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THE LOCALIZED SINGLE-VALUED EXTENSION PROPERTY
AND RIESZ OPERATORS

PIETRO AIENA AND VLADIMIR MULLER

ABSTRACT. The localized single-valued extension property is stable under
commuting Riesz perturbations.

The single-valued extension property (SVEP) dates back to the early days of
local spectral theory and appeared first in the works of Dunford ([6], [7]). The
localized version of SVEP, considered in this article, was introduced by Finch
[8], and has now developed into one of the major tools in the connection of local
spectral theory and Fredholm theory for operators on Banach spaces, see the
recent books [10] and [1].

To fix notation, throughout this article, let X be a non-zero complex infinite
dimensional Banach space, and denote by L(X) the Banach algebra of all bounded
liner operators on X. As usual, given T' € L(X), let ker T" and T'(X) stand for
the kernel and range of T, while the spectrum of T" is denoted by o (7).

Definition 0.1. An operator T € L(X) is said to have the single-valued extension
property at a point A € C (for brevity, SVEP at \) provided that, for every open
disc D C C centered at X\, the only analytic function f: D — X that satisfies

(ul —=T)f(n) =0 forall p e D
is the function f =0 on D. Moreover, T is said to have SVEP if T has SVEP at
every point A € C.

The quasi-nilpotent part of an operator T' € L(X) is the set
Ho(T) :={z € X : |T"z|"" = 0 as n — oo},

while the analytic core of T is defined K(T') := {x € X :there exist ¢ > 0 and
a sequence (xp)p>1 € X such that Tzy = z,Txp11 = x, for all n € N, and
[|zn|| < ™||x|| for all n € N}.

Lemma 0.2. ([3], or [1, Theorem 2.22]) Suppose that T' € L(X). Then T has
SVEP at A if and only if ker (A = T) N K(M —T) = {0}.

An operator T € L(X) is said to be Fredholm operator (upper semi-Fredholm,
lower semi-Fredholm, respectively), if dim ker(7") < oo and codim7T'(X) < oo (if
dim ker(T) < oo and T(X) is closed, if codimT(X) < oo, respectively) . An
operator T' € L(X) is said to be a Riesz operator if A\I — T is a Fredholm op-
erator for every A € C\ {0}. The spectrum o(7T') of a Riesz operator is either
finite or a sequence of eigenvalues which converges to 0. Example of Riesz opera-
tors are quasi-nilpotent operators and compact operators, see [9]. Moreover, the
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spectral subspaces correspondin to non-zero elements of the spectrum are finite
dimensional. It is well known that the class of semi-Fredholm operators are stable
under Riesz commuting perturbations.

In general the SVEP of an operator T is not preserved by perturbing T" with a
commuting operator S, also if S has SVEP, see [4]. However, the SVEP is stable
under commuting quasi-nilpotent perturbations (see [1, Corollary 2.12]), and in
the very recent article ([4]) it was questioned if that is also true for the localized
SVEP. In this paper we show much more, in fact we have the following result:

Theorem 0.3. Let X be a Banach space, T,QQ € B(X), where Q is a Riesz
operator such that TQ = QT. If A € C, then T has SVEP at A if and only if
T —Q has SVEP at . In particular, the SVEP is stable under Riesz commuting
perturbations.

Proof. Without loss of generality we may assume that A = 0. Suppose T' has
not SVEP at 0. We show that T" — ) has not SVEP at 0. Since T has not
SVEP at 0, then ker TN K(T') # {0}, by Lemma 0.2, so there exist a sequence
of vectors (z;)i=o.1,.. of X such that zg # 0, Tz9 =0, Tz; = z;—; (i > 1) and
Sup;>1 [z < o0

Let K := sup;> ||zi||'/". Fixane, 0 <e < 57~ Let X; and X5 be the spectral
subspaces of Q corresponding to the parts of spectrum {z € ¢(Q) : |z| < ¢} and
{z € 0(Q) : |2| > €}, respectively. So X = X; @ X, dim Xy < oo, QX; C
X; (1=1,2),0@QX1) C{z:|z2| <e}and o(Q|X2) C {z:|z] > €}. Let P be
the corresponding spectral projection onto Xy with kernel equal to X;.

Since TQ = QT, we have TX; C X; (j=1,2). We have TPz = 0, and

We claim that Px; = 0 for all . To see this, suppose that Px; # 0 for some
1> 0. From T Pz;+1 = Px; # 0 we then deduce that Px;11 # 0, and by induction
it then follows that Pz, # 0 for all n > 4. Let k > 1 be the smallest integer for
which Pxy # 0. Then T Pzxy = Pxi_1 = 0. For all n > k we have

™ *px, = TFYTPz,)=T"""'1Pz, | =..
= TPxyy1 = Pxp #0,

so Pz, ¢ ker (T|X2)" %, for all n > k. Furthermore,
T *1pg, = TT" *Px, = TPx); = Pry_1 =0,

so Pz, € ker (T|X5)"*+1. This implies that T| X, has infinite ascent, which is
impossible, since dim X3 < oo. Therefore, Px; = 0, and hence x; € ker P = X1,
for all ¢ > 0. '

Let Q1 = Q|X1. We have r(Q1) < €, so there exists jo such that ||@Q| < &’ for
all j > jo.

Set yo := Y 50y Q'w;. Similarly, for k > 1 let

o

Yk = Z <;> Q" ;.

i=k
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This definition is correct, since

> /i . > .
> () 1@ el < X 2 lr i
i=k i=k
j0+k . . . © . . .
<Y PKQTHI+ ). 2K F <o
i=k i=jo+k+1

Moreover, for k > 259 we have

2k—1 0
||ka < Z QszHQzlka + Z(2K)’Lgl—k
2K)2k5k
< 2K k 2K 2k—1 k—1 (7
< kmax{(2K)", (2K) [@u[" "} + 1_92Ke
Thus,
2K 2k _k 1/k
el /* < K1/ (max{(2K)*, (QK)%_IHQlHk_l})l/k - (ﬁ)
1-2Ke
_ _ 4K?
S kl/k maX{QK, (2K> 2kk : HQlH%} + 1—72_[?6

from which we obtain limsupy,_, [|yx||*/* < occ.
We also have

o0 o0
(T - Q)yo = Z Qixi_l - Z QHlxi =0.
i=1 i=0
Now, for k£ > 1 we have

(T - Q)yr, = i <;> Q Fxi g — i <;) Qi kg,

i=k i=k

= Tp—1 + Z Qi_k+1$i(<i Z 1> - <;>) = Yk—1-
i—k

It remains to show that not all of y’s are equal to zero. Suppose on the
contrary that yp =0 (k> 0) and let j; > jo. Then we have

Ji

DD QFy =) aiQla,
i=0

k=0
where o; = {61:0(—1)’“(;) (1 =0,1,...). Clearly, ap = 1. For 1 < i < j; we
obtain '
1 .
1
ai = Z<—1>’“<k) = 0.
k=0

For i > j; we have |a;| < 2%, so
J1 00 '
0= (-D"Q"u =m0+ > aQu

k=0 i=j1+1
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and
oo 00 j
o o (2Ke)Rt!
EN A A A ZZg’K’Z(lz)Kg'
i=j1+1 i=j1+1

Letting j; — oo yields ||zo|| = 0, a contradiction.
Therefore, ker (T'— Q) N K(T — Q) # {0}, and this implies, again by Lemma 0.2,
that T'— @ does not have SVEP at 0.

By symmetry we then conclude that T has SVEP at 0 if and only if T'— @ has
SVEP at 0. [ ]

Theorem 0.3 improves considerably the results of Theorem 2.8 and Theorem
2.9 of [4], where the stability of SVEP at A, under commuting Riesz perturba-
tions, was proved under some additional assumption on A\I —T'. It also improves
Theorem 2.4 and Corollary 2.5 of [4], and answers positively to a question raised
after this corollary, concerning quasi-nilpotent operators. Note that in Corollary
2.5 of [4] it was assumed that Hy(AI —T)NK(M —T) = {0} and this assumption
is stronger than of assuming the SVEP at A, see [2].

Denote by o¢(T) the essential Fredholm spectrum of T, i.e. the set of all
A € C such that AT — T is not Fredholm. Let r.(T") denote the essential spectral
radius of 7', i.e. 7.(T") := sup{|A| : A € g.(T)}. A closer look at the proof of
Theorem 0.3 shows that it was not necessary to assume that r.(Q) = 0, i.e. @
is a Riesz operator. It is sufficient to assume for the proof that r.(Q) is small
enough, in order to have the spectral decomposition X = X7 ® X, with X5 finite
dimensional. So we have in fact proved the following more general result:

Theorem 0.4. Let T,Q) € B(X), TQ = QT, U = {z : |z — | < R}, let
f:U — X be a nonzero analytic function satisfying (T — 2)f(z) =0 (z € U).
Let ro(Q) < R/2. Then T — Q has not SVEP at \.

Remark 0.5. Every Riesz operator is meromorphic, i.e. every nonzero A € o(T) is
a pole of the resolvent of T'. Meromorphic operators have the same structure of the
spectrum of Riesz operators, i.e. o(7T) is either finite or a sequence of eigenvalues
which cluster to 0. A simple example shows that the result of Theorem 0.3 cannot
be extended to meromorphic operators. Denote by L is the backward shift on
l5(N) and let \g ¢ o(L) = D, D the closed unit disc. It is known that L does not
have SVEP at 0. Since L has SVEP at A\g then T := Aol — L has SVEP at 0, while
T — Ml = —L, does not have SVEP at 0, and, obviously, Ao/ is meromorphic.

The result of Theorem 0.3 permits also an alternative proof of a well known
result of Rakocevié ([11] concerning the stability of semi Browder spectra under
commuting Riesz perturbations. Let p(T') denote the ascent of an operator T' €
L(X), i.e., p(T) is the smallest non-negative integer p for which ker 7% = ker TP+,
if such an integer exists, and otherwise p(T') = cc.) Analogously, let ¢(T") be the
descent of an operator T i.e., ¢(T') is the smallest non-negative integer ¢ for which
RY(T) = RITY(T) if such integer exists, and otherwise ¢(T) = co. Note that if
A — T is (upper or lower) semi-Fredholm then

T has SVEP at A & p(A] —T) < o0,
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and dually
T* has SVEP at A < qg(A\ I —T) < 00

see [1, Theorem 3.16 and Theorem 3.17]. Recall that 7' € L(X) is said to be an
upper (lower) semi-Browder operator if T is upper (lower) semi-Fredholm with
finite ascent p(7T') (finite descent ¢(T")). T € L(X) is said to be a Browder operator
if T is both upper and lower semi-Browder. Denote by o,,(T), oi(T), and o(T)
the corresponding spectra.

Corollary 0.6. The spectra ou(T), ow(T), and op(T) are stable under Riesz
commuting perturbations.

Proof. Let A ¢ ou,(T). Then AT — T is upper semi-Browder, so p(AI —T') < oo
and this is equivalent to saying that 7" has SVEP at A\. By Theorem 0.3 then T+ R
has SVEP at A for every commuting Riesz operator R, and since A\I — (T + R) is
upper semi-Fredholm it then follows that p(Al — (T + R) < oo, so A\ — (T'+ R) is
upper semi-Browder. The converse follows by symmetry, so o,4(T") = 0up(T + R).
The stability of 03,(7T'), and oy,(T') is proved by duality, using the well known fact
that T is Riesz if and only if its dual T* is Riesz.
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