannot
comply with the principle of maximal dissipation.

5.1 Maximal dissipation revisited

We finish our discussion by introducing a weaker notion of maximal dissipation. Let [%,u], [%̃, ũ] be
two admissible weak solutions of the problem (1.1 - 1.4) defined on [0, T ], [0, T̃ ], respectively. We say
that

[%,u] � [%̃, ũ]

if there exists τ ∈ [0,min{T, T̃}) such that

%(t, ·) = %̃(t, ·), u(t, ·) = ũ(t, ·) for t ∈ [0, τ ],

and
Ẽ(t+) > E(t+) for any t in a right neighborhoood of τ.

Here h > g means h > g a.a. in Ω. If [%,u] � [%̃, ũ], the solution [%,u] dissipates more energy than
[%̃, ũ] for t > τ , and this inequality is strict on any subset of Ω of positive measure.

It is easy to check that any admissible weak solution [%,u] satisfying the principle of maximal
dissipation is maximal with respect to the relation �; there is no solution “greater” than [%,u],
meaning there is no solution that dissipates more energy. On the other hand, a direct inspection of
the arguments presented at the beginning of this section reveals that the solutions constructed by
the method of convex integration are not maximal with respect to the relation �.
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