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Introduction
The work deals with the numerical solution of 3D turbulent stratified flows in atmospheric
boundary layer over the cosine function shaped hill. Mathematical model for the turbulent
stratified flows in atmospheric boundary layer is the Boussinesq model - Reynolds averaged
Navier-Stokes equations (RANS) for incompressible turbulent flows with addition of the trans-
port equation for density and that is coupled with the RANS system by the source term at the
right hand side of the momentum equation. The artificial compressibility method and the finite
volume method have been used in all computed cases and Lax-Wendroff scheme (MacCormack
form) has been used together with the Cebecci-Smith algebraic turbulence model.

Governing equations
The incompressible Navier-Stokes equations with additionof transport equation for density.
There has been taken into account transport equation for density without diffusive terms on the
RHS. In other words the diffusion coefficient of the transport equation for density is equal 0.
This model has been published in [7] and arises from the Boussinesq model.
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wheregi is the component gravitational acceleration vector. The model has to be completed
by hydrostatic pressure equilibrium function (4) for simulation of atmospheric boundary layer
flows:

∂p

∂z
= −ρ · gz, (4)

wheregz denotes the z component of the gravitational acceleration vector (assuming the z axis
is perpendicular to the ground).

Let me introduce a vector form of the previous system at this place, which will be very
useful in the following chapters:

M ·Wt + Fx +Gy +Hz = Rx + Sy +Tz +K, (5)

whereM is diagonal matrix with following entries:

M = diag ‖ 0, 1, 1, 1, 1 ‖ , (6)
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W is a vector of conservative variables:

W = ‖ p, u, v, w, ρ ‖T , (7)

F, G, H are vectors of convective fluxes:
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R, S, T are vectors of diffusive fluxes:
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andK is the source term defined as follows in this case:

K =
ρ

ρ0
‖ 0, 0, 0, −g, 0 ‖T . (10)

One can split the pressure into sum of its initial value and its perturbation as follows:

p(z) = p′′(z) + p0(z), (11)

and the same could be done with density:

ρ(z) = ρ′′(z) + ρ0(z). (12)

Lets make a substitution in (4) by (11) and (12):
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∂z
+

∂p0
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= − (ρ′′ + ρ0) gz, (13)

and because the initial values of pressurep0 and initial values of densityρ0 has to be in equilib-
rium i.e.:

∂p0
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= 0, (14)
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= 0, (15)

∂p0
∂z

= −ρ0gz, (16)

so if one substitute the pressurep in equation (2) by (11), one obtains the system in which the
unknowns are the pressure perturbations:
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This system has been used in a numerical model for all the computations of stratified flows that
have been presented in this paper.

Cebecci-Smith Algebraic Turbulence Model
Presented Cebbeci-Smith algebraic turbulence model has been taken from [2]. Cebecci-Smith
algebraic turbulence model could be used to compute the turbulent viscosityνt. DomainΩ is
divided into two subdomains. In the inner subdomain (near walls) the inner turbulent viscosity
νti is computed. In the outer subdomain the outer turbulent viscosity νto is computed. Most
common procedure is to compute both turbulent viscosities and then to use the minimal one:

νt = min (νti , νto) . (20)

For turbulent viscosity computing is necessary to use localsystems of coordinates(X, Y ).
Where X is parallel with the nearest wall and Y is perpendicular to the nearest wall (distance
from the wall). In the inner subdomain the turbulent viscosity is defined as follows:
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where(U, V ) are components of velocity vector in direction of(X, Y ) andLm is given by
equation:

Lm = κY FD, (22)

where:
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ur is so called friction velocity:
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In outer subdomain the turbulent viscosity is defined by Clauser‘s equation:

νto = ραδ∗UeFk, (25)

where:
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, Ue = U(δ) (26)
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andδ is the boundary layer thickness and:

δ∗ =

∫ δ

0

(

1− U

Ue

)

dY. (27)

Following values of the constants have been used:

κ = 0.4, α = 0.0168, A+ = 26. (28)

Numerical Solution
The artificial compressibility method together with the finite volume method have been used to
discretize the RANS system and the Lax-Wendroff predictor-corrector scheme (MacCormack
form) has been used to compute the solution. The scheme has been used in a following form:
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where
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(F̃ij − R̃ij, G̃ij − S̃ij, H̃ij − T̃ij)~nij∆Sij + K̃i, (31)

and F̃ij , G̃ij , H̃ij are numerical convective fluxes computed in a backward direction in the
predictor step and in a forward direction in a corrector step, as reader can see in the figure (1)
R̃ij, S̃ij , T̃ij are numerical diffusive fluxes computed centrally in each step, as reader can see
in the figure (2).

Obrázek 1: Stencil for inviscid fluxes computation,
(a) predictor step, (b) corrector step,
(c) predictor + corrector

Obrázek 2: Stencil
for diffusive fluxes
computation

Neutrally and stably stratified incompressible turbulent results of the flow over 3D
cosine shaped hills
The 3D flow past cosine shaped hills is considered in following cases. The height of the hill
is 10% of its basis length. The basis length of the hill is1000 [m] so the heighth of the hill is
h = 100 [m]. In the last case the flow over two cosine shaped hills is considered. The height of
the first hill is 10% of its basis lenght and the second one is 15% of its basis lenght high.

The Reynolds number has been set toRe = 6.67 · 107 which corresponds approximately to
the inlet velocityu∞ = 1.0 [m · s−1] if one considers that the kinematic density of the air is
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aboutν = 1.5·10−5 [m2 ·s−1]. The uniform velocity distribution in the inlet has been considered
there.

The fine computational mesh (200 cells in x direction, 100 cells in y direction, 80 cells in z
direction), with the near wall resolution∆zmin < 1/

√
Re, has been considered in the neutrally

stratified case.
The twice coarser computational grid as in the neutrally stratified case (100 cells in x direction,
50 cells in y direction, 40 cells in z direction), with the near wall resolution∆zmin ≈ 10/

√
Re,

has been considered in stably stratified cases.
The gravitational acceleration vector has been set tog = (0, 0, −10) approximately as the
gravitational acceleration of the Earth for stably stratified cases.

The inlet boundary condition in the inlet has been set according to the equation:

ρ(z) =
ρ

H
− ρ0w
H

z + ρ0w , (32)

where the density near the groundρ0w = 1.2[kg/m3] and the density at the top of the domain
ρ

H
= 0.6 [kg/m3].

The wall boundary condition for densityρw has been set as in Case 1 using the relation:

ρw(x, y) =
ρ

H
− ρ0w
H

z0(x, y) + ρ0w . (33)

whereH is the height of the domain,z0(x, y) is the absolute z coordinate of the ground (let’s
say altitude) andρ0w is the density inz = 0.

Obrázek 3: Neutrally stratified flow - Contours
of velocity X [m·s−1] - XZ plane in the middle
of the domain

Obrázek 4: Stratified flow - Contours of veloc-
ity X [m · s−1] - XZ slice in the middle of the
domain
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Obrázek 5: Neutrally stratified flow - XZ slice
in the middle of the hill - Contours of velocity
Z [m · s−1]

Obrázek 6: Stratified flow - XZ slice in the
middle of the hill - Contours of velocity Z
[m · s−1]

Obrázek 7: Neutrally stratified flow - XY slice
in the middle of the hill height - Contours of
velocity magnitude [m · s−1]

Obrázek 8: Stratified flow - XY slice in the
middle of the hill height - Contours of veloc-
ity magnitude [m · s−1]

Obrázek 9: 3D cosine 10%, cosine 15% hills - XZ slice in the middle of the domain - Contours
of velocity X [m · s−1] (ρ ∈ [0.6; 1.2], Re = 6.67 · 107 ≈ U∞ = 1.0 m · s−1)
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Obrázek 10: 3D cosine 10%, cosine 15% hills - XZ slice in the middle of the domain - Contours
of velocity Z [m · s−1] (ρ ∈ [0.6; 1.2], Re = 6.67 · 107 ≈ U∞ = 1.0 m · s−1)

Obrázek 11: 3D cosine 10%, cosine 15% hills - XY slice in the middle of the hill height -
Contours of velocity magnitude [m · s−1]
(ρ ∈ [0.6; 1.2], Re = 6.67 · 107 ≈ U∞ = 1.0 m · s−1)

Conclusion
The so called ”lee waves” should appear in stratified flows [3]. One can see the creation of lee
waves in neutrally stratified cases, especially in the figurewhere the distribution of z component
of the velocity vector is shown (6). One can see the periodic changes of the vertical direction of
the flow there, that are damped because of the presence of viscous forces in the fluid.

The next phenomenon visible in the presented figures showingXY plane (8) is that the
flow pattern is not symmetrical in stratified flows. One can seein the figure (7) that the flow
is symmetrical in the case with neutral stratification. It means that the asymmetry is the most
probably caused by the stratification of the flow in our cases.
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