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THE LOCALIZED SINGLE-VALUED EXTENSION PROPERTY

AND RIESZ OPERATORS

PIETRO AIENA AND VLADIMIR MULLER

Abstract. The localized single-valued extension property is stable under
commuting Riesz perturbations.

The single-valued extension property (SVEP) dates back to the early days of
local spectral theory and appeared first in the works of Dunford ([6], [7]). The
localized version of SVEP, considered in this article, was introduced by Finch
[8], and has now developed into one of the major tools in the connection of local
spectral theory and Fredholm theory for operators on Banach spaces, see the
recent books [10] and [1].

To fix notation, throughout this article, let X be a non-zero complex infinite
dimensional Banach space, and denote by L(X) the Banach algebra of all bounded
liner operators on X. As usual, given T ∈ L(X), let kerT and T (X) stand for
the kernel and range of T, while the spectrum of T is denoted by σ(T ).

Definition 0.1. An operator T ∈ L(X) is said to have the single-valued extension
property at a point λ ∈ C (for brevity, SVEP at λ) provided that, for every open
disc D ⊆ C centered at λ, the only analytic function f : D → X that satisfies

(µI − T )f(µ) = 0 for all µ ∈ D

is the function f ≡ 0 on D. Moreover, T is said to have SVEP if T has SVEP at
every point λ ∈ C.

The quasi-nilpotent part of an operator T ∈ L(X) is the set

H0(T ) := {x ∈ X : ∥Tnx∥1/n → 0 as n → ∞},
while the analytic core of T is defined K(T ) := {x ∈ X : there exist c > 0 and
a sequence (xn)n≥1 ⊆ X such that Tx1 = x, Txn+1 = xn for all n ∈ N, and
||xn|| ≤ cn||x|| for all n ∈ N}.

Lemma 0.2. ([3], or [1, Theorem 2.22]) Suppose that T ∈ L(X). Then T has
SVEP at λ if and only if ker (λI − T ) ∩K(λI − T ) = {0}.

An operator T ∈ L(X) is said to be Fredholm operator (upper semi-Fredholm,
lower semi-Fredholm, respectively), if dim ker(T ) < ∞ and codimT (X) < ∞ (if
dim ker(T ) < ∞ and T (X) is closed, if codimT (X) < ∞, respectively) . An
operator T ∈ L(X) is said to be a Riesz operator if λI − T is a Fredholm op-
erator for every λ ∈ C \ {0}. The spectrum σ(T ) of a Riesz operator is either
finite or a sequence of eigenvalues which converges to 0. Example of Riesz opera-
tors are quasi-nilpotent operators and compact operators, see [9]. Moreover, the
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spectral subspaces correspondin to non-zero elements of the spectrum are finite
dimensional. It is well known that the class of semi-Fredholm operators are stable
under Riesz commuting perturbations.

In general the SVEP of an operator T is not preserved by perturbing T with a
commuting operator S, also if S has SVEP, see [4]. However, the SVEP is stable
under commuting quasi-nilpotent perturbations (see [1, Corollary 2.12]), and in
the very recent article ([4]) it was questioned if that is also true for the localized
SVEP. In this paper we show much more, in fact we have the following result:

Theorem 0.3. Let X be a Banach space, T,Q ∈ B(X), where Q is a Riesz
operator such that TQ = QT . If λ ∈ C, then T has SVEP at λ if and only if
T −Q has SVEP at λ. In particular, the SVEP is stable under Riesz commuting
perturbations.

Proof. Without loss of generality we may assume that λ = 0. Suppose T has
not SVEP at 0. We show that T − Q has not SVEP at 0. Since T has not
SVEP at 0, then ker T ∩K(T ) ̸= {0}, by Lemma 0.2, so there exist a sequence
of vectors (xi)i=0.1,... of X such that x0 ̸= 0, Tx0 = 0, Txi = xi−1 (i ≥ 1) and

supi≥1 ∥xi∥1/i < ∞.

Let K := supi≥1 ∥xi∥1/i. Fix an ε, 0 < ε < 1
2K . Let X1 and X2 be the spectral

subspaces of Q corresponding to the parts of spectrum {z ∈ σ(Q) : |z| < ε} and
{z ∈ σ(Q) : |z| ≥ ε}, respectively. So X = X1 ⊕ X2, dimX2 < ∞, QXj ⊂
Xj (j = 1, 2), σ(Q|X1) ⊂ {z : |z| < ε} and σ(Q|X2) ⊂ {z : |z| ≥ ε}. Let P be
the corresponding spectral projection onto X2 with kernel equal to X1.

Since TQ = QT , we have TXj ⊂ Xj (j = 1, 2). We have TPx0 = 0, and

TPxi = PTxi = Pxi−1 (i ≥ 1).

We claim that Pxi = 0 for all i. To see this, suppose that Pxi ̸= 0 for some
i ≥ 0. From TPxi+1 = Pxi ̸= 0 we then deduce that Pxi+1 ̸= 0, and by induction
it then follows that Pxn ̸= 0 for all n ≥ i. Let k ≥ 1 be the smallest integer for
which Pxk ̸= 0. Then TPxk = Pxk−1 = 0. For all n ≥ k we have

Tn−kPxn = Tn−k−1(TPxn) = Tn−k−1Pxn−1 = ....

= TPxk+1 = Pxk ̸= 0,

so Pxn /∈ ker (T |X2)
n−k, for all n ≥ k. Furthermore,

Tn−k+1Pxn = TTn−kPxn = TPxk = Pxk−1 = 0,

so Pxn ∈ ker (T |X2)
n−k+1. This implies that T |X2 has infinite ascent, which is

impossible, since dimX2 < ∞. Therefore, Pxi = 0, and hence xi ∈ ker P = X1,
for all i ≥ 0.

Let Q1 = Q|X1. We have r(Q1) < ε, so there exists j0 such that ∥Qj
1∥ ≤ εj for

all j ≥ j0.
Set y0 :=

∑∞
i=0Q

ixi. Similarly, for k ≥ 1 let

yk :=

∞∑
i=k

(
i

k

)
Qi−kxi.
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This definition is correct, since
∞∑
i=k

(
i

k

)
∥Qi−kxi∥ ≤

∞∑
i=k

2i∥Qi−k
1 ∥Ki

≤
j0+k∑
i=k

2iKi∥Qi−k
1 ∥+

∞∑
i=j0+k+1

2iKiεi−k < ∞.

Moreover, for k ≥ 2j0 we have

∥yk∥ ≤
2k−1∑
i=k

2iKi∥Qi−k
1 ∥+

∞∑
i=2k

(2K)iεi−k

≤ kmax{(2K)k, (2K)2k−1∥Q1∥k−1}+ (2K)2kεk

1− 2Kε
.

Thus,

∥yk∥1/k ≤ k1/k
(
max{(2K)k, (2K)2k−1∥Q1∥k−1}

)1/k
+

((2K)2kεk

1− 2Kε

)1/k

≤ k1/k max{2K, (2K)
2k−1

k ∥Q1∥
k−1
k }+ 4K2ε

1− 2Kε
.

from which we obtain lim supk→∞ ∥yk∥1/k < ∞.
We also have

(T −Q)y0 =
∞∑
i=1

Qixi−1 −
∞∑
i=0

Qi+1xi = 0.

Now, for k ≥ 1 we have

(T −Q)yk =
∞∑
i=k

(
i

k

)
Qi−kxi−1 −

∞∑
i=k

(
i

k

)
Qi−k+1xi

= xk−1 +
∞∑
i=k

Qi−k+1xi

((i+ 1

k

)
−

(
i

k

))
= yk−1.

It remains to show that not all of yk’s are equal to zero. Suppose on the
contrary that yk = 0 (k ≥ 0) and let j1 ≥ j0. Then we have

j1∑
k=0

(−1)kQkyk =

∞∑
i=0

αiQ
ixi,

where αi =
∑j1

k=0(−1)k
(
i
k

)
(i = 0, 1, . . . ). Clearly, α0 = 1. For 1 ≤ i ≤ j1 we

obtain

αi =

i∑
k=0

(−1)k
(
i

k

)
= 0.

For i > j1 we have |αi| ≤ 2i, so

0 =

j1∑
k=0

(−1)kQkyk = x0 +

∞∑
i=j1+1

αiQ
ixi
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and

∥x0∥ ≤
∞∑

i=j1+1

2i∥Qi
1∥∥xi∥ ≤

∞∑
i=j1+1

2iεiKi =
(2Kε)j1+1

1− 2Kε
.

Letting j1 → ∞ yields ∥x0∥ = 0, a contradiction.
Therefore, ker (T −Q)∩K(T −Q) ̸= {0}, and this implies, again by Lemma 0.2,
that T −Q does not have SVEP at 0.

By symmetry we then conclude that T has SVEP at 0 if and only if T −Q has
SVEP at 0.

Theorem 0.3 improves considerably the results of Theorem 2.8 and Theorem
2.9 of [4], where the stability of SVEP at λ, under commuting Riesz perturba-
tions, was proved under some additional assumption on λI − T . It also improves
Theorem 2.4 and Corollary 2.5 of [4], and answers positively to a question raised
after this corollary, concerning quasi-nilpotent operators. Note that in Corollary
2.5 of [4] it was assumed that H0(λI−T )∩K(λI−T ) = {0} and this assumption
is stronger than of assuming the SVEP at λ, see [2].

Denote by σe(T ) the essential Fredholm spectrum of T , i.e. the set of all
λ ∈ C such that λI − T is not Fredholm. Let re(T ) denote the essential spectral
radius of T , i.e. re(T ) := sup {|λ| : λ ∈ σe(T )}. A closer look at the proof of
Theorem 0.3 shows that it was not necessary to assume that re(Q) = 0, i.e. Q
is a Riesz operator. It is sufficient to assume for the proof that re(Q) is small
enough, in order to have the spectral decomposition X = X1⊕X2, with X2 finite
dimensional. So we have in fact proved the following more general result:

Theorem 0.4. Let T,Q ∈ B(X), TQ = QT , U = {z : |z − λ| < R}, let
f : U → X be a nonzero analytic function satisfying (T − z)f(z) = 0 (z ∈ U).
Let re(Q) < R/2. Then T −Q has not SVEP at λ.

Remark 0.5. Every Riesz operator is meromorphic, i.e. every nonzero λ ∈ σ(T ) is
a pole of the resolvent of T . Meromorphic operators have the same structure of the
spectrum of Riesz operators, i.e. σ(T ) is either finite or a sequence of eigenvalues
which cluster to 0. A simple example shows that the result of Theorem 0.3 cannot
be extended to meromorphic operators. Denote by L is the backward shift on
ℓ2(N) and let λ0 /∈ σ(L) = D, D the closed unit disc. It is known that L does not
have SVEP at 0. Since L has SVEP at λ0 then T := λ0I−L has SVEP at 0, while
T − λ0I = −L, does not have SVEP at 0, and, obviously, λ0I is meromorphic.

The result of Theorem 0.3 permits also an alternative proof of a well known
result of Rakočević ([11] concerning the stability of semi Browder spectra under
commuting Riesz perturbations. Let p(T ) denote the ascent of an operator T ∈
L(X), i.e., p(T ) is the smallest non-negative integer p for which ker T p = ker T p+1,
if such an integer exists, and otherwise p(T ) = ∞.) Analogously, let q(T ) be the
descent of an operator T ; i.e., q(T ) is the smallest non-negative integer q for which
Rq(T ) = Rq+1(T ) if such integer exists, and otherwise q(T ) = ∞. Note that if
λI − T is (upper or lower) semi-Fredholm then

T has SVEP at λ ⇔ p(λI − T ) < ∞,
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and dually
T ∗ has SVEP at λ ⇔ q(λI − T ) < ∞

see [1, Theorem 3.16 and Theorem 3.17]. Recall that T ∈ L(X) is said to be an
upper (lower) semi-Browder operator if T is upper (lower) semi-Fredholm with
finite ascent p(T ) (finite descent q(T )). T ∈ L(X) is said to be a Browder operator
if T is both upper and lower semi-Browder. Denote by σub(T ), σlb(T ), and σb(T )
the corresponding spectra.

Corollary 0.6. The spectra σub(T ), σlb(T ), and σb(T ) are stable under Riesz
commuting perturbations.

Proof. Let λ /∈ σub(T ). Then λI − T is upper semi-Browder, so p(λI − T ) < ∞
and this is equivalent to saying that T has SVEP at λ. By Theorem 0.3 then T+R
has SVEP at λ for every commuting Riesz operator R, and since λI − (T +R) is
upper semi-Fredholm it then follows that p(λI− (T +R) < ∞, so λI− (T +R) is
upper semi-Browder. The converse follows by symmetry, so σub(T ) = σub(T +R).
The stability of σlb(T ), and σb(T ) is proved by duality, using the well known fact
that T is Riesz if and only if its dual T ∗ is Riesz.
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[11] V. Rakočević, Semi-Browder’s operators and perturbations. Studia Math. 122 (1966), 131-
137.
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