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Abstract

We consider asymptotic regimes for a simplified model of compressible
Navier-Stokes-Fourier system coupled to the radiation, when the radiative
intensity is driven either to equilibrium or to non-equilibrium diffusion
limit, depending the scaling performed, and we study the convergence of
the system toward the aforementioned limits.

Key words: Radiation hydrodynamics, Navier-Stokes-Fourier system, weak
solution, Oberbeck-Boussinesq.

1 Introduction

We consider a model of radiation hydrodynamics introduced by Teleaga, Seaid,
Gasser, Klar and Struckmeier in [21], incorporating the effects of radiation in
a simplified setting. The motion of the fluid is governed by the standard field
equations of classical continuum fluid mechanics describing the evolution of
the mass density o, the velocity field «, and the absolute temperature ¢ as
functions of the time ¢t € R4 and the Eulerian spatial coordinate = € 2, where
Q is a bounded region of R®. The effect of radiation is incorporated in the
radiative intensity I = I(t,z,d,v), depending on the direction vector & € S2,
where 82 ¢ R? denotes the unit sphere, and the frequency v > 0. The effect
of radiation is then expressed in terms of integral means with respect to the
variables & and v of quantities depending on I.

The evolution of the compressible viscous heat conductive flow is coupled to
radiation through the radiative transfer equation which reads

18t1+c3~VII:S in (0,7) x Q x (0,00) x S2, (1.1)
C

where c is the speed of light. The radiative source S := S, + S is the sum of an
emission-absorption term S, . := 0, (B(v,¥) — I) and a scattering contribution
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written during her stay at CEA. She would like to thank to Prof. Ducomet for his hospitality.



Sy = oy (f — I) where I := ﬁ f32 I d&, and the transport coefficients o, ()
and o0,(9) are non negative functions. In the following we assume that o,
and o4 do not depend on & (isotropy) moreover we suppose that the so-called
“srey hypothesis” is valid: o, and o5 do not depend on the frequency v. From
the radiative intensity I and the source S we define the radiative energy Fr =
i fooo Js2 I diddv, the radiative momentum Fp = fooo Js2 @I dddv, the radiative
tensor Pr = % fooo fs2 WRwl dddv, and from the source S we define the energy
source Sg = fooo Js2 S dddv.

Finally the function B(v,v) which appears in S, ., measuring the depar-

ture from equilibrium, is the Planck’s function given by the formula B(v,¥) :=
2';—2”3 (exp (%) — 1)_1 where h and k are the Planck and Boltzmann’s con-
stants. We also denote by the same symbol B the frequency average of B(v,¥)

given by .
B(v) ::/0 B(v,9) dv. (1.2)

Observe that we get a conservation law by taking the first moment with respect
to & in (1.1)

8tER + diVIFR = SE in <O,T) x Q. (13)
As for ordinary fluids, the mass conservation is expressed by the continuity

equation

Oro + div, (o) = 0in (0,T) x €. (1.4)
Similarly, balance of linear momentum reads
O (o) + div, (ot ® @) = div,T in (0,7T) x Q, (1.5)

where T is the Cauchy stress tensor characterized by the Stokes law T = —pl+-S,
where p is the pressure and S is the viscous stress tensor. We consider that the
state function p = p(p, ) is a given function of local thermodynamical variables
o and 9. So are the specific internal energy e = e(p,¥) and the specific entropy
for the fluid s = s(p, ). We also assume the Newton’s rheological law for S

S(9, Vi) = (V) (Vzﬁ—i— Vi — % div, i 11) + 1 div, (),

where the shear and bulk viscosity coefficients p and n may depend on ¢. Taking
the scalar product with @ we get the kinetic energy balance

1 1
Oy (2 g|ﬁ|2) +div, (2 olil)*ii — Ta’) = —S: Vi +pdiv,iin (0,T)xQ, (1.6)

where S : V., describes the irreversible dissipation of mechanical energy. The
balance of internal energy is

O (0e) + div,, (0etd) + div,d=S : V@ — pdiv,@ — Sg in (0,T) x Q, (1.7)



where the heat flux ¢ is given by the Fourier’s law ¢ = —xkV 19 and the heat
conductivity x may depend on ¢. From (1.6) and (1.7) we get the total energy
balance

1 1 -
Oy (2 oli)? —|—ge—|—ER> + div, ((2 olil)? —|—96—T) U+ q+ FR> =0. (1.8)

in (0,7) x Q and the system (1.4)(1.5)(1.8)(1.1) is finally supplemented with
the boundary conditions:

ﬁl@ﬂ = 0) i ﬁ|6Q = 07 (19)

and
I(t,z,d,v)=0for x € 00, & -7 <0, (1.10)

where 7i denotes the outer normal vector to 92, and initial conditions

(o(z,t), d(z,t), I(z,t),I(z,t,6,v))],_y = ("(z), @), 9 (2), 1%, &,v)),

(1.11)

for any z € Q and v € (0,00). Integrating equation (1.8) on Q and using the
previous boundary conditions, we get

d 1 o
— < gﬁ|2+ge+ER> dx+/ / G-i 1 dd dv =0, (1.12)

where I'y = {(z,&) € 90 x 82 : 7, -&J > 0}.

Just mention that system (1.4 - 1.10) can be viewed as a simplified model
in radiation hydrodynamics [19], [18]. Such systems appear in astrophysics and
their asymptotic regimes have been proposed by Lowrie, Morel and Hittinger [15]
and revisited recently by Buet and Després [5]. For a more “complete system”
including a radiative source in the right-hand side of (1.5), a global existence
result has also recently been proved in [7] under some cut-off hypotheses on
transport coeflicients.

We are interested here in limit regimes of the previous system and our pur-
pose is to show that the asymptotic theory developed in [9] can be adapted to
problem (1.4 - 1.10). However, contrary to the low Mach number limit studied
in [8], the diffusion limits correspond to a compressible system. This introduces
a difficulty in estimates the differences between the solutions of the primitive
and the target system, which can be overcome by using a relative entropy in-
equality introduced by Feireisl and Novotny [10] in their study of weak-strong
uniqueness results for heat-conducting compressible fluids (see also [11]).

The paper is organized as follows. In Section 2, we list the principal hy-
potheses imposed on constitutive relations and state the existence result. In
Section 3 we compute the formal asymptotic of the problem. Uniform bounds
imposed on weak solutions by the data are derived in Section 4. In Section 4.1 a
relative entropy inequality is derived and used in Section 4.2. The convergence
Theorems are finally given in Section 5.



2 Hypotheses and the primitive system

Hypotheses imposed on constitutive relations and transport coefficients are mo-
tivated by the general existence theory for the Navier-Stokes-Fourier system
developed in [9, Chapter 3] and reasonable physical assumptions [19]. We con-
sider the pressure in the form

plo.9) = 972P (o7 ) + 50, a >0, (2.1)

where P : [0,00) — [0,00) is a given function with the following properties:
P € C'0,00), P(0)=0, P'(Z) >0 for all Z >0, (2.2)

2p(7) - P(2)Z
Z
P(Z)

P

0<

<cforall Z>0, (2.3)

= Pso > 0. (24)

The component %194 represents the effect of “equilibrium” radiation pressure
(see [7] for motivations). The transport coefficients i, 1, and & are continuously
differentiable functions of the absolute temperature such that

0<ci(1+9) < u@), W) <cy 0< () <c(l+9), (2.5)
0<ci(1+9%) < k() <cea(l+09°) (2.6)

for any ¥ > 0.
Moreover we assume that o, and o, are continuous functions of 9 such that
0 < 0a(9),05(0), 090 (9)], |090a ()] < c1, (2.7)
0 < 0, (9)B(v, ), |09{ca(P)Bv, ¥} < ca, (2.8)
0a(9)B™(v,9) < h(v), h € L*(0,00) for m = 1,2, (2.9)

for any ¥ > 0 and relations (2.7 - 2.9) represent “cut-off” hypotheses at large
temperature.

We now just recall some definitions introduced in [7]. In the weak formu-
lation of the Navier-Stokes-Fourier system the equation of continuity (1.4) is
replaced by its renormalized version [6] represented by the integral identities

/QQ(T,.)@(T,-) d:c—/ﬂgocp((),~) d:c—/OT/Q(gatgo—kgﬂVmgo) dz dt (2.10)

satisfied for any ¢ € C'([0,T] x ) and any 7 € [0,T], and for (0,-) = gp.
Similarly, the momentum equation (1.5) is replaced by

/Q 0il(r, Vo(7,) d / 000t 0, ) dx



= / / (0 -0rp+ i@ U : Vo + pdivyp —S: V) do dt (2.11)
0 Ja

for any ¢ € C*([0,T] x Q;R?) with ¢lyq = 0, any 7 € [0,7] and with
(0, -) = dp.

As the term S in the total energy balance (1.8) is not controlled on the (hy-
pothetical) vacuum zones of vanishing density, we replace (1.8) by the internal
energy equation

0t(0e) + div,(oe) + div,§ =S : V4 — pdiv, 4 — Sg. (2.12)
Furthermore, dividing (2.12) on ¢ we get the entropy equation

§-Vi0\  Sp
9

2B (2.13)

Ot (08) + divy (psi) + div, (g) =:1¢= % <S 1Vt — 3

where the first term ¢, := % (S 2Vl — W) is the (positive) matter entropy

production. In order to identify the second term we recall [1] the formula for
the entropy of a photon gas

2k [
st = —6—3/ / v? [nlogn — (n + 1)log(n + 1)] d& dv, (2.14)
0 Js2
wheren = n(l) = 52 L is the occupation number. Defining the radiative entropy
flux
R 2k [ 2 oo
' =-— ve[nlogn — (n+ 1)log(n +1)|& dd dv, (2.15)
0 Js2

and using the radiative transfer equation, we get the equation

Oy s + div, g™ = 77/ / — og
S2

Checking the identity log n?é?j*l = % with B = B(1,v) the Planck’s function,

and using the definition of S, the right-hand side of (2.16) rewrites

—— 7_7/ /82V|:10g ) lg&}aa(B—I)d&du
_7/ /52V[ J)rl k’gn(?}g?l

where we used the hypothesis that the transport coefficients o, s do not depend
on &J. So we obtain finally

S did dv =: ¢® (2.16)

os(I — 1) dady,

O (os + s™) + div, (st + ¢) + div, (g) ="+ (2.17)



and equation (2.13) is replaced in the weak formulation by the inequality

/ (Qoso + séz) o(r,+) do — / (QS + SR) (1, )e(r, ) dx
Q Q

/OT/Q ((gs+sR) v+ 0if - Voo + <g+q~R> -sto> dzdt  (218)
—/T/w;(gzvxﬁ—§'31ﬁ>¢dt

_//U /S,,[ jl log&]aaw—ndodu

+/Om[g2i[10grm—1og7£21

for any ¢ € C1([0,T] x Q), ¢ > 0 and a.a. 7 € |
Since replacing equation (1.8) by inequality (

under-determined problem, system (2.10), (2.11),
with the total energy balance

/Q (;Q|ﬁ|2 + oe(o0, V) +ER> (1,-) dz —/Q (2;)(@6)0? + (0€)o +ER,0> da
(2.19)

/ / / / &-nl(t,x,d,v) dv dd dS, dt =0,
I0UXS2, B-iA>0

where Ero = [ss fo In(-,&,v) d& dv.

os(I —1)dd dz/] ¢ dedz dt

0,7].
2.18) would result in a formally
(2.18) must be supplemented

The existence result reads now [7]

Theorem 2.1 Let Q C R? be a bounded Lipschitz domain. Assume that the
thermodynamic function p satisfies hypotheses (2.1 - 2.4 ), and that the transport
coefficients p, A\, k, 04, and os comply with (2.5 - 2.9).

The problem (1.4 - 1.10) has a weak solution (0,4, ¥, 1) such that

0>0, 9>0 for a.a. (t,z) xQ, I>0 a.a in (0,T) x Q x S% x (0,00),

0 € L>(0,T; L°3(Q)), ¥ € L®(0,T; L*(Q)),
i € L*(0,T; Wy (% R)), 9 € L*(0,T; Wh2()),
I L®((0,T) x QxS x(0,00)), I(t,-) € L0, T; L*(Q x §? x (0,00)),

and if o, U, ¥, I satisfy the integral identities (2.10), (2.11), (2.18), (2.19),
together with the transport equation (1.1).



3 Formal scaling analysis

In order to identify the appropriate limit regimes we perform a general scaling,
denoting by LTEf) Tref7 Urefaprefa ﬂrefa DPref, €refs MHrefs Kref, the refer-
ence hydrodynamical quantities (length, time, velocity, density, temperature,
pressure, energy, viscosity, conductivity) and by Iref, Vref, Taref, Osrefs the
reference radiative quantities (radiative intensity, frequency, absorption and
scattering coefficients). We also assume the compatibility conditions pr.y =

kp. 2hv7,
Preferef, Vref = %, Lep = =2 £ and we assume that the coeffi-
cients o, and o are independent of the angular variable. We denote by Sr :=
Lref _ Uref _ UrefprefLTef _ UrefprefLref
TrofUres’ Ma = N Re = T hrer Pe = ety the Strouhal,
Mach, Reynolds, Péclet (dimensionless) numbers corresponding to hydrodynam-
. 2kp 92
H _ C _ __ Os,ref _ B ref :
ics, and by C = Urcr L= Lpctoarer, Lo = Er P=iom I preserey various

dimensionless numbers corresponding to radiation. Using these scalings and

using carets to symbolize renormalized variables we get S = i"ef S, where S =

L, (b(f/, 9 — f) YLLG, (ﬁ Js2 1, @) A& — f) with b(v, 9) = 15 (% —1) 7",
Omitting the carets in the following, we get first the scaled equation for I, in
the region (0,T) x Q x (0,00) x S?

1
Sr3tI—|—¢D’-VII:S:EJG(B—I)—I—EESUS(/ Id&—[), (3.1)
C 47T S2

3

where B := B(v,9) = — T Denoting also Eg = [, [¢> I d& dv the renor-
ev —

malized energy and Sp = [° [, S d& dv, by

st = —/ / v nlogn — (n 4 1)log(n + 1)] d& dv, (3.2)
0o Js2

the radiative entropy, with n =n(I) = Vl—s the occupation number, by

o0
qt = —/ / v? [nlogn — (n+1)log(n + 1)] & d& dv, (3.3)
0o Js2

the entropy flux, and taking the first two moments of (3.1) with respect to &,

we get also

% O, Eg + div,Fr = Sg, (3.4)

with nondimensional quantities Er = [;° [s. I dddv, Fp = IS [ &I diddv
and Sg = fooo Js2 S dddv.
The continuity equation is now

Sr Opp + div, (i) = 0, (3.5)
and the momentum equation
1 1
7) + div, (07 ® @ — — div,T=0. .
Sr 0y (o) + div, (ot ® @) + a2 V.p(o,9) e div, 0 (3.6)



(From (3.2), (3.3) and (3.1) we get the radiative entropy balance

S
=r 5™ 4 div,q" / / = log s dddv. (3.7)
“ 52
The balance of internal energy rewrites
- 1 Ma?
Sr 0¢ (oe + PER) + div, (Qeﬁ—k PCFR> + — div,g= a
Pe Re
and using (3.7), the balance of total entropy reads
1 S
Sr 0y (0s + Ps™) + div, (osii + PCF™) + o div, <1q9> =g, (3.8)

with

1 [ Ma? . 1 ¢-V,9
<—ﬂ<ReS'Vﬂf“‘pe 9 )
+PCL / / 1 I) _ log _UEB) (I — B) ddv
v | Pnd)+1  SuB +1]7" v

o 1 n(I) n(I)
+PCC£S/O /32 > llog oD+l log 7n(I~) 1

The scaled equation for total energy gives finally the total energy balance

os(I —1) ddv.

Ma 2
sr@ ( Q|u|2+ge+PER> d:v+PC/ / G-RIdT dv = 0, (3.9)
ry

with B = [ [s [ dv d&.

Supposing that a small amount of radiation is present (P = O(g)) in our
strongly under-relativistic flow (C = O(e 1)), where ¢ is a small positive number,
we obtain the equilibrium diffusion regime described in [5] by Ma = Sr = Pe =
Re=1,P=¢, C=c¢"' Ly=¢%and L =¢"1, given by

68t1+c3~VrIiaa(BI)Jrsas(;ﬂ/SzIdQI), (3.10)

0o + div, (o) = 0, (3.11)

Oi(ot0) + div, (0t @ @) + Vup(o,¥) — div,T = 0. (3.12)

Ot (0e + eER) + div, (geﬁJr ﬁR) +div,¢=S: V,u — pdiv,, (3.13)
Ot (08 +esr) + div, (oUs + gr) + div, (g) 3 <S Vi — q- Zxﬂ

+i/000 /S% {log n(?gi)—l — log n(%(fll} oa(I — B) disdv



o, n(h)

~ (I — 1) dadv, 3.14
e n(1)+10( ) (3.14)

log

“f

d 1 1 [
— = o|i@l® + ¢e + Er dx+f/ / @-nIdlydv =0. (3.15)
dt Q 2 g Jo Iy

In the same stroke, the “ non-equilibrium diffusion regime” is defined by Ma =
Sr=Pe=Re=1 P=¢, C=c¢!, L=2¢%and L, = ¢~ !. One checks that
equations (3.11) (3.12) (3.13) and (3.15) still hold is this scaling. However it
will be convenient to rewrite (3.13), using (1.3) as

O (0€) + divy, (petd) + divyd =S : Vi — pdiv,d — Sg. (3.16)

The new system reads finally

1
el +& -Vl =c0,(B-1)+ ab<4 / Idﬁ—]), (3.17)
T
Oro + div, (o) = 0, (3.18)
Oi(ott) + div, (ot @ @) + Vzp(o,¥) — div,T = 0. (3.19)
O (0e) + divy, (petd) + divyd =S : Vi — pdiv,@ — Sg, (3.20)
q q- Vg0
Ot (08 + esr) + div,, (0ts + gr) + div, (g) 3 (S Vi — q - )
n(I) n(B) .
1 —log ——— I — B) d@d
+5/ /Sw {Og @) +1 8B 1) ool B) dddv
n(I) n(I) ~
lo —lo = os(I — 1) diddv. 3.21
/ /Szz/[g (I)+1 gn(I)+1 ( ) (3:21)
3.1 The equilibrium-diffusion regime
In order to compute the limit system, we consider the formal expansions
=Iy+el + 5212 + 0(63),
0=po+eo1+e20s+ O(%), (3.22)
ﬁ:ﬂ0+€ﬁ1 +52ﬁ2+0(€3), ’
Y= 19() + 5191 + 52192 + 0(83).
Keeping the low order terms in (3.10) we get
IO = B(V, 190), (323)
and 1
Il = %B(V, 190)’[91 - - V?cIO (324)
Ua(ﬁo)



As the related radiative quantities are

{ poatearoe) (3.25)

Fp=fo+efi+0(e?),

using (3.23) and (3.24) we find eg(¥g) = B(g) where B is defined in (1.2) and

e1 = /0 - ﬁ [04(90)09 B(v,90) + B(v,00)090a(90)] dv,  (3.26)

together with ﬁ) =0 and

- 1
fl == 7m 8§B(190)vm'l90 (327)

The limit momentum equation is then
A (00to) + diva(0otlo @ to) + Vap(00,90) — divy (1o (Vato + Viidg)) =0,

where pg = u(d).
Let us observe that at lowest order, the limit energy equation is

0¢ (0€(00,Y0)) + divy (00e(00, Vo) to) + diva (K(00,90)VaVo)
= S(00,V0) : Vailo — p(00,Vo)div o,
where &(go,90) = (00, ¥0) + 222, and K(do) = k(Yo) — 5545y FwB(Wo).

Qo
Hence omitting the 0 index, we finally obtain the decoupled limit system in

(0,T) x Q

Oro + div,(otl) =0, (3.28)
O (0t) + div, (ot ® @) = div,T(p,¥), (3.29)
9 (0€(0,9)) + dive (0e(o, V)i) + divy (K(0,9)Va)
= S(p,9) : V@ — p(o,9)div, 4, (3.30)
I = B(v,9). (3.31)

We also get boundary conditions
ilog =0, VI - 7i|sq = 0, (3.32)
for (3.28)-(3.30), and initial conditions
(o(z,t), u(x,t), ¥ (x,t))|,y = (Qo(a:), i (z), 190(x)), (3.33)

for any x € Q.

This system corresponds to a renormalized compressible Navier-Stokes sys-
tem, while radiative equilibrium is achieved between matter and radiation with
radiative intensity I = B(v,¥), corresponding to the black-body radiation at
temperature ¥ with radiative energy Egr(¥) = B(¥).

10



(From classical results of Matsumura and Nishida [16] [17](see also Jiang
[14]) let us quote a global existence result for this system, for small data.
Let (3,0,9) be a given constant state with g > 0 and ¥ > 0. We note
eo = [|00—0ll L~ () + 1@l zr1 () 190 = 1 )+ Toll 2 )+ Vo l o), (3:34)
where V is the initial vorticity (recall that V,; = 0;u; — O;u;), and
Eo :=eo + [|Vaoollr2@) + IVaoollLa @) + [VaTollL2(0), (3.35)
for an arbitrary fixed a such that 3 < a < 6. The following result holds

Theorem 3.1 Let (9o — 9, 0,90 — V) € (H*())® and inf 9y > 0. There eists
positive constants 1 < 1 and I' > 0 depending on the data such that if Eg < T'n
(0,u,9,1) is the unique classical solution to the Navier-Stokes-Fourier system
(3.28)-(3.81) with boundary conditions (3.32) and initial conditions (3.33) in
(0,T) x Q for any T > 0 such that

(Q -0 ﬁaﬂ _ﬁ) € C([()?T]?HB(Q))v

sup lo — 0llr=(a) <2/2, inf >0,
>0 2€Q,6>0

Oro € C([0,T], H*(R)), 0y, 09 € C([0,T], H*(Q))
dvo, 0,1, 0,9 € L*([0,T], H?(Q)).

Moreover, if eg <1

sup |le *?H%Z(Q) + ||ﬁ||2L2(Q) + 19 *5”%2(9) + ||Vm19||2L2(Q) < Teg,
0<t<T

and 7
sup ([le = 0l =) + |9 — | L=(a)) < Ceo.
0<t<T

It is worth to note that when one considers the formal “nonconducting at rest”
situation where kK = 0 and @ = 0 and in the no-scattering case (o; = 0), one
obtains the simplified system introduced by Bardos, Golse and Perthame [2]
for which they proved global existence and diffusion limit (called “Rosseland
approximation”) under assumptions much more general than ours.

3.2 The non-equilibrium diffusion regime

Expanding as above using (3.22) in (3.17) and evaluating the lowest orders terms
we get

1
— Iy d&d = [ 3.36
Ar < 0 dw 0 ( )
1
@ - vxlo = 0'3(190,V) (/ Il dad — Il) 5 (337)
47 S2

11



and

1
8tIO +u_5 . fol = O’a(ﬂo)(B(ﬂo,l/) - Io) +US(190) (471‘/ 12 dw — Ig)
S2

™

1
+8190'3(190) (4/ Il dod — 11> 191. (338)
S2

Integrating on S? and plugging the first two relations into the last one, we find

- 1
Olg+ & -V, —0®J divy, (le())
0'8(190)

— oul00) (B0a,) ~ 1)+ 0u00) (- [ 12 @3- 12)

1
+8190'8(190,U) (471_/ I1 dad — Il) 191.
S2

Integrating in v and using (3.36)(3.37), we get a diffusion equation for N :=
I 1o dv

1 1
ON — = divy | ——=V.N | = 0,(90)(B(g) — N). 3.39
N = g v (s VN ) = 2 00)(B0) - ). (339
The limit continuity and momentum equations are the same as in the equilibrium
case and the limit energy equation rewrites is, after (3.16)

0y (0€e(00,70)) + div, (00e(0o, Po)to) + divy (k(P0) VD)

= S(00,%0) : Vo — p(00,Yo)divz iy — (SE)o,

where (SE)O = fooo fsz EN) dd dv = 0',1(190)[3(190) — N]

Noting as previously 1 = u(y) and & = k(dg), we finally obtain a com-
pressible Navier-Stokes-Fourier-type system in (0,7") x € coupled to a diffusion
equation for V.

Omitting the 0 index, we get finally the system

dy0 + div,(oif) = 0, (3.40)
B4 (0td) + diva (0@l ® @) = div,T(o,9), (3.41)

9 (0e(o,7)) + divy (ee(o,9)t) + divy (k(9) V)
=S(0,9) : Vot — p(o,)div, i — 0,(9)[B(¥) — NJ, (3.42)
ON — % div, (Criﬁ)vzzv) — 0 (9) (B(9) — N) . (3.43)

with the boundary conditions

oo =0, VI -iilon = 0, (3.44)
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N|yq = 0. (3.45)

and initial conditions
(o(x, 1), d(z,t), V(x,t), N(z,1))],_g = (¢°(x), @(x), ?°(x),N°(x)), (3.46)

for any x € Q, with N%(z) = [° [, I°(2,v,&) did dv.

In analogy with previous works on asymptotic analysis of radiative transfer
equation (see [2][3][13]), we call (3.40)-(3.43) the Navier-Stokes-Rosseland sys-
tem. As in the equilibrium case, we have a global existence result for solutions
of the problem (3.40)-(3.43) for small data.

Let (2,0,9, N) be a given constant state with g > 0, J > 0 and N = B(9).
We note

eo = || — 0l () + ||UO||H1(Q) + [9° — 5||H1(Q) + N0 _NHHl(Q)

TN 22 () + V0 lLa(), (3.47)

and
Eqy = eo+ Vo 0°|lr2(0) + V2 L) + IV Tl L2(0), (3.48)

for an arbitrary fixed a such that 3 < a < 6. The following result holds

Theorem 3.2 Let (0°—p, ", 9°—9, N°~N) € (H?*(Q))% and inf 9°,inf N° > 0.
There exists positive constants 1 < 1 and I' > 0 depending on the data such that
if BEg < T, (0,4,9,N) is the unique classical solution to the Navier-Stokes-
Fourier system (3.40)-(3.43) with boundary conditions (3.44) and (3.45) and
ingtial conditions (3.46) in (0,T) x Q for any T > 0 such that

(Q - E, ﬁaﬁ - 57 N - N) € C([OvT]v HB(Q))a
sup lo — 0llL=(a) <2/2, inf >0,
t>0 2€Q,t>0
Do € C([0,T), H*(Q)), 0,1, 0,0,0,N € C([0,T], H (Q))
0,01, 00, 0, N € L*([0,T], H*(2)).

Moreover, if eg <1

sup_|lo _?”%2(52) + ||17H%2(Q) + 19 _5”%2(9) + N _N”%Z(Q)
0<t<T

+||Vz?9||%2(sz) + ||VzNH2L2(Q) <Tep.

and

sup ([lo = 0llpeo) + 119 = I L=() + [N = Nl L=(a)) < Ceo.
0<t<T
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4 Uniform estimates for the primitive system

Let us recast the existence result of Theorem 2.1 in the rescaled context. For
that purpose we choose initial data such that

0(0,7) = 00, =2+ <0
7 _ =1
AL (4.1)
19(0,1') = ’190’6 =9 + 6190757
I(O7 Z, 67 I/) = IO,E = T + EI(()’l8)7
With 7 = B(V75)7 and
N(©,)=Noe = N +eNgy, (4.2)

where o > 0, 9 > 0 and N = B(?) are the same as those appearing in Theorem
3.1 and Theorem 3.2.
We get immediately from Theorem 2.1 the following result (see [7] for details)

Proposition 4.1 Suppose that the conditions of Theorem 2.1 are satisfied.

Let initial data (0o ¢, Wo,e, Vo.e, Lo,c) be given by (4.1), where (QO 2, _,(()127 19(()2, Iéla))

are bounded measurable functions.
Then for any € > 0 small enough (in order to maintain positivity of g((fg and

19(()2), there exits a weak solution (oc, e, V¢, 1) to the radiative Navier-Stokes
system (1.4)(1.5)(1.7) (1.1) for (t,z,&,v) € [0,T] x Q x S* x R, supplemented
with the boundary conditions (1.9 - 1.10) and the initial conditions (4.1). More
precisely we have

/QQE(Ta ')(b(ﬂ ) dx_/Q QO,E¢(07 ) dr = /0 ,/QQE (8“;5 + U, - qub) dx dt (43)
for any ¢ € C1([0,T) x Q), and any T € [0,T],

/ 0iic(r,) $(r,-) do — / d0.Toe $(0,-) da
Q Q

— [ [ (006 + 0 00 Vab 4 p divad - 5. V,0) dodt =0,
0 Q

(4.4)
for any ¢ € CH([0,T) x U R?) , and any 7 € [0,T], such that ¢ - nl,q = 0, with
p(0e,Ye) and S = S(de,9.),

/ /( 0|2 —|—,Q€€€—|—€ER> dz dt+/ / ,x,0,v) dl dv dt
Ty

1 _
= /Q (2 Q075|’LL0’€|2 + Q075€0’€ + 6Eé?5> d:L' = 807 (45)
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for a.a. t € [0,T] with I‘+ = {(z,8) € 0 x S* : &F-ii, > 0} and with
e. = e(0:,9.) and EE(t,z) fo Js2 Ie(t, 2,8, v) di dv

/ / ((‘QES6 + ES?) 87590 + (stsﬁe + Q_;R) . Vg;go) dx dt
0 Q

T q_;. m R,
+/O /Q o -V do dt + <§E +< v¢>[M;C}([0,Tx§)

< —/Q (0s0.c +es02) (0, ) du +/Q (05 +esi))(m)p(r, ) da, (4.6
where

1 _; ) xﬁs
§Em > 197 <Ss : Vi — qﬁv) ) (47)

. n(I.) n(B.) A )
- 2 = log ——-2— —log ————| 0,9 (B. — I.) dad
‘ _/0 [SQV|:OgN(IE)+1 Ogn(BE)+1 Oac (Be ¢) dddv

//S[ 11 log <(>Il

for ¢ € C*([0,T) x Q) and any T € [0,T], with <™ € M*([0,T) x Q) and
B e MF([0,T) x Q), where M(X) is the set of signed Borel measures on X
and M™(X) is the cone of non-negative elements of M(X).

We consider two possible values for the transport coefficients in the two cases
Jj =1 (equilibrium case) or j = 2 (non-equilibrium case)

and

o V(I — I) dddv,  (4.8)

1 o
o, = | 7 0alle) Wfi=1, (4.9)
eoa(Ve) ifj =2,
and o
o _ | coste) Hi=1, (4.10)
Os/ = P .
g 0-5(198) ij =2
Denoting B. = B(V Vo), G = k(9)Vale, 8. =s(0e, V), sB=st(1), &=
(1), and I := = [ I.(t, 2,v,&) A&, we have finally

/ // / (0 + &0 - Vb)) I dd dv dx dt
o JaJo Js2
+/ / / / [aagﬂ (B. — I.) + 0, (I} - 1)] b d3 dv dx dt,
o JaJo Js2
= // / el ¥(0,x,d,v) di dv dx—// / ely(r,x,d,v) dJ dv dx
aJo Jsz aJo Js2
+/ / / G-, I dU dv dt, (4.11)
o JryJo

for any ¢ € CH([0,T) x Q x S2 x Ry) and any 7 € [0, 7).
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Just mention that any weak solution (g, @, 9., I.) enjoys all of the regularity
and integrability properties given in Theorem 2.1, and that the presence of ¢ is
irrelevant in the existence theory.

4.1 Relative entropy inequality

We establish a relative entropy inequality satisfied by any weak solution (g, @, ¥, I)
of the radiative Navier-Stokes system, in the spirit of [10] (see also [20] in a more
general context). Let us consider a set {r,©,U} of smooth functions such that

r and © are bounded below away from zero and U I 0. We call ballistic free

energy the thermodynamical potential given by
He(0,9) = ge(e, V) — Ops(o, ),
and radiative ballistic free energy the potential
HE(I) = ER(I) — esf(I).
The relative entropy is then defined by
£(0,91r,©) = Hol(0,0) — 0, Ho (r,0)(0 — ©) — Ho(r, ©).

Testing equation (4.3) with ¢ = 3 U2, we get

1 - 1 5
/ L oel0(r, ) do / L 0 0(0.)? da
Q 2 Q 2

=/ /QE (ﬁ-atﬁjtag-viﬁ-ﬁ.) dz dt (4.12)
0 Q

Testing now equation (4.4) with ¢ = U, we get
/ 0ctc(T, ) - ﬁ(r, ) dx — / 00,6Uo ¢ - ﬁ(O, -) dx.
Q Q
= / / (9512'5 -8t(7 + 01U @ U : Vﬂj + pe divg;lj —-S:: Vw[j) dx dt =0,
0 Jo

(4.13)
Combining (4.12), (4.13) and (4.5), we get

T 1 . T
/ / (2 oc|ite — U* + o€ + 5E5> (7,-) dx dt+/ / G-t I (t, 2,3, v) dU dv dt
0 JQ 0 Jry

1 . —
= [ (5 eneline = 00,7 + en.ceo + cEfL. )

+/T / (0000 + 0.0 - V.0 - (0 = @) = pe divyT +8.: V,0) da d.
o (4.14)

16



Testing finally equation (4.6) with ¢ = O, we get

/ (000,c +£54) ©(0, ) da — / (0s: +esf) O(r,) dx
Q

Q

+/T/§(Ss:v$ﬁe—%?“9f)dxdt
// {/ /su{ ll logn(néigll}Uagj)(Bs_Ig)du_}dU
A it

)
_|_

o U1 - 1.) d3 du} dz dt

_/ / ((Q585 + 655) 0,0 + (Qaseﬁa + Q'ER> . Vgg@) dx dt
0 Q

/ /— V.0 dz dt. (4.15)

JFrom (4.14) and (4.15) we get

1 .
/(2 0c|ite — U? + ocec +eER — (0s. +es5) ) d:z:+/ / G-I (t,z,&,v) dT dv dt
Q .
T © 7. - V0.
+/ /(Sazvzﬂs_)dxdt
o Ja Ve Je
T oo 1 n(IE) n(BE) ) B
-1 —1 OB, — L) dZ d
+/o /Q@{/o /szv{ogn(ls)ﬂ B nBy+1]) 7 ( ) di dv
/ / oM 1Og(7l
S22V 5 +1 ( )

<) oW1, — I.) d& du} dz dt
+
</ <2 00|t — U (0, I+ o0, Eeog—l—sEOE (Q05075+€S(Ifa)@(0,-)) dz

/ / 0:0,U + 0.1, - V, U) ( —175) — p div,U +S. : VJ?) dx dt

// Qgsg—i—es 8t@+(ggsgu5—|—qa) V@ dxdt//—v O dx dt.
Q oV

(4.16)
Testing equation (4.3) with ¢ = 0,. He(r, ©), we get

/QaaggHG)(T,@)(T,-) dx—/ 00,:05. Ho o, (r(0,+),©(0,-)) dx
Q Q
_ /0 ' /Q (0204 (90, Ho(r.0)) + 027 - V. (9, Ho(r0))) do dr. (417
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(From (4.16) and (4.17) we get

1 N -
/Q <2 0c|te — U|2 + Ho(0e,9:) — Ho(r,0) — 9,.Ho(r,0)(0e — ) + 5H§(I€)> (1,-) dx

T . .
0 Iy 0 Q 196 195
T ee} 1 n(Ig) n(Be) . .
Mk —1 9B, — 1) d& d
+/o /Qe{/o /S?V{Og”(fa)+1 % nB+1) 7% ( ) did dv
+/ / l IOgM —logﬁ
0o JszV n(le) +1 n(l.)+1

1 . .
< [ 5 eoclioe - 00, ds
Q

o, U(I, - I.) d& dz/} dx dt

""‘/Q (HG(O,-)(QO’@ 190,5) - H@(O,-)(T((L ')7 9(07 )) - a@o,aHG(O,-)(T(Ov ')7 9(07 '))(QO,E - T(Oa ))
+€H(§(O).)(IO,E)> dl‘
+/ / 00U + 0.1 - Vo,U) - (U =) — pe divyU + S, : V,U) da dt
) (e )-(7-) )

_/ / (Qaseat@ + 0e5:Us - V0 + ge : Vx@) dzx dt
o Ja Ve

B / T / (esf0@ + - V.0) du di
0o Ja
/OT/Q (Qeat (395H@(r,@)) + 0ct - Vg (GQEH@(T, @))) da dt

+ / / ) (r@QEH@(T,Q) —H@(n@)) dz dt. (4.18)
0 Q
Observing finally that for D = 3; or D = V, one has
DO, He(r,0) = —s(r,0)DO—rd,_s(r,0)DO+9>_, He(r,0)Do.+0:. 4 He(r,0)DV.,

and using the thermodynamical relations

1 1
52 Ho(r,0) = - Op.p(1,©), 10, 8(r,0) = - 0y.p(r, ©),

Qc,0e

and

02, .. Ho(r,0) = 9. (0.(9.~©)y.5) (1, ©) = (9.~0)d,. (0:09.5(0:,0.) ) (r,©) = 0,

18



equation (4.18) rewrites after some algebraic rearrangements (see [10] for details)

1 o T
[ (5 e~ 0P + € urtdne) + (1) ) ey dos [ [ Gt 1t,.8,0) v dv
Q r,

T ) — qt: : vxﬂe)
+ — S : Vytie — ——— | do dt
/0 /9195 ( Ve
T ° © n(l) n(Be) Nin .
+/0 /Q/O /52V [IOgn(IE)—Fl logn(BE)—l—l 04 (Be — I.) did dv dx dt
S2 12 E —|— 1 ( )

c)
_|_

o, V(I — I.) d& dv dz dt,

‘/ 2(905|u05— T(0.)2 +& (0. Do.lr(© >e<o,->>+aHR<Io,a>) do

//ga TR VU(Ufue da;dt+/ /ga 5 ))(U—ﬁ5)~vm@dxdt
+/0 /Q(gg@tﬁJrﬁ-Vxﬁ)(ﬁ—ﬁg)) dr dt

—/ /(pg div, 0 ~ S, : V,0) do dt—/ /(asfat@w'f-vm@) dz dt
Q

// 02 (s = (1)) 0,0 d dt //g se —5(r,0)) U - V,0 dr dt
//fV@dxd”// 1—* 3tP(T9)—*UEV$p(T,®))d:vdt

= Ko+ Z /OT K;(t) dt. (4.19)

4.2 Uniform estimates

Our intention is to apply the previous relative entropy inequality (4.19) with
(r = p,(j = 4,0 = 9), where (p,%,9) is a classical solution of the target
system (in the equilibrium case or in the non equilibrium case), in order to
bound the quantities v. — v, for v = p,u,¥,I. Note that in the equilibrium
case: Eft = fo (v,¥) dv while accordingly in the non-equilibrium case, we
note E® = I, where I is the solution of the diffusion equation (3.43).

Just mention that the existence of classical solutions of the previous target
systems is either local (for T small enough) or corresponds to a small departure
from an equilibrium state. This last possibility corresponding to the kind of
regime we are interested in (diffusion limits), we suppose in the following that

the data of the problem satisfy the smallness requirements of Theorems 3.1 and
3.2.

19



We adapt from [9] the necessary definitions to the formalism of essential and
residual sets.

Given three numbers g € Ry, ¥ € Ry and E € R we define O the set of
hydrodynamical essential values

— E .
o .= {(g,ﬁ)eRZ : §<g<2§, 2<19<219}, (4.20)
and O the set of radiative essential values
R R E R _9oF
O, i=¢E*eR : 5 < EY<2E;, (4.21)

with O, := OH U OR

€SS €ess?

and their residual counterparts

H
Ores

= (R+)2\Ogs7 Oﬁes

=RON\OE,, Ores i= (Ry)*\Opss. (4.22)
Let {oc, i, Ve, I:},5 o) be a family of solutions of the scaled radiative Navier-
Stokes system given in Theorem 4.1. We call MS,, C (0,T) x Q the set

M, ={(t,z) € (0,T)xQ : (0c(t,2),9.(t,x), ER(t,x)) € Oess }

and M2, . = (0,T) x Q\M:,, the corresponding residual set.
To any measurable function A we decompose it into essential and residual
parts h = [h]ess + [h]res Where [h]ess = h-Iag=_ and [A]pes = h-Tae, . In the

same way as [9], we have the following properties for matter and radiation

Lemma 4.1 Let 5> 0 and 9 > 0 be two given constants and let Oess and Opes
be the corresponding sets of essential and residual values introduced in (4.22).
Suppose that (0,9, E®) € Opss.

There exist positive constants C; = C;(@,9) for j =1,---,8 such that

1.
Ch (|Qs - Q|2 + |'l95 - 79|2) <& (Qeﬂgamv 19) <Gy (|Qa - Q|2 + |'l9€ - 79|2) )
(4.23)
for all (0-,7:) € Oess,
2.
g(@&aﬁ€|gaﬁ) 2 C3a (424)
for all (0e,V:) € Opes,
3.
& (Qtﬁﬂslgy’ﬁ) > Cy (Qse(gaa 795) + Q|5(Qav195)|) > (4-25)

for all (0e,9¢) € Opes,
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05/ / |I.—B(v,9)|?ds dv < HR(I.) gcﬁ/ / |I.—B(v,9)|?dd dv,
0 S2 0 S2

(4.26)
for all I. € Oy,
5.
H™(1.) > Cr, (4.27)
for all I. € Oy
6.
HR(L) = Cs (B*(1.) + s (1)) (4.28)

for all I. € Oy

Sketch of the proof:
1. The points 1,2 and 3 are proved in [9)].
2. We have

H™Y(I.) = E™(I.) — © s™(I.) = / Yo dS dv,
0 Js2
where . (t, z,0,v;0,I.) = I.+120 (n(I.) logn(I.) — (n(I.) + 1) log(n(I.) + 1)),
with n(I.) = 4. Computing 0.1 = 1+ 2 log nzll(f)il and 07 ; . =
5 7715(7{2“) , we observe that 9y |, _p(, ») = 0 and that 8?aIEwE|I€:B(V,19) >
0. Moreover one computes 9|, = —v*9log(n(B(v,9)) + 1) < 0. Then
applying Taylor formula near I. = B(v,d) and integrating, we get (4.26).

3. The convexity of ¢ implies (4.27) and (4.28).

The previous result shows that all of the terms in the left-hand side of (4.19) are
positive. Then, following the lines of [10], we have to estimate the contributions
in the right-hand-side.

S _, S 1 L
| K| < / 0c | — u|2 |Voil| do < 2|Vt Lo o:ro) / 5 0 |t — u\Q dz.
Q Q

K| < ‘/ 0. (5. — s(r, ©)) (ﬁ — ﬁg) V.9 dr
Q

< Vel irs) [2/1/Q |[s(0e,9<) = 50, )]s 1@ = Te| do

+/Q|[Qa (S(Qaaﬂe) _s(gaﬂ))]res| |U_12€| dl‘:|

21



After Lemma 4.1 we have
_/Q |[8(95a195) - S(,Q, ﬁ)]ess' |ﬁ_ ﬂs' dx S d ||ﬁ_ ﬂ€||iz(Q,R3+C(5)/Qg (496719€|Qa 19) dCL',

and using interpolation we get

/Q [0s (s(02, V) — 5(0,9))],.0s] [T — Ue| da

<dllu- ﬁellie(g;m) + C(6) [|[oe (s(ee,Ve) — S(Qvﬁ))]resniﬁ/s(g) :

Using hypotheses (2.1)-(2.4) together with the (formal) property t — [, € (0c,V<|0,¥) dx €
L*>(0,T), we conclude that

5/3
e ({2 02) = s(e 0 ]ealFuay < € [ £ oe0cdest) d)
So finally we end with
|K2| S 5 ||ﬁ7 ﬁEHiG(Q;R}) + 6(51 0, ﬂv 19)/;25 (987196|Qa 19) dl’,

where the constant C depends on § and the (formal) norms of (g, i, 9).
Using (3.29) (or (3.41)) we get

K3:/ (00 (BT + @ - Void) - (@ — @.)) dx:/ g (U—ﬁs) (divxS(ﬁ,Vxﬁ)—p(g,ﬂ)) dz
Q Q 0

= /Q Qs; © (@ — 1) (divxS(ﬂ,Vxﬁ)—p(Q, 19)) d:z:+/Q (@ — 1i.) (divxS(ﬁ,Vxﬁ)_p(Q’ 19)) de.

Estimating the first integral as for K5, we have

/JH (@—1.) (divxS(ﬁ,Vmﬁ)—p(&ﬂ))] da

Q €SS

. L2
< C(8; 0,7, 9| [0: = 0] s 1722 + O 1T = Te 2 .ms)

S S L2
< C(6;0,,9) (I [o)ess Worsey + 1 Wess 13050y ) + 817 = @l aums) -

Integrating by parts in the second integral, we have also

/Q (@ — @) (divxS(ﬂ, Vi) — plo, 19)) da

_ /Q (S0, V) = Vi (@ — i) — ple,9) dive (i — i) ) dr

So, using the embedding W2(Q)) — L5(Q2), we end as above with

Kol < [ (800 9) s V. (@ ) = plo,0) diva (@~ ) ) da
Q
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+6 ||1_L' - ﬁng/Vlj(Q;Ra) + C’((S; o, ’17:, 19)/ & (Qg,ﬁgm, 19) dx,
Q

where the constant C’ depends on § and the (formal) norms of (o, i, 9, V0, V2ii, V,9).
Now we have

Ko = [ 0c(s(0100) = 0. 0)06 do = [ 0. [s(0-100) = s(e.0)] a6 ds
Q Q

€SS

+ [ ee[sten9) = s(00)]

where the second term is bounded as follows

6t9 d.]?,

T

/QQE |:S(1Q67195) — S(g,ﬁ)} 0,0 dx

Tes

< [00l~o) ([ oo 0] dotIsto i)l [ [ a).

< C'(6; g,m)/s(ggﬁe\g,ﬂ) dz.
Q

The remaining integral is bounded as follows

[ ecfstenv —sten)] o0 dr= [ (o-= o) [stee0) ~ st00)] 20 ds

S8

+/Qg[s(95,195) - s(o, 19)} 0,0 dx.

€SS

Using Taylor formula

[ (o= Qe ste0)] oo s

Finally

< C(¢6; g,ﬁ,ﬂ)/f(gs,ﬂe\g,ﬁ) dzx.
Q

/99{8(95,195) —s(o, 19)Lssat9 da

€ss

= [ efsten ) = s(0.0) (0. = o) = st )0~ 0) = s(e.0)] 910 da

_ /Q g[agS(Q, 9)(0: — 0) — Os(0,9) (Ve — 19)} 8,0 du

€SS

+ /Q g[ags(g, 9)(0: — 0) — O9s(0,9) (Ve — 19)} 8,0 du.

The first two integrals in the right-hand side can be estimated in the same way
as before and we end with

— [ on(s0e0.) — ste. 01010 do < C(G50,.9) [ € (o20ele.0) do
Q Q
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- /Q 0[0p5(0,9)(0- — 0) + os(0, 0) (9. —0)| 040 dir.

Accordingly, we have also
K? = _/ Q¢ (5(967195) - S(Q, ﬁ))ﬁ Vwe dx < C((s’ 9, ﬁ’ 19)/ g (057195|Q; 19) dzx
Q Q
—/ Q[ags(g, ) (0e — 0) + Ogs(0,9) (e — 19)}6- V.0 dx.
Q

K <8~ Ty + €6 07.9) [ €(0c,0:10,0) da.
Q

Finally we find

Ko= [ (1) i) - & 0V.0(0.0)) do
Q 1% 4

= /Q ( (1 - Q?) (@p(@a U) + uVap(o, 19)) dx + /Qp(g, 9)div,i. dx

+/Q ( (1 - Qg) Vap(0,9) (ﬁa - ﬁ) da,

and using the same argument used for K5, we get

/Q ( (l - i)) V.p(o,9)(a. — @) de

S6"1?717"6”12/[/12(9,113)+C/(§) g,ﬁﬂ?)/f(gaﬂe\g’ﬂ) dI,
Q

for any § > 0.
‘We have then

1— %) 0plo.0) — & @.Vaplo,0)) da
L((1-5)oaten - )

< /Q ( (1 - %) (3tP(Q, 9) + iV p(o, 19)) dz + /Qp(g, ) div, i, dx

+0 || — e |31, sy + C(6; Q,U,ﬁ)/ £ (0,9:]0,9) d.
Q

Plugging all of the previous estimates into (4.19) we get

/(; Q€|a5—ﬁ|2+£(g€,195|g,19)+5HR(16)> (T,)da;+/ / it I (t, 2, &, v) dU dv dt
Q 0 Jry

+/ /(;S(gs,vxﬁe):vwﬁg—S(g,ﬁ):(Vwﬁe—v$ﬁ)—8(ge,vwﬁs):Vwﬂ) dz dt
0 Q 5
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Tl Ve) - Va9 e, Ve) - Vb
/ / ( Ve Y ) dx dt
© nle) n(Be) ©) -
/ /sz/ / v [log )+ 1 log n(B2) + 1] 0ad (Be — I.) d&d dv dx dt
)

L L s

< [ 5 (enclo = 0.7 + € (@0 D0.l(0,, 000,) + HP (1o, ) do
Q

1og

T . . . 1 . .
[ (3= el s+ 0.0) [ (G et (0 0clo.0) ) de]

Q

+ [ (ple.) = ple ) div,t do

+/Q ( (1 - 9> (Ople.9) + 8- Vap(o. 9)) do

~ [ o(2uste.0)e: = 0) = D0s(e. 0. = 0)) (010 + -9.0) da.

- / / (esBoyd + qf - Vv, 0) da dt. (4.29)
0 Q

We must now estimate the four last terms in the right-hand side. The last one
is bounded as follows

/ /(535‘@19) dx dt‘ S/ /EHER\atlogq?\ dx dt+/€E§|8tlog19| dx dt
0o Ja 0o Ja Q

< |10 log V|| Lo (a2 (/ /EH€R dx dt+eo> .
0o Ja

In the same stroke

Q Q

provided that eg is small enough (see Theorems 3.1 and 3.2), then

/ (esfo,9 + G- V,0) da dt‘
Q

1
< C(6; 0,4,9) <eo + /Q {2 0|t — @ + & (0e, e 0, V) +€HER} dx) . (4.30)
Using the previous thermodynamical identities for Hg and the continuity equa-

tion for the target system, we get rid of the three other integrals (see [10]) by
observing that

A= / (0,9)—p(0c, V¢ ))divmﬁdaz:—i—/Q ( (1 — Q) (8tp(g, ) +a-Vp(o, 19)) dx
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- [ e(0uste0)(0. ~ o)~ dusto )0~ ) (000 + 7 7.,6) o
= [ (e0) = plecc ) )aivei ot [ 00— 0.)0ps(0.9) (010 +7-9.0) do

—/Q (g — Qs>(‘3@p(g, Ndiv, @ dz.

Finally the second term in the right-hand side rewrites as follows

/ 0(9—1.)d9s(0,9) (@19 + - Vzﬂ) dz
Q

_ /Q 0(0—9.) [ats(g, 0) + 1 - Vas(o, 19)} dx — /Q (19 — 198)81913(@, O)div,a dx
2/9(19—195) [%(S(Q,ﬁ)t _W)—divw(wﬂ dzx

o 9 9
- / (19 - 195>319p(g, 9)div, @ da.
Q

We deduce finally that

A= / (0,9) — p(os,9e) — Opp(0,9)(0: — 0) — Dop(0,9) (Ve — ﬁ))divxﬁ d.

+/Q(19_19€) [%(S(g,ﬂ) v W) —divx(w)} dz

Observing that

/Q (p(g, V) — p(oe, V<) — Opp(0,9)(0c — 0) — Oup(o, V) (Ve — ﬁ))divxﬁ da

gC||divwﬁ|\Loo(Q)/Qg(gs,ﬁawaﬁ) dz,

we see that (4.29) reduces finally to

/ / ( Qs\u57u|2+5(gs,ﬂ lo, )+5HR(I5)> (7,-) dx dt
T 9 ~ B ) ) ) . .
+/ / (1978(@5, vxus) : VIUE_S(Q, u) . (Vmug—vxu)—S(QE7vmu€) : vzu> d.f[] dt
0 Q €

L

/T/ ‘7(1967 Vmﬂs) : Vzﬁ 9 J(Qsa vmﬂs) : vmﬂs
N T 9

Y S0., Vi) : vwa) dz di+

)dz dt
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0 JQ

gE g ) do dt

1 . ﬂ
< / 5 (QO,E|UO,E - U(O, )|2 +& (90,67 190,6|Q(O7 ')7 19(07 )) + 6HR(IO,E)) dx
Q

[ [0 s + G0, 00) [ € (ontilo,0) do dr. (a31)
0 Q
Finally we can control the dissipative terms (the three last integrals in the left-

hand side), by using verbatim the computations in ([10]) which lead to the final
inequality

2
dx dt

1 T
/ (2 oc |t — @)* 4 & (0:,9:|0,9) + EHR(IE)> (1,-) dm—l—Kl/ / ‘Vwﬂ's)—vwﬂ’
Q 0o Jo

T 2 T 9
+K2/ /‘Vﬂ?g—vmﬁ dx dt+K3/ /‘Vxlogﬁg—vxlogﬁ) dr dt
o Ja o Jo
1 — —
= / (5 (eocliio = (0. ) + & (00,0, 0. l0(0.),0(0, ) + =H  (Io..)) da
Q

T 1
+K3/ / (5 0. @ — @ + & (02, 92| 0,9) +EHR(IE)) dz dt + Kyeo, (4.32)
0 Q

where the positive constants K; depend on (g, %, 1,3,0) through the norms
involved in Theorems 3.1,3.2. Integrating the inequality in ¢ we obtain the
inequality

T 1
| [ (G eclite =P + € (0e,0cle0) + (1) ) d
0 Q 2

1 . .
<c (60 +/ (5 (00.c|ti0,c —@(0,-)|* + € (00,e, Vo,
Q

0(0,),0(0,-)) + eHR(IO7E)) dm) ,

(4.33)
where the positive constant C has the same dependence as the K; and depends
alsoon T

Lemma 4.2 Suppose that eg < Ce? and the initial data of the primitive system
and any of the target systems are close in the following sense

[l 00, — Qo||L2(Q) < Ce, |[Yo,e — 190||L2(Q) < Ck, ||\/Qo,s (tip,e — ﬁ)HLZ(Q;]RB) < Ce.

Then the following estimates hold

(s + <2 [l0.71x 9] < ¢, (4.34)
ess sup M5, (t)] < Ce?, (4.35)
te(0,T)
ess sup |0 — 0less(t)]|2() < Ce, (4.36)
t€(0,T)
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ess sup [0 — V]ess(t)]|2() < Ce, (4.37)

t€(0,T)
s s VB (D)~ 0 | ey < O (4.38)
ess sup |[[EF — EF(D)]ess(t)| 120 < C, (4.39)
te(0,T)
ess sup ||[oce(0e,Ve)]res(t)| L1 (@) < Cé, (4.40)
t€(0,T)
€SS sup ||[QES(QEaﬂE)]TES(t)”Ll(Q) < Ce, (4.41)
te(0,T)
ess sup [|[E(L)]res(t)| 1) < Ce, (4.42)
te(0,T)
ess sup ||[s(Zo)]res ()| 11 () < Ce. (4.43)
t€(0,T)

Proof: Bound (4.34) follows after the proof of (4.33) and implies (4.35). Bounds
(4.36),(4.37),(4.38) and (4.42) follow after (4.23), (4.26) and (4.33). Bounds
(4.40) and (4.41) follow after (4.24) and finally (4.42) and (4.43) follow after
(4.27).

Let us finally quote the following result which is a straightforward application
of Proposition 5.2 of [9] (the proof is omitted)

Proposition 4.2 Let {oc}teso0, {Ucteso{le }e>0 three sequences of non-negative
measurable functions such that

[le)Lss — Q(l) weakly — (x) in L>(0,T; L*(Q)),

[ﬁgw] 9D weakly — (x) in L=(0, T; L()),

{IE(U} — I weakly — (%) in L=(0,T; L*(Q)), a.e. in S* x Ry,

where
le) _ Qe—Q’ 1921) _ 195—197 Ie(l) _ Iz-:_].
€ € €
Suppose that
ess sup |M:,, (1) < Ce2 (4.44)
te(0,T)
Let G,GE € CY(O,ss) be given functions. Then
9G(0,7)

& o
0+ 99 )

[G(QEaﬂs)}ess B G(Qv 19) N aG(Q’ 19)
€ 0o

weakly — () in L>=(0,T; L*()), and if we note

[GR(IE)]%S = [GR(L.(-,, &, V))]ess = GR(IE)'HMgSS, for a.a. (&,v) € S* xR,
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we have

[GH(IL)]

ess GR(I) N aG(I) I(l)

€ oI ’

weakly — () in L°°(0,T; L*(Q2)), a.e. in 8% x R,.
Moreover if G,GE € C?*(O,ss) then

H (G (e, Ve)less — Glo,9)  9G(0,9) [9(1)} 9G(0,7) {19(1)]

e do Y

< Ck,
Lo0(0,T;L(Q)

and

[GH(IL)],.. — G"(I)  9G() {I(U}

<
€ ol < G,

Lo (0,T;L1(52)

for a.a. (G,v) € 8 x R,.

5 Convergence toward the target systems

We are now in position to prove that the equilibrium diffusion target system

(3.28)-(3.31) and the non-equilibrium diffusion target system (3.40)-(3.43)) are

the limit in a suitable sense, of the primitive system (4.3)-(4.11) when ¢ — 0.
Namely the convergence result in the equilibrium case goes as follows

Theorem 5.1 Let Q C R® be a bounded domain of class C%V. Assume that
the thermodynamic functions p, e, s satisfy hypotheses (2.1 - 2.4) with P €
C110,00) N C?(0,00), and that the transport coefficients p, A, K, 04, 0s and the
equilibrium function B comply with (2.5 - 2.9).

Let (0c, tc, Ve, 1) be a weak solution to the scaled radiative Navier-Stokes
system (1.4 - 1.7) for (t,x,&,v) € [0,T] x Q x 8% x R, supplemented with the
boundary conditions (1.9 - 1.10) and the initial conditions (0o e, Uo.e, 0,5 10,¢)
such that

0:(0,-) = 0o + ngfi, . (0,) = tope, Ve(0,-) =+ 81952,

where (0o, @,90) € H3(Q) are smooth functions (see Theorem 5.1) such that
(00,90) belong to the set O defined in (4.22) where 3 > 0, 0 > 0, are two

constants and [, Q((fg dz =0, [, 1982 dr =0.
Suppose also that

ity — dy weakly — (x) in L>=(Q;RY).
Then up to subsequences
0e — 0 weakly — (%) in LOO(O,T;L%(Q)),
. — @ weakly — (%) in L*(0,T; Wh2(Q; R?)),
Ie — 9 weakly — (x) in L*°(0,T; L*(Q)),

where (o, i, ¥) is the smooth solution of the equilibrium decoupled system (3.28)-
(3.81) on [0, T] xQ and I(t,z,v,J) = B(v,9(t, x)), with initial data (0o, o, Jo).
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The analogous convergence result in the non-equilibrium case is

Theorem 5.2 Let Q C R? be a bounded domain of class C%¥. Assume that
the thermodynamic functions p, e, s satisfy hypotheses (2.1 - 2.4) with P €
C'10,00) N C?(0,00), and that the transport coefficients u, A\, K, 04, 05 and the
equilibrium function B comply with (2.5 - 2.9).

Let (0c, te, e, Ic) be a weak solution to the scaled radiative Navier-Stokes
system (1.4 - 1.7) for (t,z,0,v) € [0,T] x Q x 82 x Ry, supplemented with the
boundary conditions (1.9 - 1.10) and the initial conditions (0o.e, Uo.c,J0,e, L0.e)
such that

0:(0,-) = po+eoy), @(0,)) =oe, V(0,) =do+edy), 1.(0,) = Iy+elS?,

where the functions (oo, @,90) and x — Io(x,d,v) belong to H3(Q) and are such
that (00,0, Er(1y)) belong to the set O.ss defined in (4.22) where o > 0, 7 >

0, ER > 0 are three constants and [, gé}g de =0, [, 1983 de =0, [, Ié}g dz = 0.
Suppose also that

to. — Uy weakly — (x) in L>=(Q;R?).
Then up to subsequences
0: — 0 weakly — (%) in L>(0,T; L%(Q)),
. — @ weakly — (%) in L*(0,T; WH2(Q; R?)),
I. — 9 weakly — (%) in L*°(0,T; L*(Q)),

and

N, — N weakly — (%) in L*((0,T) x ),
where Ne = [[° [s2 I d&  dv and (o,@,9,N) is the smooth solution of the
Nawvier-Stokes-Rosseland system (3.40)-(3.43) on [0,T] x Q with initial data
(00, tlo, Yo, No)-

The proof of these results is the matter of the last part of the paper.

5.1 Proof of Theorem 5.1

As the first two equations (4.3) and (4.4) of our model are similar to those of
the Navier-Stokes-Fourier analyzed in [9], in the following we only sketch the
essential points, insisting on the energy and radiative contributions.

Let us observe that after Theorem 2.1, bounds (2.7)-2.9) and relative entropy
inequalities (4.29) and (4.33), the temperature 9. is bounded in L2(0, T; W12(2))
then after extraction of a subsequence

9. — 9 in L*([0,T] x Q). (5.1)
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5.1.1 Continuity and Momentum equations

For the continuity equation, one observes after (4.34) that

i

Using this fact together with (4.43) and (4.35), we get

<C.

2
Vil + Vi, — 3 divaiicT

L2(o;R?)

T
| 180 =G0, g, < €,

so passing to the limit after possible extraction of a subsequence, we have
i. — @ weakly in L2(0,T; W2(Q;R?)). In the same stroke o. — p, weakly
in L>(0,T; L3(Q;R?)). So we can pass to the limit in the weak continuity
equation (4.3) which rewrites as (3.28), together with the boundary condition
U - nylyq = 0, provided 09 is regular.

For the momentum equation, one knows that due to possible strong time
oscillations of the gradient component of velocity, one has only p.u. ® . —
0l ® 1, weakly in L?(0,T; L3 (Q;R?)), however one can show after the analysis
of [9] (see [7]) that one can pass to the limit in the convective term and obtain

T T
/ /gﬁ@ﬁ:vm(bdxdtﬂ/ /gﬁ@ﬁsvmqﬁdxdt.
0 Q 0 Q

Moreover after the hypotheses on pressure, . is bounded in L>((0,T); L*(Q))N
L?(0,T; L%(Q)), which implies that

Se — u(¥)(Vot + Vi),

weakly in L9(0, T; L9(€; R?)) for a ¢ > 1. So using weak compactness arguments
of [9] for effective viscous flux, we can also pass to the limit in momentum
equation (4.4) and obtain (3.29).

5.1.2 Radiative transfer equation

We have shown in the previous sections that I, — I, weakly in L*((0,7") x
Q x 82 x R,), and that 9. — o, weakly in L?(0,T; W12(Q)). As the radiative
transfer equation (4.11) is linear in I, we can pass to the limit in the weak
formulation of radiative transfer equation which gives

/Q/OOO /S oa(¥) (B(v,9) — I) ¢ dis dv da = 0,

for any test function v € C2°((0,T) x 2x S8% xR ) which is the weak formulation
of the equation I(¢,z,v,d) = B(v,d(t, z)).
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5.1.3 Entropy balance

We rewrite equation (4.6) in the form

T g 1 T R
/ /((Qs+sR)8tg0+Qsﬁ~ngo+g-Vmgo) da dt+7/ /qi-vw dz dt
0 JQ Y eJo Ja Ve

+ (O pmcrora (30 erorxa) /Q (05 + 5™))(0,)(0, ") dz
< /Q [(00,e50,c + 8&) — (0080 + s§)] #(0,+) dz
—/OT A {oc(se —5) + (0 — 0)s + sk — SR)}atgo dz dt
[ et ik (et~ o)) T

T q—»s q_; . .
,/0 /9[19519] Vo da dt + (" = <30 pop 0,750 -

for any ¢ € C°([0,T] x Q).
Using Proposition 4.2, one computes first

1 (7 R T g
f//qi-ngodxdtH//ﬁ-Vﬂpdxdt,
eJo Ja Ve 0o Ja ¥

as e — 0, where fj is given by formula (3.27).
In the same stroke, we find

R T AV
(59 mcrord _’/0 /97192 ¢ dz dt.

as € — 0, by using once more Proposition 4.2.

After the conditions on the data and the estimates in Lemma 4.2 and using
verbatim the techniques of [9](Chap. 5) one concludes that all of the integrals
in the right hand side converge to zero as ¢ — 0, which proves that the limit
inequality (3.42) is obtained..

5.2 Proof of Theorem 5.2

Exactly as in the equilibrium limit, the temperature 9. is bounded in L2(0, T; W12(Q))
then (5.1) holds, moreover we can pass to the limit in the weak continuity equa-

tion (4.3) which rewrites as (3.40) and we can also pass to the limit in momentum
equation (4.4) and obtain (3.41).
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5.2.1 Radiative transfer equation

We can adapt the result of Bardos, Golse, Perthame and Sentis [3] (see also
[13)).

As we consider the “grey hypothesis”, we use the average notation I. instead
of N, := fooo I. dv in all this subsection. We start with

1 1 -
Ol + 2 & Val. = 00 (B: = 1) + = 0 (Ig - IE> , (5.2)
with B := B(¥.), and
IE|t:O = Iy, (5.3)
where I. = = Js2 I dB, 0a.c = 04(Ve), 05.c = 04(0;) and B, = B(v, ;).
After [7] we see that
1|l Lo (@xs2) < C(T) (1+ [l = (axs2)) -

Multiplying (5.2) by I., integrating over the whole phase space and using (2.9),
we get
||U¢:1L,/52 (Ba - I&) HLQ(QXSQ) < Ck, (5.4)

||U;7/52 (je - Ia) z2(axs2) < Ck, (5.5)

and

<. (5.6)

1
3 3t15 + - @ - VxIE
€ L2(QxS2)

Using the Fourier argument of [3] (see Lemma 3 in [3]) we also get that for any

o e, in L4 W B R L
T>0(I¢ is bounded in L4(0, T; W*4(Q)) where ¢ = -F7, a = 1+ 5, and
for any 8 < 2’;%11.

Integrating (5.2) over &, we get first
~ 1 — -
at Ie + g lea: QIE =0aq,e (Be - IE) ) (57)

and multiplying (5.2) by w and integrating over &, we also have

— 1 — 1
0y @I, + - div, (d@JI.)=— (52 Ose + EO’aﬁ) @I (5.8)

Then we get the equation

1

Ose +E0qe

8; I. — div, ( [sﬁt Sl + div, (@ @TBIE)D

= 0ue (BE - 1;) in D'((0,T) x Q x S2). (5.9)

Using (5.6) and (2.9), we conclude that the sequence {8; I.}. is bounded in
L9(0, T; W=14(Q)).
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1/«

Setting J, := (fg) , we deduce that

J. € L0, T); WP4(Q)),
I — JellLa(o,myx0) — 0 for e — 0,
and R
Ol € LI([0,T); W—11(Q)).

Applying a variant of the Aubin-Lions Lemma given in [3], there exists a sub-
sequence I, converging in LI((0,T) x €2).

Now we can pass to the limit in (5.2). In fact from (5.4) and (5.6) we see
that there exists a g € L2((0,T) x Q x §?) such that

(05 +00.c) /P div, (3®E I.) — g weakly in L2((0,T) x Q x 82).
Multiplying by (0.« + c04.c)"? I. and using (2.7)-(2.9) and (5.1) we obtain
Idiv, (@& I.) — gol/2I weakly in L*((0,T) x Q x §?),

with o, = 04(19).
Now we see from above that

(s, + 60a75)1/2 I. — o/%I weakly in L((0,T) x Q x §?),
S0 )
5 dive (G©F I2) = gol/T weakly in L*((0,T) x Q x §?),
and that
1 1
5 diva (G RII%) — 5 diva (G ®&I?%) weakly in D'((0,T) x Q x S?).
Therefore 1
gt/ = 5 dive (@@ ar?).
Exactly as in [3], one can now check that

11

—1/2- _ + 1

0s "9 30,

and therefore one can pass to the limit in the second term in the left hand side
of (5.9)

1

Val,

1 1

— V. (@®&L)= V. (5 @31
s+ E0qs Y (O +€000)? (04e +E000)? :
11
2= v,I. 5.10
— o =5 (5.10)

As the term in the right hand side of (5.9) clearly converges to o, (¥) [B(9) — I],
this finally proves that I satisfies the limit equation (3.43).

The argument of [3] shows finally that I satisfies the Dirichlet boundary
condition I, = 0. In fact from the fact that &-V 12 is bounded in L?((0,T) x
Q x Ry) we deduce that I. has a trace which holds at the limit.
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5.2.2 Entropy balance

We rewrite equation (4.6) in the form

T , q m
/o /Q<953t<ﬁ+ osti- Vap + 5 - Vr@) dz dt 4 (™5 ) 010,75

T Sl
+/ / Eﬁ( ) © dz dt—/ Qoso(p(o,.) dx
0o Ja o
S/ / (SE(IE) B SE(I))SD dz dt.+/ [00.250.c — 0050] ©(0,-) da
o Ja\ ¥ 9 |, 100250,

B /OT /Q {oc(sc — 8) + (0 — 0)s} Opp du dt

_/ / {96(56 - S)ﬁs + (Qsﬁs - Q’J)S} Ve dr dt
0 Q

T CT (7 - N
_/O /Q[ﬁz_ﬁ] Vg dv dt+ (7 = ™5 0) oy oz -

for any ¢ € C°([0,T] x Q).

We first observe that the first term in the right-hand side converge to zero,
by applying the same argument as [7](see Proposition 4.1) based on the average

Lemma of Bournaveas and Perthame [4].

Finally, after the hypotheses made on the data and the estimates in Lemma
4.2 and using once more verbatim the techniques of [9](Chap. 5) one concludes
that all of the remaining integrals in the right hand side converge to zero as

¢ — 0, which proves that the limit inequality (3.42) is obtained.
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