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UNSTEADY SOLUTION OF A 2D STATOR-ROTOR INTERACTION

Petr Straka
Aeronautical Research and Test Institute, Plc, Prague

Abstract

This contribution describes a 2D unsteady solution of a stator-rotor interaction for
a subsonic steam turbine cascade Skoda ST6 and a transonic gas turbine cascade
PBS TJ100. The method used for solution is based on the RANS equations coupled with
a TNT k-cw turbulence model. The problem is solved by an implicit finite volume method
for compressible flow on a structured quadrilateral multiblock chimera grid. Influence
of a time discretization (backward Euler's second order scheme vs. Crank's-Nicolson's
scheme), a space discretization (2D linear reconstruction: Van Albada's vs. Van Leer's
limiter) and a physical model (viscous turbulent vs. inviscid model) on a time behaviour
and a spectrum of a forces action is described.

Nomenclature

Ust stator blades pitch w specific  dissipation of the
kinetic turbulent energy

13 physical time Tij viscous stress tensor

D pich diameter 9z> 9y heat flux

Po1 inlet total pressure K molecular viscosity

p2 outlet pressure Ht turbulent viscosity

To1  inlet total temperature 9k 9@ turbulent model constant

Yer circumferential speed Ly Cartesian coordinates

al angle of attack Py, P,  production terms

W state vector Dy, D,  destructions terms

F, G inviscid fluxes Cp cross-diffusion term

R, S viscous fluxes K adiabatic exponent

Q source terms vector A thermal conductivity coefficient

P density At turbulent thermal conductivity
coefficient

U, U velocity vector components At physical time step

€ tonal energy per unit At dual time step

p pressure R residuum

T temperature n index of physical time layer

L v

turbulent kinetic energy index of dual time layer
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Introduction
This paper deals with the solution of the 2D unsteady flow through a turbine stage.
Main object of this work is a study of an influence of various conditions of the
simulation (physical model, numerical method) on an unsteady aerodynamics forces.

The solution is done for two different types of geometry. The first is a cylindrical
section of the steam turbine stage “ST6” designed by Skoda Power a.s. which works in
a subsonic regime. The second type of geometry is a cylindrical section of the gas
turbine stage “TJ100” designed by PBS Velka BiteS a. s. which works in a transonic
regime. The other difference between this two types of geometry is a thickness (or
radius) of a trailing edge. The cascade TJ100 has much thicker trailing edge of both
stator and rotor blades compared with the cascade ST6 which leads (in according with
a simulation results) to stalling of flow and generating of a vortex series in a wake of
TJ100 cascade blades contrary of the cascade ST6.

A scheme of both types of geometry and parameters of flow is shown in following
table:

TJ100

-7

N7
TR

AN

rpm 4346 min™ 13 054 min™!
stator blades pitch 28.798 mm 24,7737 mm
stator : rotor blades 70:90 40 : 30

pich diameter D 552 mm 275 mm
inlet total pressure po; 131 100 Pa 130 000 Pa
inlet total temperature Ty, | 328.96 K 318.00 K
angle of attack o 0° 0°

outlet pressure ps 95 380 Pa 46 400 Pa
circumferential speed v, |125.61 ms™ 187.96 ms™!
fluid ideal gas ideal gas

Tab. 1 — Parameters of the cascades ST6 and TJ100

Physical and mathematical model

Used model of an unsteady compressible viscous or inviscid flow of an ideal gas is
described by the RANS equations coupled with a two-equations TNT k& — w turbulence
model (1) resp. by the Euler equations (from (1) with removing of a viscous terms and
a part of the turbulence model).
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oW OF(W)  9GW) OR(W.AW) OS(W.AW) _ (1)

ot ox dy ox oy
where

W = [p, pu, pv, e, pk, pw]’ (2)
is a state vector,

F(W) = [pu, pu® + p, puv, u(e + p), puk, puw]T (3)
and

G(W) = [pv, puv, pv? + p,v(e + p), pvk, pvw]t 4)

are an inviscid fluxes,
ok ow]”
R(W,AW) = [0, Taws Tays WTaz + UTay — qa, (1 + Jk,ut)a, (1 + wa#t)%} (5)
and
ok ow]t
S(I)Va AVV) — |p: Tays Tyy, UTxy + UTyy — Gy, (M + Gkut)@a (,LL + Uwut)@:| (6)
are a viscous fluxes and
Q:[anaoaoapk_Dk;Pw_Dw_CD]T (7)

is a vector of a source terms. Relation between total energy per unit and pressure is
given by state equation as:

p=(k=1) e~ plu®+v?)/2], (3)
where « is an adiabatic exponent. The viscous stress tensor is given by formula (in an
indexical notation with using of the Stokes's relation for both types of the viscosity):
ou;  Odu; 2 5 auk) 2

Tij = (B + pe) (aa:j + o2, 3980, ) 301 P 9)

The molecular viscosity is given by the Sutherland's law:

n_ (TN To+s (10)
Ho To T + S ’
where Ty = 273.15 K and S = 110.3 K. The turbulent viscosity is given by formula:
k
u =25 (11)
W
The heat flux in (5) and (6) is given by the Fourier's law:
oT
g =—(A+A)5—, (12)
J 0$j

where A is a thermal conductivity coefficient and A, is a turbulent thermal conductivity
coefficient. The terms Py, resp. F,, in (7) are the production and Dy, resp. D, are the
destruction of the turbulent kinetic energy and the specific dissipation of the kinetic
turbulent energy respectively, Cp 1s a cross-diffusion term [1].

Numerical method
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The governing equations (1) are discretized on a structured quadrilateral multiblock grid
(with an implementation of a block overlapping) using a cell-centered finite-volume
technique and solved through full implicit time-marching scheme. The part of the two-
equations turbulence model is solved separately from the RANS equations. The inviscid
fluxes of the RANS equations are solved by the Osher's-Solomon's scheme [2], the
viscous fluxes are solved by a central scheme using a dual grid. The convective terms of
the turbulence model equations are solved by the Steger's-Warming's upwind scheme
[2], the diffusive terms are solved by the central scheme using the dual grid.

The 2D linear reconstruction technique with the Van Albada's or Van Leer's limiter
[2] is used to to obtain of higher precision order in a space whereas the influence of the
type of limiter on the results is discussed in following paragraphs.

The backward Euler's second order scheme (13) and the Crank's-Nicolson's scheme
(14) are used for a time discretization.

gwrtt —qwn  wnt

2At

Wwnt+l _ yn B l [R(W/vn+1) +R(ﬂ/n)} (14)

At T2 B
where R is a residuum, At is a physical time step and = is an index of a physical time
layer. Both schemes are realized through a time fixing method in a dual time:

gty g 4 pyn-l
- _ R(Wnthr+l (15)
> Ar 9AL + R )

for the backward Euler's second order scheme or
VVﬂ+1,V+1 _ V[/n+1,u B V[/n+1,1/ —Wwn 1 1wt .

o = A7 +3 [R(W )+ RW™)]  (16)
for the Crank's-Nicolson's scheme. In (15) and (16) there A7 is a dual time step and v is
an index of a dual time layer. The dual time step A7 is set with respect to stability and
convergence of the iterative proces in the dual time whereas the physycal time step At is
restricted only by a physycal phenomenon (e.g. the circumferential speed in this
contribution). The time fixing method in the dual time for both (15) and (16) schemes
proceeds in folowing steps:

1. set Wntho — pn,

2. solve W™ 1¥+1 from W™+ up to obtain a stady state W +1*" (or to

achiving of a maximum number of the dual iterations),

3. set Wt = Ly,

The other possibility is to use of a method with a priori determined number of the
dual iterations [3]. For choice of A1 = %At we can rewrite equation (15) to form:

n41,v n n—1

% (M/n+1,v+1 o I/Vn+1,v) — 3w —42W +W + AtR(IVn+1’U+1). (17)
In (17) the physical time step At must be set with respect to both physycal restriction
and stability and convergence restriction. By using (17) with performance of the
stability and convergence condition to obtain the second order of accuracy in a time two
dual iterations are enough [3].

Alike it is possible to use the Crank's-Nicolson's scheme with a priori determined
number of the dual iterations. For choice of A7 = At¢we can rewrite equation (16) to
form:

= R(W™H), (13)

3 VV”+1’V+1 _ VV”+1’V
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V[/n+1,u+1 o VVTL—H,U — (I/Vn—H,u o M/n) + % [R(M/n+1,V+1 + R(”/n))] (18)
It is possible to use the physical time step A¢ in (18) the same as in (17).

The influence of used scheme (backward Euler's or Crank's-Nicolson's) and used
iterative method in the dual time — the time fixing method in the dual time (15) and (16)
or the method with a priori determined number of the dual iterations (17) and (18) —
much like the influence of the choice of the physical time step At on the results is tested
and discussed in following paragraphs.

Boundary conditions

The relationship of number of stator and rotor blades was modified for simulation
demand from real number to 70:90 for ST6 cascade resp. 30:40 for TJ100 cascade. It
makes possible to use a periodically repeating domain containing seven stator and nine
rotor blades for the ST6 cascade resp. three stator and four rotor blades for the TJ100
cascade.

The scheme of the computational domain with marked types of aboundary
conditions is shone in Fig. 1. Values of the prescribed quantities are mentioned in
Tab. 1. The total pressure pyi, the total temperature Ty, and the angle of attack o are
prescribed at the inlet boundary. The integral of the static pressure p- is prescribed at
the outlet boundary. Continuity of the static pressure and desity is prescribed at the
interface between stator and rotor part (with respect to the time dependent mutual shift
of the rotor blades to the stator blades). The velocity vector at the interface respects the
circumferential speed v,

=== —_— Y T 7 1 periodicity

— ... outlet
= .. = inlet
st. rt. interface

I — wall

Fig. 1 — Scheme of a computational domain

Computational grid

The structured quadrilateral multiblock grid with an implementation of a block
overlapping (so-called chimera grid) is used for discretization of the computational
domain. The grid is combined from the “O”-type blocks around the blades and “H”-type
basic blocks (see fig. 2 and fig. 3).
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Fig. 2 — Computational grid for the ST6 cascade, red — stator part, blue — rotor part
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Fig. 3 — Computational grid for the TJ100 cascade, red — stator part, blue — rotor part
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Results and discussion
A character of a flowfields in a static temperature isolines form in the blades ST6 and
TJ100 we can compar in Fig. 4. We can see, that contrary to the cascade ST6 where the
trailing edges are relatively sharp in the cascade TJ100 in consequence of thick trailing
edges the vortex series behind the stator blades is generated. Of course a physical
correctness of this effect is controversial in relation to used physical model and
numerical method (namely the TNT £ — w turbulence model and computational grid).
However a presence of a higher frequence effect in the flow field make possible to
check an ability of different variants of used physical model and numerical method to
represent the higher frequence effect.

7\ v

Fig. 4 — Flow field — static temperatute isolines, left: ST6cascade, right: TJ100 cascade

The properties of used models are presented on a time behaviour of an action of force
F,(t) and F),(t) at stator and rotor blades and their frequency spectrum. The influence
of the physycal model — viscous tyrbulent and inviscid model is presented in Fig. 5 for
the cascade ST6 and Fig. 6 for the cascade TJ100. In both cases the scheme (17) with
2016 physical steps per period for ST6 and 1008 steps per period fos TJ100 was used.
We can see a slightly shift of the time behaviour of the forces obtained by the inviscid
model against the turbulent model in the cascade ST6 however the spectrums of both
models are almost identical (Fig. 5). In the cascade TJ100 we can see slightly increasing
of amplitude of higher frequency effect and shift this frequency (from 38.000 Hz to
45.000 Hz) for inviscid model against to turbulent model, lower frequency effect are by
both models checked almost identycaly.
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The influence of used type of limiter (Van Albada's or Van Leer's) in 2D linear
reconstruction technique is presented in Fig. 7 in the cascade TJ100. The scheme (17)
with 1008 physycal steps per period and the inviscid model are used in this case. We can
see, that the spectrum in both cases is practically the same, but we can recognize some
dissimilarities in the time behaviours although the difference between both used
methods is very small. This example illustrates a dependence of time behaviour of
quantities in unsteady cases on the space discretization.
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Fig. 7 — Influence of type of limiter, red: Van Albada's limiter, blue: Van Leer's limiter

The differece between the second order backward Euler's scheme and the Crank's-
Nicolson's scheme is presented in Fig. 8 in the cascade TJ100. The schemes (17) and
(18) with 1008 physycal steps per period and the inviscid model are used in this case.
We can see that differences between this two schemes are minimal in both time and
frequence domain. The Euler's scheme is a bit more robust in start of solution than
Crank's — Nicolson's scheme.
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Fig. 8 — Influence of type of time discretization, red: second order backward Euler's
scheme, blue: Crank's-Nicolson's scheme

The influence of choise of the physical time step A¢ which is joint with the
circumferential speed v.,. and the number of the physycal steps per period is presented
in Fig. 9 for the cascade ST6 with using of the viscous turbulence model and the Euler's
schemes (15) or (17) and in Fig. 10 for the cascade TJ100 with using of the inviscid
model and the Crank's — Nicolson's schemes (16) or (18). In the cascade ST6 was used
2016 physical steps per period with the Euler's scheme in form (17) or 63 physical steps
per period with the Euler's scheme in form (15) with restriction to maximum 30 dual
iterations. In the cascade TJ100 was used 1008 physycal steps per period with the
Crank's — Nicolson's scheme in form (18) or 108 physical steps per period with the
Crank's — Nicolson's scheme in form (16) with restriction to maximum 30 dual
iterations. Using of lower number of the physical steps per period don't leads to
acceleration of solution (high number of the dual iterations) but it leads to losse of the
accuracy in time. In Fig. 9 we can see that by using of lower number of the physical
steps per period is checked only first major frequence (and partially second major
frequence for the rotor blades). In Fig. 10 we can see that by using of lower number of
the physical steps per period are high frequence effect shifted from 45.000 Hz (for
invoscid model) to 24.000 Hz.
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Fig. 9 — Influence of physical time step At in cascade ST6, red: 2016 steps per period,
blue: 63 steps per period
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Fig. 10 — Influence of physical time step At in cascade TJ100, red: 1008 steps per
period, blue: 108 steps per period
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Conclusion

By virtue of the simulations of the unsteady stator — rotor interaction in the cascades
ST6 and TJ100 by using of various physical models and modifications of numerical
methods we can say that using of the iviscid model leads to slightly shift of the mean
values of the forces against results obtained by the turbulent model in the cascade ST6.
Another result of using of the inviscid model if slightly increase of the frequence of the
high-frequence effect in the cascade TJ100.

The results obtained by using of the Van Albada's limiter and the Van Leer's limiter
are similar, but this example illustrates a dependence of time behaviour of quantities in
unsteady cases on the space discretization.

The second order backward Euler's scheme and the Crank's-Nicolson's scheme give
almost the same results, but the Euler's scheme is a bit more robust in start of solution
than Crank's — Nicolson's scheme.

Using of lower number of the physical steps per period don't leads to acceleration of
solution (high number of the dual iterations) but it leads to losse of the accuracy in time.
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