

INSTITUTE of MATHEMATICS

The localized single-valued extension property and Riesz operators

Pietro Aiena Vladimír Müller

Preprint No. 17-2013

PRAHA 2013

1

THE LOCALIZED SINGLE-VALUED EXTENSION PROPERTY AND RIESZ OPERATORS

PIETRO AIENA AND VLADIMIR MULLER

ABSTRACT. The localized single-valued extension property is stable under commuting Riesz perturbations.

The single-valued extension property (SVEP) dates back to the early days of local spectral theory and appeared first in the works of Dunford ([6], [7]). The localized version of SVEP, considered in this article, was introduced by Finch [8], and has now developed into one of the major tools in the connection of local spectral theory and Fredholm theory for operators on Banach spaces, see the recent books [10] and [1].

To fix notation, throughout this article, let X be a non-zero complex infinite dimensional Banach space, and denote by L(X) the Banach algebra of all bounded liner operators on X. As usual, given $T \in L(X)$, let $\ker T$ and T(X) stand for the kernel and range of T, while the spectrum of T is denoted by $\sigma(T)$.

Definition 0.1. An operator $T \in L(X)$ is said to have the single-valued extension property at a point $\lambda \in \mathbb{C}$ (for brevity, SVEP at λ) provided that, for every open disc $D \subseteq \mathbb{C}$ centered at λ , the only analytic function $f: D \to X$ that satisfies

$$(\mu I - T)f(\mu) = 0$$
 for all $\mu \in D$

is the function $f \equiv 0$ on D. Moreover, T is said to have SVEP if T has SVEP at every point $\lambda \in \mathbb{C}$.

The quasi-nilpotent part of an operator $T \in L(X)$ is the set

$$H_0(T) := \{ x \in X : ||T^n x||^{1/n} \to 0 \text{ as } n \to \infty \},$$

while the analytic core of T is defined $K(T) := \{x \in X : \text{there exist } c > 0 \text{ and a sequence } (x_n)_{n \geq 1} \subseteq X \text{ such that } Tx_1 = x, Tx_{n+1} = x_n \text{ for all } n \in \mathbb{N}, \text{ and } ||x_n|| \leq c^n ||x|| \text{ for all } n \in \mathbb{N}\}.$

Lemma 0.2. ([3], or [1, Theorem 2.22]) Suppose that $T \in L(X)$. Then T has SVEP at λ if and only if $\ker(\lambda I - T) \cap K(\lambda I - T) = \{0\}$.

An operator $T \in L(X)$ is said to be Fredholm operator (upper semi-Fredholm, lower semi-Fredholm, respectively), if dim $\ker(T) < \infty$ and $\operatorname{codim} T(X) < \infty$ (if dim $\ker(T) < \infty$ and T(X) is closed, if $\operatorname{codim} T(X) < \infty$, respectively). An operator $T \in L(X)$ is said to be a Riesz operator if $\lambda I - T$ is a Fredholm operator for every $\lambda \in \mathbb{C} \setminus \{0\}$. The spectrum $\sigma(T)$ of a Riesz operator is either finite or a sequence of eigenvalues which converges to 0. Example of Riesz operators are quasi-nilpotent operators and compact operators, see [9]. Moreover, the

¹1991 Mathematics Reviews Primary 47A10, 47A11. Secondary 47A53, 47A55.

Key words and phrases: Localized SVEP, Riesz operators.

The second author was supported by grant No 201/09/0473 of GACR and RVO: 67985840.

spectral subspaces correspondin to non-zero elements of the spectrum are finite dimensional. It is well known that the class of semi-Fredholm operators are stable under Riesz commuting perturbations.

In general the SVEP of an operator T is not preserved by perturbing T with a commuting operator S, also if S has SVEP, see [4]. However, the SVEP is stable under commuting quasi-nilpotent perturbations (see [1, Corollary 2.12]), and in the very recent article ([4]) it was questioned if that is also true for the localized SVEP. In this paper we show much more, in fact we have the following result:

Theorem 0.3. Let X be a Banach space, $T,Q \in B(X)$, where Q is a Riesz operator such that TQ = QT. If $\lambda \in \mathbb{C}$, then T has SVEP at λ if and only if T - Q has SVEP at λ . In particular, the SVEP is stable under Riesz commuting perturbations.

Proof. Without loss of generality we may assume that $\lambda = 0$. Suppose T has not SVEP at 0. We show that T - Q has not SVEP at 0. Since T has not SVEP at 0, then ker $T \cap K(T) \neq \{0\}$, by Lemma 0.2, so there exist a sequence of vectors $(x_i)_{i=0.1,\dots}$ of X such that $x_0 \neq 0$, $Tx_0 = 0$, $Tx_i = x_{i-1}$ $(i \geq 1)$ and $\sup_{i>1} ||x_i||^{1/i} < \infty$.

Let $K:=\sup_{i\geq 1}\|x_i\|^{1/i}$. Fix an ε , $0<\varepsilon<\frac{1}{2K}$. Let X_1 and X_2 be the spectral subspaces of Q corresponding to the parts of spectrum $\{z\in\sigma(Q):|z|<\varepsilon\}$ and $\{z\in\sigma(Q):|z|\geq\varepsilon\}$, respectively. So $X=X_1\oplus X_2$, $\dim X_2<\infty$, $QX_j\subset X_j$ $(j=1,2),\ \sigma(Q|X_1)\subset\{z:|z|<\varepsilon\}$ and $\sigma(Q|X_2)\subset\{z:|z|\geq\varepsilon\}$. Let P be the corresponding spectral projection onto X_2 with kernel equal to X_1 .

Since TQ = QT, we have $TX_j \subset X_j$ (j = 1, 2). We have $TPx_0 = 0$, and

$$TPx_i = PTx_i = Px_{i-1} \quad (i \ge 1).$$

We claim that $Px_i = 0$ for all i. To see this, suppose that $Px_i \neq 0$ for some $i \geq 0$. From $TPx_{i+1} = Px_i \neq 0$ we then deduce that $Px_{i+1} \neq 0$, and by induction it then follows that $Px_n \neq 0$ for all $n \geq i$. Let $k \geq 1$ be the smallest integer for which $Px_k \neq 0$. Then $TPx_k = Px_{k-1} = 0$. For all $n \geq k$ we have

$$T^{n-k}Px_n = T^{n-k-1}(TPx_n) = T^{n-k-1}Px_{n-1} = \dots$$

= $TPx_{k+1} = Px_k \neq 0$,

so $Px_n \notin \ker (T|X_2)^{n-k}$, for all $n \geq k$. Furthermore,

$$T^{n-k+1}Px_n = TT^{n-k}Px_n = TPx_k = Px_{k-1} = 0,$$

so $Px_n \in \ker (T|X_2)^{n-k+1}$. This implies that $T|X_2$ has infinite ascent, which is impossible, since dim $X_2 < \infty$. Therefore, $Px_i = 0$, and hence $x_i \in \ker P = X_1$, for all $i \geq 0$.

Let $Q_1 = Q|X_1$. We have $r(Q_1) < \varepsilon$, so there exists j_0 such that $||Q_1^j|| \le \varepsilon^j$ for all $j \ge j_0$.

Set $y_0 := \sum_{i=0}^{\infty} Q^i x_i$. Similarly, for $k \ge 1$ let

$$y_k := \sum_{i=k}^{\infty} \binom{i}{k} Q^{i-k} x_i.$$

This definition is correct, since

$$\sum_{i=k}^{\infty} \binom{i}{k} \|Q^{i-k}x_i\| \le \sum_{i=k}^{\infty} 2^i \|Q_1^{i-k}\| K^i$$

$$\le \sum_{i=k}^{j_0+k} 2^i K^i \|Q_1^{i-k}\| + \sum_{i=j_0+k+1}^{\infty} 2^i K^i \varepsilon^{i-k} < \infty.$$

Moreover, for $k \geq 2j_0$ we have

$$||y_k|| \le \sum_{i=k}^{2k-1} 2^i K^i ||Q_1^{i-k}|| + \sum_{i=2k}^{\infty} (2K)^i \varepsilon^{i-k}$$

$$\le k \max\{(2K)^k, (2K)^{2k-1} ||Q_1||^{k-1}\} + \frac{(2K)^{2k} \varepsilon^k}{1 - 2K \varepsilon}$$

Thus,

$$||y_k||^{1/k} \le k^{1/k} \left(\max\{(2K)^k, (2K)^{2k-1} ||Q_1||^{k-1} \} \right)^{1/k} + \left(\frac{(2K)^{2k} \varepsilon^k}{1 - 2K \varepsilon} \right)^{1/k}$$

$$\le k^{1/k} \max\{2K, (2K)^{\frac{2k-1}{k}} ||Q_1||^{\frac{k-1}{k}} \} + \frac{4K^2 \varepsilon}{1 - 2K \varepsilon}.$$

from which we obtain $\limsup_{k\to\infty}\|y_k\|^{1/k}<\infty$

We also have

$$(T-Q)y_0 = \sum_{i=1}^{\infty} Q^i x_{i-1} - \sum_{i=0}^{\infty} Q^{i+1} x_i = 0.$$

Now, for $k \geq 1$ we have

$$(T - Q)y_k = \sum_{i=k}^{\infty} {i \choose k} Q^{i-k} x_{i-1} - \sum_{i=k}^{\infty} {i \choose k} Q^{i-k+1} x_i$$
$$= x_{k-1} + \sum_{i=k}^{\infty} Q^{i-k+1} x_i \left({i+1 \choose k} - {i \choose k} \right) = y_{k-1}.$$

It remains to show that not all of y_k 's are equal to zero. Suppose on the contrary that $y_k = 0$ $(k \ge 0)$ and let $j_1 \ge j_0$. Then we have

$$\sum_{k=0}^{j_1} (-1)^k Q^k y_k = \sum_{i=0}^{\infty} \alpha_i Q^i x_i,$$

where $\alpha_i = \sum_{k=0}^{j_1} (-1)^k \binom{i}{k}$ (i = 0, 1, ...). Clearly, $\alpha_0 = 1$. For $1 \le i \le j_1$ we

$$\alpha_i = \sum_{k=0}^{i} (-1)^k \binom{i}{k} = 0.$$

For $i > j_1$ we have $|\alpha_i| \leq 2^i$, so

$$0 = \sum_{k=0}^{j_1} (-1)^k Q^k y_k = x_0 + \sum_{i=j_1+1}^{\infty} \alpha_i Q^i x_i$$

and

$$||x_0|| \le \sum_{i=j_1+1}^{\infty} 2^i ||Q_1^i|| ||x_i|| \le \sum_{i=j_1+1}^{\infty} 2^i \varepsilon^i K^i = \frac{(2K\varepsilon)^{j_1+1}}{1-2K\varepsilon}.$$

Letting $j_1 \to \infty$ yields $||x_0|| = 0$, a contradiction.

Therefore, $\ker(T-Q) \cap K(T-Q) \neq \{0\}$, and this implies, again by Lemma 0.2, that T-Q does not have SVEP at 0.

By symmetry we then conclude that T has SVEP at 0 if and only if T-Q has SVEP at 0.

Theorem 0.3 improves considerably the results of Theorem 2.8 and Theorem 2.9 of [4], where the stability of SVEP at λ , under commuting Riesz perturbations, was proved under some additional assumption on $\lambda I - T$. It also improves Theorem 2.4 and Corollary 2.5 of [4], and answers positively to a question raised after this corollary, concerning quasi-nilpotent operators. Note that in Corollary 2.5 of [4] it was assumed that $H_0(\lambda I - T) \cap K(\lambda I - T) = \{0\}$ and this assumption is stronger than of assuming the SVEP at λ , see [2].

Denote by $\sigma_e(T)$ the essential Fredholm spectrum of T, i.e. the set of all $\lambda \in \mathbb{C}$ such that $\lambda I - T$ is not Fredholm. Let $r_e(T)$ denote the essential spectral radius of T, i.e. $r_e(T) := \sup\{|\lambda| : \lambda \in \sigma_e(T)\}$. A closer look at the proof of Theorem 0.3 shows that it was not necessary to assume that $r_e(Q) = 0$, i.e. Q is a Riesz operator. It is sufficient to assume for the proof that $r_e(Q)$ is small enough, in order to have the spectral decomposition $X = X_1 \oplus X_2$, with X_2 finite dimensional. So we have in fact proved the following more general result:

Theorem 0.4. Let $T, Q \in B(X)$, TQ = QT, $U = \{z : |z - \lambda| < R\}$, let $f: U \to X$ be a nonzero analytic function satisfying (T - z)f(z) = 0 $(z \in U)$. Let $r_e(Q) < R/2$. Then T - Q has not SVEP at λ .

Remark 0.5. Every Riesz operator is meromorphic, i.e. every nonzero $\lambda \in \sigma(T)$ is a pole of the resolvent of T. Meromorphic operators have the same structure of the spectrum of Riesz operators, i.e. $\sigma(T)$ is either finite or a sequence of eigenvalues which cluster to 0. A simple example shows that the result of Theorem 0.3 cannot be extended to meromorphic operators. Denote by L is the backward shift on $\ell_2(\mathbb{N})$ and let $\lambda_0 \notin \sigma(L) = \mathbf{D}$, \mathbf{D} the closed unit disc. It is known that L does not have SVEP at 0. Since L has SVEP at λ_0 then $T := \lambda_0 I - L$ has SVEP at 0, while $T - \lambda_0 I = -L$, does not have SVEP at 0, and, obviously, $\lambda_0 I$ is meromorphic.

The result of Theorem 0.3 permits also an alternative proof of a well known result of Rakočević ([11] concerning the stability of semi Browder spectra under commuting Riesz perturbations. Let p(T) denote the ascent of an operator $T \in L(X)$, i.e., p(T) is the smallest non-negative integer p for which ker $T^p = \ker T^{p+1}$, if such an integer exists, and otherwise $p(T) = \infty$.) Analogously, let q(T) be the descent of an operator T; i.e., q(T) is the smallest non-negative integer q for which $R^q(T) = R^{q+1}(T)$ if such integer exists, and otherwise $q(T) = \infty$. Note that if $\lambda I - T$ is (upper or lower) semi-Fredholm then

T has SVEP at
$$\lambda \Leftrightarrow p(\lambda I - T) < \infty$$
,

and dually

$$T^*$$
 has SVEP at $\lambda \Leftrightarrow q(\lambda I - T) < \infty$

see [1, Theorem 3.16 and Theorem 3.17]. Recall that $T \in L(X)$ is said to be an upper (lower) semi-Browder operator if T is upper (lower) semi-Fredholm with finite ascent p(T) (finite descent q(T)). $T \in L(X)$ is said to be a Browder operator if T is both upper and lower semi-Browder. Denote by $\sigma_{ub}(T)$, $\sigma_{lb}(T)$, and $\sigma_b(T)$ the corresponding spectra.

Corollary 0.6. The spectra $\sigma_{ub}(T)$, $\sigma_{lb}(T)$, and $\sigma_b(T)$ are stable under Riesz commuting perturbations.

Proof. Let $\lambda \notin \sigma_{ub}(T)$. Then $\lambda I - T$ is upper semi-Browder, so $p(\lambda I - T) < \infty$ and this is equivalent to saying that T has SVEP at λ . By Theorem 0.3 then T + R has SVEP at λ for every commuting Riesz operator R, and since $\lambda I - (T + R)$ is upper semi-Fredholm it then follows that $p(\lambda I - (T + R) < \infty$, so $\lambda I - (T + R)$ is upper semi-Browder. The converse follows by symmetry, so $\sigma_{ub}(T) = \sigma_{ub}(T + R)$. The stability of $\sigma_{lb}(T)$, and $\sigma_b(T)$ is proved by duality, using the well known fact that T is Riesz if and only if its dual T^* is Riesz.

References

- P. Aiena, Fredholm and local spectral theory, with application to multipliers, Kluwer Academic Publishers, Dordrecht, 2004.
- [2] P. Aiena, T. L. Miller, M. M. Neumann, On a localized single-valued extension property. Math. Proc. Royal Irish Ac. 104A (1), (2004), 17–34.
- [3] P. Aiena, and O. Monsalve, The single valued extension property and the generalized Kato decomposition property, Acta Sci. Math. (Szeged) 67 (2001), 791–807.
- [4] P. Aiena, and M. M. Neumann, On the stability of the localized single-valued extension property under commuting perturbations,, (2013), to appear in Proc. Amer. Math. Soc.
- [5] I. Colojoară and C. Foiaș, *Theory of generalized spectral operators*, Gordon and Breach, New York, 1968.
- [6] N. Dunford, Spectral theory II. Resolutions of the identity, Pacific J. Math. 2 (1952), 559-614.
- [7] N. Dunford, Spectral operators, Pacific J. Math. 4 (1954), 321–354.
- [8] J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), 61–69.
- [9] H. Heuser, (1982). Functional Analysis., Wiley Interscience, Chichester.
- [10] K. B. Laursen and M. M. Neumann, Introduction to local spectral theory, Clarendon Press, Oxford, 2000.
- [11] V. Rakočević, Semi-Browder's operators and perturbations. Studia Math. 122 (1966), 131-137.
- [12] P. Vrbová, On local spectral properties of operators in Banach spaces, Czech. Math. J. 23 (98) (1973), 483–492.

DIEETCAM, FACOLTÀ DI INGEGNERIA,, VIALE DELLE SCIENZE, I-90128 PALERMO (ITALY), E-MAIL PIETRO.AIENA@UNIPA.IT

Institute of Mathematics, Czech Academy of Sciences, Zitna 25, 11567, Praha 1 (Czech Republic), E-mail muller@math.cas.cz