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Introduction

The work deals with the numerical solution of 3D turbulermastied flows in atmospheric
boundary layer over the cosine function shaped hill. Matwgral model for the turbulent
stratified flows in atmospheric boundary layer is the Bolesinmodel - Reynolds averaged
Navier-Stokes equations (RANS) for incompressible tuebtuflows with addition of the trans-
port equation for density and that is coupled with the RANStam by the source term at the
right hand side of the momentum equation. The artificial casgibility method and the finite
volume method have been used in all computed cases and Ladrdfescheme (MacCormack
form) has been used together with the Cebecci-Smith algeturdulence model.

Governing equations
The incompressible Navier-Stokes equations with additibtransport equation for density.
There has been taken into account transport equation faitglerithout diffusive terms on the
RHS. In other words the diffusion coefficient of the trangpuation for density is equal 0.
This model has been published in [7] and arises from the Bioeisg model.
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whereg; is the component gravitational acceleration vector. Thelehbas to be completed
by hydrostatic pressure equilibrium function (4) for simtion of atmospheric boundary layer
flows:
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whereg. denotes the z component of the gravitational acceleragatov (assuming the z axis
is perpendicular to the ground).

Let me introduce a vector form of the previous system at thkasgy which will be very
useful in the following chapters:

M-W,+F,+G,+H, =R, +S,+ T, + K, (5)
whereM is diagonal matrix with following entries:

M = diag || 0, 1, 1, 1, 1, (6)
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W is a vector of conservative variables:
VV T
= H p7 u7 U, w7 p H ) (7)

F, G, H are vectors of convective fluxes:

u v w
u? +p veu w-u

F=| vw-v ||, G=|+pl|, H=| w-v |, (8)
U - w VW w? +p
u-p v-p w - p

R, S, T are vectors of diffusive fluxes:

0 0 0
Uy Uy u,
R=v|vl|, S=v||vl|, T=v|uv 9
Wy wy w,
0 0 0

andK is the source term defined as follows in this case:

KZﬁH 07 07 07 -9, OHT (10)
Po

One can split the pressure into sum of its initial value asgérturbation as follows:

p(z) = p"(2) + po(2), (11)
and the same could be done with density:
p(z) = p"(2) + po(2). (12)

Lets make a substitution in (4) by (11) and (12):
op” . Ipo
0 o

and because the initial values of pressuyand initial values of density, has to be in equilib-
riumi.e.:

=—(p"~+ po) -, (13)

Ipo B
% 0, (14)
Ipo

- 15
0
T = —hg (16)
z

so if one substitute the pressyrén equation (2) by (11), one obtains the system in which the
unknowns are the pressure perturbations:
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This system has been used in a numerical model for all the atatipns of stratified flows that
have been presented in this paper.

Cebecci-Smith Algebraic Turbulence Model
Presented Cebbeci-Smith algebraic turbulence model lFeasthken from [2]. Cebecci-Smith
algebraic turbulence model could be used to compute thalembviscosityr;,. Domain(? is
divided into two subdomains. In the inner subdomain (nedis)véne inner turbulent viscosity
v, is computed. In the outer subdomain the outer turbulentosgisg;, is computed. Most
common procedure is to compute both turbulent viscositielstiaen to use the minimal one:

vy =min (v, v,) . (20)

For turbulent viscosity computing is necessary to use Isgatems of coordinatesX, V).
Where X is parallel with the nearest wall and Y is perpendict the nearest wall (distance
from the wall). In the inner subdomain the turbulent vistos defined as follows:

ou

R
Vi, = Ly,

where (U, V') are components of velocity vector in direction (of, Y) and L,, is given by
equation:

L, = kY Fp, (22)
where:
1
Fp=1—exp (—FUTYRe) : (23)
u,. IS so called friction velocity:
1
ou |\ 2
= (vl==l) - 24
= (o). e

In outer subdomain the turbulent viscosity is defined by €dais equation:
v, = pad* U, Fy, (25)
where:

, Ue =U(9) (26)
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and¢ is the boundary layer thickness and:

J U
- /0 (1 — i) dy. (27)

Following values of the constants have been used:
k=04, a=0.0168, AT = 26. (28)

Numerical Solution
The artificial compressibility method together with theti@wolume method have been used to
discretize the RANS system and the Lax-Wendroff predictorector scheme (MacCormack
form) has been used to compute the solution. The scheme Basibed in a following form:

1
W = WP - AtL(WY), (29)
1 n+tl A il
W?H - E(Wz‘Jrz +Wzn)_7tL(Wij+2)7 (30)
where .
L(W;;) = v Z(Fij — Ryj, Giy — Sy, Hyy — Tiy)ipASi; + K, (31)
tjed;

andFy;, G;;, H;; are numerical convective fluxes computed in a backward titiredn the
predictor step and in a forward direction in a corrector séspreader can see in the figure (1)

R;;, S;;, T,; are numerical diffusive fluxes computed centrally in eaelpsas reader can see

in the figure (2).

Obrazek 1: Stencil for inviscid fluxes computation, Obrazek 2: Stencil
(a) predictor step, (b) corrector step, for diffusive fluxes
(c) predictor + corrector computation

Neutrally and stably stratified incompressible turbulent results of the flow over 3D
cosine shaped hills
The 3D flow past cosine shaped hills is considered in follgngases. The height of the hill
is 10% of its basis length. The basis length of the hill80 [m] so the height. of the hill is
h = 100 [m]. In the last case the flow over two cosine shaped hills is dened. The height of
the first hill is 10% of its basis lenght and the second one % bbits basis lenght high.

The Reynolds number has been sefto= 6.67 - 10" which corresponds approximately to
the inlet velocityu,, = 1.0 [m - s~!] if one considers that the kinematic density of the air is
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aboutr = 1.5-107° [m?- s !]. The uniform velocity distribution in the inlet has been siered
there.

The fine computational mesh (200 cells in x direction, 10Gsaely direction, 80 cells in z
direction), with the near wall resolutiaz,,;,, < 1/v/Re, has been considered in the neutrally
stratified case.

The twice coarser computational grid as in the neutraltsied case (100 cells in x direction,
50 cells in y direction, 40 cells in z direction), with the neall resolutionAz,,;,, ~ 10/\/@,
has been considered in stably stratified cases.

The gravitational acceleration vector has been se} to (0, 0, —10) approximately as the
gravitational acceleration of the Earth for stably stratifcases.

The inlet boundary condition in the inlet has been set acogri the equation:

ple) = Pz 1 gy, (32)

where the density near the groupgl, = 1.2[kg/m?| and the density at the top of the domain
Py = 0.6 [kig/m?).
The wall boundary condition for densipy, has been set as in Case 1 using the relation:

Py — Po

pw(xa y) = H wZO('Ia y) +p0w (33)

whereH is the height of the domain(z, y) is the absolute z coordinate of the ground (let's
say altitude) ang,,, is the density irc = 0.

Obrazek 3: Neutrally stratified flow - Contou@¥razek 4: Stratified flow - Contours of veloc-
of velocity X [m-s~!]- XZ plane in the middléty X [m - s71] - XZ slice in the middle of the
of the domain domain
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Obrazek 5: Neutrally stratified flow - XZ slid@brazek 6: Stratified flow - XZ slice in the
in the middle of the hill - Contours of velocityiddle of the hill - Contours of velocity Z
Z[m-s] [m - s71]

Velocity (Mag)
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Obrazek 7: Neutrally stratified flow - XY slio®brazek 8: Stratified flow - XY slice in the
in the middle of the hill height - Contours efiddle of the hill height - Contours of veloc-

Xxtory) 10

velocity magnituderf - s7'] ity magnitude {n - s71]
Velocity X
0.00 0.400 IO\'B‘UIUI a 1.20
-0.267 1.29

Obrazek 9: 3D cosine 10%, cosine 15% hills - XZ slice in thddife of the domain - Contours
of velocity X [m - s7!] (p € [0.6;1.2], Re = 6.67 - 10" ~ Uy, = 1.0 m - s71)
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Velocity_7
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Obrazek 10: 3D cosine 10%, cosine 15% hills - XZ slice in theédie of the domain - Contours
of velocity Z [m - s71] (p € [0.6;1.2], Re = 6.67- 10" =~ Uy, = 1.0m - s71)

Velocity_magnitfude
0.200 0.400 0.600 T P.|8|OP| 0 1.00

|
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Obrazek 11: 3D cosine 10%, cosine 15% hills - XY slice in thieldte of the hill height -
Contours of velocity magnituder] - s™']
(p€1[0.6;1.2], Re =6.67-10" =~ Uy =1.0m-s71)

Conclusion
The so called "lee waves” should appear in stratified flows@B8]e can see the creation of lee
waves in neutrally stratified cases, especially in the figurere the distribution of z component
of the velocity vector is shown (6). One can see the peridaianges of the vertical direction of
the flow there, that are damped because of the presence otigiarces in the fluid.

The next phenomenon visible in the presented figures shoXiWglane (8) is that the
flow pattern is not symmetrical in stratified flows. One can isethe figure (7) that the flow
is symmetrical in the case with neutral stratification. Itamg that the asymmetry is the most
probably caused by the stratification of the flow in our cases.
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