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Abstract. The Henstock-Kurzweil approach, also known as the generalized Riemann
approach, has been successful in giving an alternative definition to the classical It6 integral.
The Riemann approach is well-known for its directness in defining integrals. In this note
we will prove the Fundamental Theorem for the Henstock-Kurzweil-1t6 integral, thereby
providing a characterization of Henstock-Kurzweil-Itd integrable stochastic processes in
terms of their primitive processes.
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1. INTRODUCTION

The generalized Riemann approach, more commonly known as the Henstock-
Kurzweil approach, has been successful in giving an alternative definition to the
classical Ito integral, see [1], [5], [7], [8], [9], [10]. The advantage of using the
Henstock-Kurzweil approach has been its explicitness and intuitiveness in giving
a direct definition of the integral rather than the classical non-explicit L2-procedure.

It is also well-known from the classical non-stochastic integration theory that all
integrable functions can be characterized in terms of their primitives, that is, a
function f is Lebesgue (Henstock-Kurzweil) integrable on a compact interval [a, b]
if and only if there exists a function F which is absolutely continuous (respectively,
generalized absolutely continuous) there such that F/ = f a.e.on [a,b], where F’ is
the usual derivative of F, see for example [4].

In this paper, we will define the “belated derivative” of a stochastic process and
thereby characterize the class of all Henstock-Kurzweil-It6 integrable processes on
[a, b] by its primitive process.
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2. SETTING

Let © denote the set of all real-valued continuous functions on [a, b] and R the set
of all real numbers.

The class of all Borel cylindrical sets B in §2, denoted by %, is a collection of all
sets B in ) of the form

B ={w: (w(t1),w(tz),...,w(t,)) € E}

where 0 < t; <t3 <...<t, <1 and E is any Borel set in R™ (n is not fixed). The
Borel o-field of € is denoted by %, i.e., it is the smallest o-field which contains % .
Let P be the Wiener measure defined on (2, #). Then (2, %, P) is a probability
space, that is, a measure space with P(2) = 1.

A stochastic process {¢(t,w): t € [a,b]} on (Q2,.7, P) is a family of .#-measurable
functions (which are called random variables) on (§2,.%, P). Very often, o(t,w) is
denoted by ¢:(w). Now we shall consider a very special and important process,
namely, the Brownian motion denoted by W.

Let W = {W(w) }agt<h be a canonical Brownian motion, that is, it possesses the
following properties:

1. Wy(w) =0 for all w € £

2. it has Normal Increments, that is, W; — W has a normal distribution with mean
0 and variance ¢t — s for all ¢ > s (which naturally implies that W; has a normal
distribution with mean 0 and variance t);

3. it has Independent Increments, that is, W, — W is independent of its past, that
is, of W, 0 <u < s<t; and

4. its sample paths are continuous, i.e., for each w € Q, W;(w) as a function of ¢ is
continuous on [a, b].

A stochastic process {¢:(w): t € [a,b]} is said to be adapted to the standard
filtering space (Q, %, {Z:}, P) if ¢; is F;-measurable for each t € [a,b]. We always
assume that W = {W;(w)} is adapted to {%#;}. For example, if {.%,} is the smallest
o-field generated by {Ws(w): s < t}, then W = {W,;(w)} is adapted to {.%;}.

A stochastic process X = {Xi(w): t € [a,b]} on the standard filtering space
(Q, F,{%:}, P) is called a martingale if

1. X is adapted to {#}, that is, X; is F#;-measurable for each ¢ € [a, b];

2. [, |X¢|dP is finite for almost all ¢ € [a, b]; and

3. BE(Xi|F#s) = X, for all t > s, where F(X¢|.%;) is the conditional expectation of
X, given Zs.
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If in addition
sup / |Xt|2 dP
Q

t€la,b]
is finite, we say that X is an Ls-martingale.

In the following we define E(f) to be [, f dP for any random variable f.

It is well-known, see for example [6, P239], that the following assertions hold. The
details are given for the convenience of readers who are not familiar with stochastic
analysis.

(i)

E[X,] = E[E[X:|7]] = E[X4]

for any t > s, that is, E[X;] is a constant for all s € [a, b].
(ii) For any a < u < v < s <t < b, we have

E[(Xt - Xs)(Xv - Xu)] =0,

that is, a martingale has orthogonal increments.

(iii) From (ii) we get

2

E|(D) Y (X, = Xu)| = (D) Y] B(X, - X,)?

for any partial partition D = {[u,v]} of [a, b].

(iv) For any u < v we have

E[XUXU] = E[E[XvXuLg\u]] = E[XuE[Xng\u]] = E[X2]

u

and hence
B(X, - X,)?=E(X2-X?2).
It is also well-known, see for example [6, P28], that a canonical Brownian motion

is a martingale. In fact, it is an Lo-martingale with E(W?) = t, see property 2 of a

Brownian motion.
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3. DIFFERENTIATION

In this section we define our belated derivative and state its basic properties.

Definition 1. Let F = {F;: t € [a,b]} be an L?-martingale. A stochastic
process F' is said to be belated differentiable at t € [a,b) if there exists a random
variable f; such that for any € > 0, there exists a positive number §(¢) on [a, b] such
that whenever [t,v] C [¢,t + 6(t)), we have

E(|f{(Wy =Wy) — (Fy — F)|?) <eBE(W, — Wi)* = elv — .

The random variable f; is called the belated derivative of F' at the point t. We will
denote f; by DgF} in our subsequent presentation. It is also easily checked that the
belated derivative of F' is defined uniquely up to a set of probability measure zero.
The proof is omitted.

The L2-martingale F is said to be belated differentiable at t € [a,b) if f; in the
above definition exists.

Remark. The word belated is used in the above definition because the point of
differentiation ¢ is always the left end point of the interval [t,v]. This is motivated
by the use of belated division in the definition of Henstock-Kurzweil-1t6 integrals,
see [1].

Next we shall state the standard properties of belated differentiation.

Theorem 2. Let X and Y be two L2-martingales which are belated differentiable
att € [a,b) and let @ € R. Then
(a) X +Y is belated differentiable at t and

Dp(X +Y) = (DpX)i + (DY )y,
(b) aX is belated differentiable at t and
(Dp(aX))e = a(DpX)i.

Proof. The proof of Theorem 2 is straightforward and hence omitted. (]

Example 3. Let X = {X;: t € [0, 1]} be the stochastic process X; = s W2 —1¢,
where W is the Brownian motion, over the standard filtering space (Q, %, { %}, P).
Then it is easy to verify that X is in fact an L?-martingale with respect to the
standard filtering space. Furthermore, it can be proved that

DﬁXt - Wt
for all ¢ € [a, b].
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Proof. That X is a martingale follows from the fact that
E(W; =W Za) =b—a

where 0 < a < b. Furthermore,

1 1
E(|X¢)? = 5152 < 5b2

for all ¢ € [a, b], thereby showing that X is in fact an L?-martingale. We next show
that DgX, = W, for all t € [a,)).

Given ¢ > 0, let §(¢t) < 2¢ for all ¢ € [a,b). Consider a d-fine interval-point pair
([t,v],t) such that [t,v] C [t,t + 6(¢)] so that |v — ¢| < 2e. Then

B(W(W, = Wo) — (X, = X)) = B(WL(Wy = W) — 2 (W2 = W2) ~ 2t )’

/N /N
| =

2 1 2
= B(5(W, - W) + §(t7v))
= LBV, W ~ (0 = 0)?
_ iE[(WU W) — oWy — W20 — ) + (0 — 1)7]
:%(U—t)Qg%-QE(U—t):zs(v—t),

which completes our proof. O

By Definition 1, belated differentiation is defined for L2-martingales in our context.
If we were to allow the belated differentiation to be defined for more general stochastic
processes, we could even have Dﬁ(%Wf) = W;. However, in this sense, the anti-
derivative of W; would not be uniquely defined. Hence we restrict ourselves to the
belated differentiation of L?-martingales.

Definition 4. A stochastic process X = {X;: t € [a,b]} on (Q, %, P) is said to
be AC? on [a, b] if given any ¢ > 0, there exists 7 > 0 such that

E<Z(X7J1 - Xu1)2> e
i=1
for any finite collection D = {[u;,v;]}"; of non-overlapping intervals for which

n
Do v =i <.
=1
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Example 5. The stochastic process X = {X;: ¢ € [a, ]}, where

1 1
X, = -W?—- =t
ET 9t Ty

in Example 3, is AC? on [a, b]. The proof is easy and hence omitted.

4. ANTIDERIVATIVE AND HENSTOCK-ITO INTEGRAL

In this section we will characterize the class of all Henstock-Itd6 adapted processes
in terms of their derivatives.

Let ¢ be a positive function on [a,b]. A finite collection D of interval-point pairs
{([&svi],&),i = 1,2,...,n} is called a 6-fine belated partial division of [a,b] if

1. {[&,v],i = 1,2,...,n} is a collection of non-overlapping subintervals of [a, b];
and
2. [&,vi] C[&,& +0(&)] for each i =1,2,3,...,n.

In the sequel we will denote {([&;, vi], &), =1,2,3,...,n} by {([§,v],£)}.

Definition 6 (See [1, Definition 2|). Let f = {f;: ¢ € [a,b]} be an adapted pro-
cess on the standard filtering space (Q, .%,{.%#}+, P). Then f is said to be Henstock-
Kurzweil-It6 integrable on [a, b] if there exists a process F' = {F;: t € [a,b]} which
is an L?-martingale and AC? on [a, b] such that for any e > 0 there exists a positive
function 6 on [a, b] such that

E((D) Y (feWu = W) = (Fu — FJ)?) <

whenever D = {([¢,v],£)} is a 0-fine belated partial division of [a, b].

It follows from Vitali’s Covering Lemma that given any positive function § there
exists a belated partial division of [a, b] covering this interval up to a set of arbitrarily
small positive measure, hence the uniqueness of the integral process F' follows.

It was also proved in [1] that the standard properties of integrals (such as unique-
ness of the integral, additivity of the integral, integrability over subintervals) hold
true for the Henstock-Kurzweil-It6 integral. The proofs are similar to the classical
integration theory, see [2], [3], [4]. In fact, it has been proved in Theorem 9 of [1] that
the integral defined by this new approach is equivalent to the classical It integral.

We have a class of stochastic processes which are Henstock-Kurzweil-It6 integrable
on [a, b].
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Example 7. Let % denote the class of all adapted stochastic processes ¢ =
{¢¢: t € [a,b]} on the standard filtering space (Q, .#,{.%,}, P) such that

b
[ EBlettwp ar

is finite. Then any adapted process from % is Henstock-Kurzweil-It6 integrable on
[a,b].

In fact, % is the class of all classical It6 integrable functions. We have proved in
[1] that if f is classical It6 integrable, then f is also Henstock-Kurzweil-It6 integrable
and the two integrals coincide.

Theorem 8. Let an adapted process f be Henstock-Kurzweil-Ité integrable on
[a,b] and let F;, = [! f,dW,. Then DsF; = f; a.e.on [a,b).

Proof. The idea of this proof is motivated by that of the Henstock integration
theory. We need to show that the set of points B of [a,b) for which DgF; does not
exist or is unequal to f is of Lebesgue measure zero. Let ¢ € B. By definition, there
exists y(¢) > 0 such that for any positive number §(t), there exists [t,v] C [t,t+d(t))
such that

(1) E(|fe(Ws = W) = (Fo = F)?) > y(t)(v — ).

From the definition of the Henstock-Kurzweil-I1td integral (see Definition 6),
given ¢ > 0, there exists a positive function S on [a,b] such that whenever
D = {((&,vi], &)}, is a B-fine belated partial division of [a, b], we have

(2) E((D) > 1 felWo — Wel = (Fy — FE)|2) <e.

Now we consider a special D such that each [§;,v;] satisfies (1) and (2). Let us
denote B,, = {t € [a,b]: y(t) > %}, m = 1,2,3,..., and fix B,,. Suppose each
& € By,. Then by (1) and (2), we have

n

Z(Ui — &) < me.
i=1
Let ¢ be the family of collections of intervals [¢, v] induced from all S-fine belated
partial divisions with £ € B,, satisfying (1). Then ¥ covers B,, in Vitali’s sense.
Applying the Vitali Covering Theorem, there exists a finite collection of intervals
{[&,vi],i=1,2,3,...,q} such that
q

(Bim) < Jvi — &l +¢ < (m+ 1.
1=1

Hence p(Bp,) = 0 and so pu(B) = 0. Thus our proof is completed. O
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Theorem 9. Let f be an adapted process on [a, b] such that
(i) F is an L?>-martingale with F, = 0 a.e.;
(ii) F has the AC? property;
(i) DgFy = f; a.e. on [a,b); then f is Henstock-Kurzweil-Ité integrable on [a,b]
with Fy = [ fs dWs.

The reader is reminded that (iii) means that DgF;(w) = fi(w) for almost all w €
for a.e. t € [a,b).

Proof. Let DgF; = f; for all t € [a,b) except possibly for a set B which has
Lebesgue measure zero. Let & € [a,b) \ B. Given ¢ > 0, there exists a positive
function ¢ on [a, b] such that whenever (£, v] is J-fine, we have

E(|fe(Wy = We) — (F, — Fe)|*) < elv —¢].

Let D = {((&;,v],&),i=1,2,3,...,n} be a d-fine belated partial division of [a, b]
with all & € [a,b] \ B. Then
)

_ E(; e Wi = W) = (R~ Fe)l?) by )

foi(wvi - Wfl) - (F'Ui 7F§i)
i=1

< EZ lv; — &| < e(b—a).
i=1

Thus if B = ¢, it is clear from the above that f is It integrable with Fy = f; fr dWs.
In general, B is nonempty with u(B) = 0.
Now let
B, ={t€a,b): m—1< E[f}] <m},

where p(By,) =0 and B= |J Bpn.
m=1

Since F has the AC? property, given any positive integer m, there exists 7,, > 0
with 7, < (£/2™)%-m~2 such that whenever {(u;, v;]} is a finite collection of disjoint
left-open subintervals of [a, b] with > |v; — u;| < 9, we have

E(’ > [P — Fu,) 2) < (2%)2

Take an open set G, D By, such that pu(Gp,) < 9m.-
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Fix a positive integer m. Let D = {((&;,v:],&)} be a f-fine belated partial division
of [a,b) such that & € By, for all i. Then we have

)
2) + 2E<‘ > (Fu, = Fe,)

%

<23 BRI ) +2() <4()

E(‘ zzj feiWo, = We,] = (Fo, — F,)

)

< 2E<‘ > e (Wo, = Wa,)

So, considering any (-fine belated partial division over [a,b], denoted by D; =

{((&,vi], &)}, we have

E(‘ foi(WUi - sz) — (£, _F&')

2
<2E( Z ffi(iniwfi)i(FviiFEi) )
£€[a,b]\B
oo 2
+2E< Z Z fEi(W"Jiiwgi)i(FviiFEi) >
m=1&,EBn,

< 2e(b—a) + 2,

thereby showing that f is Ito integrable with F; = [ f, dW,. O

Combining Theorems 8 and 9, we have the following characterization of all
Henstock-Kurzweil-1t6 integrable stochastic processes:

Theorem 10. Let f be an adapted process on [a,b]. Then f is Henstock-Kurzweil-
It6 integrable on [a,b] if and only if there exists an L?-martingle F on [a,b] with
F, =0 a.s. and AC? on [a,b] such that DgF; = f; almost everywhere on [a,b).

Example 11. From Example 3, X; = £W? — 1t is an L?-martingale on [a,}].

Hence the process

1 1 1
F :_”72__”72__ _
t 2 t 2 a 2(t a’)7

where F, = 0, is an L2-martingale on [a,b]. It can be also easily verified that F is
AC? on [a,b]. Furthermore, it was shown that

DﬁXt = Wt
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on [a, b], hence

DﬁFt = Wt

on [a,b]. By Theorem 10, we have

Wy —=w2) - %(b — a).

| =

b
/ WedW, = Fy =

Example 12. Let f € %, the class of all classical It6 integrable adapted

processes on the standard filtering space. Then there exists an L?-martingale F on
[a, b] which is also AC? on [a, b], such that DgF; = f; a.e.on [a,b).

[1]
2]
3]
g
[6]
[7]
8]
[9]

[10]

References

Chew T. S., Tay, J. Y., Toh, T. L.: The non-uniform Riemann approach to It&’s integral.
Real Anal. Exch. 27 (2001/2002), 495-514.

Henstock, R.: The efficiency of convergence factors for functions of a continuous real
variable. J. London Math. Soc. 30 (1955), 273-286.

Henstock, R.: Lectures on the Theory of Integration. World Scientific, Singapore, 1988.
Lee, P. Y.: Lanzhou Lectures on Henstock Integration. World Scientific, Singapore, 1989.
McShane, E. J.: Stochastic Calculus and Stochastic Models. Academic Press, New York,
1974.

Oksendal, B.: Stochastic Differential Equation: An Introduction with Applications. 4th
edition. Springer, 1996.

Pop-Stojanovic, Z. R.: On McShane’s belated stochastic integral. STAM J. Appl. Math.
22 (1972), 89-92.

Toh, T. L., Chew, T.S.: A variational approach to Itd’s integral. Proceedings of SAP’s
98, Taiwan, World Scientific, Singapore, 1999, pp. 291-299.

Toh, T.L., Chew, T.S.: The Riemann approach to stochastic integration using
non-uniform meshes. J. Math. Anal. Appl. 280 (2003), 133-147.

Xu, J. G., Lee, P.Y.: Stochastic integrals of It6 and Henstock. Real Anal. Exch. 18
(1992/3), 352-366.

Author’s address: Tin-Lam Toh, National Institute of Education, 1, Nanyang Walk,

Singapore 637616, Republic of Singapore, e-mail: t1toh@nie.edu.sg.

72



