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Abstract

We characterize distributional chaos for linear operators on Fréchet spaces in
terms of a computable condition (DCC), and also as the existence of distribution-
ally irregular vectors. A sufficient condition for the existence of dense uniformly
distributionally irregular manifolds is presented, which is very general and can be
applied to many classes of operators. Distributional chaos is also analyzed in con-
nection with frequent hypercyclicity, and the particular cases of weighted shifts and
composition operators are given as an illustration of the previous results.

1 Introduction and preliminaries

The study of the dynamics of linear operators on infinite-dimensional spaces has attracted
attention of many researchers in recent years (we refer the reader to the books [4] and
[11] for more information about this subject). Hypercyclicity, that is, the existence of
vectors x ∈ X whose orbit {x, Tx, T 2x, . . . } is dense in X for an operator T : X → X on
a topological vector space X, is certainly the most studied phenomenon in this context.

It seems that the first time that the term ‘chaos’ appeared in the mathematical liter-
ature was in Li and Yorke’s paper [15] on the study of dynamics of interval maps. The
notion of chaos derived from [15] concentrates on local aspects of dynamics of pairs.

Schweizer and Smı́tal introduced the concept of distributional chaos in [23] as a natural
extension of the notion of chaos given by Li and Yorke.

Let f : X → X be a continuous map on a metric space X. For each pair x, y ∈ X
and each n ∈ N, the distributional function F n

xy : R+ → [0, 1] is defined by

F n
xy(τ) :=

1

n
card{0 ≤ i ≤ n− 1 : d(f i(x), f i(y)) < τ},

where cardA denotes the cardinality of the set A. Moreover, define

Fxy(τ) := lim inf
n→∞

F n
xy(τ) and F ∗

xy(τ) := lim sup
n→∞

F n
xy(τ).

The following notions were introduced in [23] and [21], respectively. They were con-
sidered for linear operators on Banach or Fréchet spaces in [6, 12, 13, 14, 16, 17, 20, 24].

∗The first author was partially supported by CAPES: Bolsista - Proc. no BEX 4012/11-9.
†The second author is partially supported by MEC and FEDER, project no. MTM2011-26538.
‡The third author was supported by grant 201/09/0473 of GA CR and RVO: 67985840.
§The fourth author was supported in part by MEC and FEDER, Project MTM2010-14909.
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Definition 1. A continuous map f : X → X on a metric space X is distributionally
chaotic if there exist an uncountable set Γ ⊂ X and ε > 0 such that for every τ > 0 and
each pair of distinct points x, y ∈ Γ, we have that

Fxy(ε) = 0 and F ∗
xy(τ) = 1.

In this case, the set Γ is a distributionally ε-scrambled set and the pair (x, y) a distribu-
tionally chaotic pair.

We say that f is densely distributionally chaotic if the set Γ may be chosen to be dense
in X.

Given A ⊂ N, its upper and lower densities are defined by

dens(A) := lim sup
n→∞

card(A ∩ [1, n])

n
and dens(A) := lim inf

n→∞

card(A ∩ [1, n])

n
,

respectively. With these concepts in mind, one can equivalently say that f is distribu-
tionally chaotic on Γ if there exists ε > 0 such that for any x, y ∈ Γ, x 6= y, we have

dens{n ∈ N : d(fn(x), fn(y)) < ε} = 0 and dens{n ∈ N : d(fn(x), fn(y)) < τ} = 1,

for every τ > 0.

The purpose of this paper is to study the above defined notions for continuous linear
operators on Fréchet spaces.

Unless otherwise specified, X will denote an arbitrary Fréchet space, that is, a vector
space X endowed with an increasing sequence (‖ · ‖k)k∈N of seminorms (called a funda-
mental sequence of seminorms) that defines a metric

d(x, y) :=
∞∑
k=1

1

2k
min{1, ‖x− y‖k} (x, y ∈ X),

under which X is complete. Moreover, B(X) will denote the set of all continuous linear
operators T : X → X.

The following concept is a generalization to Fréchet spaces of the one introduced by
Beauzamy [5] for Banach spaces (see [7]).

Definition 2. Given T ∈ B(X) and x ∈ X, we say that x is an irregular vector for T if
there are m ∈ N and increasing sequences (nk) and (jk) of positive integers such that

lim
k→∞

T nkx = 0 and lim
k→∞

‖T jkx‖m = ∞.

Inspired by the notion of a distributionally irregular vector introduced in [6] in the
context of Banach spaces, we consider the following generalization to Fréchet spaces.

Definition 3. Given T ∈ B(X) and x ∈ X, we say that x is a distributionally irregular
vector for T if there are m ∈ N and A,B ⊂ N with dens(A) = dens(B) = 1 such that

lim
n∈A

T nx = 0 and lim
n∈B

‖T nx‖m = ∞.
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We also recall that, given an operator T ∈ B(X), a vector x ∈ X is called frequently
hypercyclic for T if for every non-empty open subset U of X, the set

{n ∈ N : T nx ∈ U}

has positive lower density. The operator T is called frequently hypercyclic if it possesses
a frequently hypercyclic vector. T is called topologically mixing if for any pair U, V of
non-empty open subsets of X, there exists some n0 ∈ N such that T n(U) ∩ V 6= ∅ for all
n ≥ n0. T is Devaney chaotic if it is hypercyclic and it has a dense set of periodic points,
that is, vectors x ∈ X such that T nx = x for some n ∈ N.

2 Distributional chaos and distributionally irregular

vectors

Definition 4. Let T ∈ B(X) and x ∈ X. The orbit of x is said to be distributionally near
to 0 if there exists A ⊂ N with dens(A) = 1 such that limn∈A T

nx = 0. We say that x has
a distributionally unbounded orbit if there exist m ∈ N and B ⊂ N with dens(B) = 1 such
that limn∈B ‖T nx‖m = ∞. Whenever we need to emphysize the number m in question,
we say that x has a distributionally m-unbounded orbit.

With these definitions we have that a vector x ∈ X is distributionally irregular if and
only if its orbit is both distributionally unbounded and distributionally near to 0.

AssumeX is a Banach space. If T ∈ B(X) and ‖T n‖ → ∞, it follows from the Banach-
Steinhaus Theorem that there exists a residual set of vectors in X with unbounded orbits.
The next example shows that under these conditions we cannot guarantee the existence
of a vector with distributionally unbounded orbit. Nevertheless, it was proved in [18] that
if

∑
1

‖Tn‖ < ∞ then there exists a vector x ∈ X such that ‖T nx‖ → ∞ (in particular, x

has distributionally unbounded orbit).

Example 5. Assume X = `1(N). Given ε ∈ (0, 1
5
), there exists T ∈ B(X) with

‖T n‖ = (n+ 1)(1−ε) (n ∈ N)

such that no x ∈ X has distributionally unbounded orbit.

Proof. Let (ek)k∈N be the standard basis for X. Define T ∈ B(X) by Te1 = 0 and
Tek = ( k

k−1
)1−εek−1 for k > 1. It is easy to see that ‖T n‖ = ‖T nen+1‖ = (n + 1)(1−ε) for

all n ∈ N. Suppose that there are x ∈ X, ‖x‖ = 1, and N ∈ N with

card
{
1 ≤ n ≤ N : ‖T nx‖ > 3

ε

}
≥ N(1− ε).

Then
1

N

N∑
n=1

‖T nx‖ ≥ 3

ε
(1− ε) =

3

ε
− 3.
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On the other hand, by writing x =
∑∞

j=1 αjej we obtain

N∑
n=1

‖T nx‖ =
N∑
n=1

∞∑
j=n+1

|αj| · ‖T nej‖

=
N∑
n=1

∞∑
j=n+1

|αj|
( j

j − n

)1−ε

=
∞∑
j=1

|αj| j1−ε
min{N,j−1}∑

n=1

(j − n)ε−1

≤
2N∑
j=1

|αj| j1−ε
j−1∑
n=1

(j − n)ε−1 +
∞∑

j=2N+1

|αj|
N∑
n=1

( j

j − n

)1−ε

≤
2N∑
j=1

|αj| j1−ε j
ε

ε
+ 2N,

where we have used the following estimations:

j−1∑
n=1

(j − n)ε−1 =

j−1∑
k=1

kε−1 ≤ 1 +

∫ j−1

1

xε−1dx ≤ jε

ε

and, for j > 2N , ( j
j−n)1−ε ≤ 21−ε ≤ 2. So,

1

N

N∑
n=1

‖T nx‖ ≤ 1

N

2N∑
j=1

|αj|
j

ε
+ 2 ≤ 2 +

2

ε
·

Since 2 + 2
ε
< 3

ε
− 3, we have a contradiction.

Remark 6. In [17, Thm 2.1] it is provided an example of the same kind in a weighted
`p-space such that ‖T n‖ → ∞ and

lim
n→∞

card{1 ≤ j ≤ n : ‖T jx‖ < ε}
n

= 1

for all x ∈ X and ε > 1, which in particular shows that T has no distributionally chaotic
pair. Soon we will show that the above example admits no distributionally chaotic pair
either.

Proposition 7. If T ∈ B(X) and m ∈ N, then the following assertions are equivalent:

(i) there exist ε > 0, a sequence (yk) in X and an increasing sequence (Nk) in N such
that limk→∞ yk = 0 and

card
{
1 ≤ j ≤ Nk : ‖T jyk‖m > ε

}
≥ Nk(1− k−1)

for all k ∈ N;

(ii) there exists y ∈ X with distributionally m-unbounded orbit;

(iii) the set of all y ∈ X with distributionally m-unbounded orbit is residual in X.
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Proof. (iii) ⇒ (ii): Trivial.

(ii) ⇒ (i): Let y ∈ X be a vector with distributionally m-unbounded orbit. By definition,
there exists A ⊂ N with dens(A) = 1 such that limn∈A ‖T ny‖m = ∞. Set yk := k−1y.
Then yk → 0. Choose ε > 0 arbitrary. For each k ∈ N, we have

dens{j ∈ N : ‖T jyk‖m > ε} = dens{j ∈ N : ‖T jy‖m > εk} ≥ dens(A) = 1.

So we can find Nk ∈ N satisfying (i).

(i) ⇒ (iii): For each k ∈ N, let

Mk :=
{
x ∈ X : ∃n ∈ N with card

{
1 ≤ j ≤ n : ‖T jx‖m > k

}
≥ n(1− k−1)

}
.

Clearly Mk is open. We show that Mk is dense. Let x ∈ X, δ > 0 and m1 ∈ N. By (i),
there exist u ∈ {y1, y2, . . . } and n ∈ N such that ‖u‖m1 < C := δε

4k2 and

card{1 ≤ j ≤ n : ‖T ju‖m > ε} ≥ n
(
1− 1

2k

)
.

Consider the vectors

us := x+
δsu

2kC
(s = 0, 1, . . . , 2k − 1).

Clearly ‖us − x‖m1 < δ for all s. We show that there exists s ∈ {0, 1, . . . , 2k − 1} with
us ∈ Mk. Let A := {1 ≤ j ≤ n : ‖T ju‖m > ε}. Then cardA ≥ n(1 − 1

2k
). For each

s = 0, 1, . . . , 2k − 1, let Bs := {1 ≤ j ≤ n : ‖T jus‖m ≤ k}. If s, t ∈ {0, 1, . . . , 2k − 1} and
s 6= t, then Bs ∩Bt ∩ A = ∅. Indeed, suppose s 6= t and j ∈ Bs ∩Bt ∩ A. Then

‖T jus − T jut‖m =
|s− t| · δ‖T ju‖m

2kC
>

δε

2kC
= 2k.

However,
‖T jus − T jut‖m ≤ ‖T jus‖m + ‖T jut‖m ≤ 2k,

a contradiction. So there exists s0 ∈ {0, 1, . . . , 2k − 1} with card(Bs0 ∩A) ≤ cardA
2k

. Then
card(A \ Bs0) ≥ n(1− 1

2k
)2 ≥ n(1− k−1). For j ∈ A \ Bs0 we have ‖T jus0‖m > k. Hence

us0 ∈Mk and Mk is dense.
Thus

⋂
kMk is a residual subset of X. Let x ∈

⋂
kMk. For each k ∈ N, there exists

nk ∈ N with cardAk ≥ nk(1 − k−1), where Ak := {1 ≤ j ≤ nk : ‖T jx‖m > k}. Let
A :=

⋃
k Ak. Then dens(A) = 1 and limj∈A ‖T jx‖m = ∞.

Proposition 8. If T ∈ B(X) then the following assertions are equivalent:

(i) there exist ε > 0, a sequence (yk) in X and an increasing sequence (Nk) in N such
that limk→∞ yk = 0 and

lim
k→∞

1

Nk

card
{
1 ≤ j ≤ Nk : d(T jyk, 0) > ε

}
= 1;

(ii) there exists y ∈ X with distributionally unbounded orbit;

(iii) the set of all y ∈ X with distributionally unbounded orbit is residual in X.

In the case X is a Banach space, the above assertions are also equivalent to the following:
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(i’) there exist ε > 0, a sequence (yk) in X and an increasing sequence (Nk) in N such
that limk→∞ yk = 0 and

card
{
1 ≤ j ≤ Nk : ‖T jyk‖ > ε

}
≥ εNk

for all k ∈ N;

(ii’) there exist y ∈ X and A ⊂ N with dens(A) > 0 such that limj∈A ‖T jy‖ = ∞.

Proof. (iii) ⇒ (ii): Trivial.

(ii) ⇒ (i) and (i) ⇒ (iii): Follow from the previous proposition.

Now, assume X is a Banach space.

(ii) ⇒ (ii’): Obvious.

(ii’) ⇒ (i’): Choose ε ∈ (0, densA) and argue as in the proof of (ii) ⇒ (i) in the previous
proposition.

(i’) ⇒ (i): Let δ > 0. We consider the following property P (δ): For every L > 0, there
exist y ∈ X, ‖y‖ = 1, and n ∈ N such that

card{1 ≤ j ≤ n : ‖T jy‖ > L} ≥ δn

(equivalently, there are y′ ∈ X, ‖y′‖ ≤ ε
L
, and n ∈ N with card{j ≤ n : ‖T jy′‖ > ε} ≥ δn).

Let δ0 be the supremum of all δ for which P (δ) is true. By (i’), δ0 ≥ ε > 0. Let k ∈ N.
Let δ1 > 0 satisfy

δ0 − δ1
δ0 + δ1

≥ 1− k−1.

Since P (δ0 + δ1) is not true, there exists L > 0 such that

card{1 ≤ j ≤ n : ‖T jy‖ > L} < (δ0 + δ1)n

for all y ∈ X, ‖y‖ = 1, and all n ∈ N. Clearly we may assume that L > max{k, ‖T‖}.
Since P (δ0 − δ1) is true, there exist u ∈ X, ‖u‖ = 1, and n1 ∈ N such that

card{1 ≤ j ≤ n1 : ‖T ju‖ > L2} ≥ (δ0 − δ1)n1.

Set

A1 := {1 ≤ j ≤ n1 : ‖T ju‖ ≤ L},
A2 := {1 ≤ j ≤ n1 : L < ‖T ju‖ ≤ L2},
A3 := {1 ≤ j ≤ n1 : ‖T ju‖ > L2}.

Since ‖T‖ < L, we have 1 ∈ A1. Let A1 = {r1, . . . , rd} with r1 < r2 < · · · < rd. Set
formally rd+1 := n1 + 1. For each s = 1, . . . , d, let Bs := A2 ∩ {rs + 1, . . . , rs+1 − 1} and
Cs := A3 ∩ {rs + 1, . . . , rs+1 − 1}. We have

d∑
s=1

cardCs = cardA3 ≥ (δ0 − δ1)n1

and
d∑
s=1

card(Cs ∪Bs) = card(A3 ∪ A2) ≤ (δ0 + δ1)n1.

6



So there exists s0, 1 ≤ s0 ≤ d, such that Cs0 6= ∅ and

cardCs0
card(Cs0 ∪Bs0)

≥ δ0 − δ1
δ0 + δ1

≥ 1− k−1.

Set v :=
εT rs0u

k‖T rs0u‖
and n := rs0+1 − rs0 − 1. For each j ∈ Cs0 , we have

‖T j−rs0v‖
‖v‖

=
‖T ju‖
‖T rs0u‖

≥ L.

So

card
{
1 ≤ j ≤ n : ‖T jv‖ > ε

}
= card

{
1 ≤ j ≤ n :

‖T jv‖
‖v‖

> k
}

≥ card
{
rs0 ≤ j < rs0+1 : ‖T ju‖ > k‖T rs0u‖

}
≥ cardCs0
≥ n(1− k−1),

which completes the proof.

Proposition 9. Let T ∈ B(X) and suppose that there exists a dense subset X0 of X
such that the orbit of each x ∈ X0 is distributionally near to 0. Then the set of all vectors
with orbits distributionally near to 0 is residual.

Proof. For each k,m ∈ N, let

Mk,m :=
{
x ∈ X : ∃n ∈ N with card{1 ≤ j ≤ n : ‖T jx‖m < k−1} ≥ n(1− k−1)

}
.

Clearly each Mk,m is open and dense (since Mk,m ⊃ X0). So the set
⋂
k,mMk,m is residual

and consists of vectors with orbits distributionally near to 0.

Definition 10. Let T ∈ B(X). We say that T satisfies the Distributional Chaos Criterion
(DCC) if there exist sequences (xk), (yk) in X such that:

(a) There exists A ⊂ N with dens(A) = 1 such that limn∈A T
nxk = 0 for all k.

(b) yk ∈ span{xn : n ∈ N}, limk→∞ yk = 0 and there exist ε > 0 and an increasing
sequence (Nk) in N such that

card{1 ≤ j ≤ Nk : d(T jyk, 0) > ε} ≥ Nk(1− k−1)

for all k ∈ N.

Remarks 11. 1. We can assume that (xk) and (yk) are the same sequence because
there exists a sequence (x̃k) in span{xn : n ∈ N} \ {0} that satisfies condition (a)
by linearity and condition (b) by density.

2. In the case X is a Banach space, it follows from Proposition 8 that condition (b) in
the above definition of (DCC) can be replaced by

(b’) yk ∈ span{xn : n ∈ N}, ‖yk‖ → 0 and there exist ε > 0 and an increasing
sequence (Nk) in N such that

card{1 ≤ j ≤ Nk : ‖T jyk‖ > ε} ≥ εNk

for all k ∈ N.

7



Theorem 12. If T ∈ B(X) then the following assertions are equivalent:

(i) T satisfies (DCC);

(ii) T has a distributionally irregular vector;

(iii) T is distributionally chaotic;

(iv) T admits a distributionally chaotic pair.

Proof. (i) ⇒ (ii): Let X0 := {x ∈ X : limn∈A T
nx = 0}. Then X0 is a subspace of X,

T (X0) ⊂ X0 and T (X0) ⊂ X0. Moreover, xk ∈ X0 and yk ∈ X0 for all k ∈ N.
By Proposition 9, the set of all vectors x ∈ X0 with orbits distributionally near to 0

is residual in X0. By Proposition 8, the set of all vectors x ∈ X0 with distributionally
unbounded orbit is residual in X0. So the set of all distributionally irregular vectors is
residual in X0. In particular, there exists a distributionally irregular vector.

(ii) ⇒ (iii): Let u ∈ X be a distributionally irregular vector. Then {λu : λ ∈ K} is an
uncountable distributionally ε-scrambled set for a certain ε > 0.

(iii) ⇒ (iv): Trivial.

(iv) ⇒ (i): Let (x, y) ∈ X ×X be a distributionally chaotic pair for T and set u := x− y.
There exists ε > 0 such that

dens{j ∈ N : d(T ju, 0) > ε} = 1 (1)

and
dens{j ∈ N : d(T ju, 0) < δ} = 1

for each δ > 0. So there is an increasing sequence (nk) in N such that

card{1 ≤ j ≤ nk : d(T ju, 0) < k−1} ≥ nk(1− k−1).

Let Ak := {1 ≤ j ≤ nk : d(T ju, 0) < k−1} (k ∈ N) and A :=
⋃∞
k=1Ak. Then dens(A) = 1

and limn∈A T
nu = 0. For each k ∈ N, let xk := T ku. Clearly

lim
n∈A

T nxk = 0 (k ∈ N).

Now, choose sk such that ‖T sku‖k < k−1 and let yk := T sku. Then yk → 0. By (1), we
have

dens{j ∈ N : d(T jyk, 0) > ε} = 1

for all k ∈ N. Hence there is an increasing sequence (Nk) in N such that

card{1 ≤ j ≤ Nk : d(T jyk, 0) > ε} ≥ Nk(1− k−1)

for all k ∈ N. This proves that T satisfies (DCC).

3 Dense distributional chaos

We devote this section to the existence of dense sets (manifolds) of distributionally irreg-
ular vectors. Concerning necessary conditions, we observed in [7] that the existence of a
dense set of just irregular vectors for T implies that the adjoint operator T ∗ admits no
eigenvalues λ with |λ| ≥ 1. This result is sharp, even for dense distributional chaos.
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Remark 13. There are operators T : `p(v) → `p(v) for certain weight sequences v such that
every non-zero vector x ∈ `p(v) is distributionally irregular, and the set of eigenvalues of
T ∗ is D := {λ : |λ| < 1}. Indeed, let S be the bilateral forward shift on a weighted space
`p(w,Z) such that wi+1/wi → 1 and every non-zero vector x ∈ `p(w,Z) is distributionally
irregular, as constructed in [17]. Let v := (wi)i∈N and consider the natural inclusion
`p(v) ⊂ `p(w,Z), (x1, x2, . . . ) 7→ (. . . , 0, 0, x1, x2, . . . ). The operator T := S|`p(v) clearly
satisfies the desired properties.

In what follows in this section we will consider several sufficient conditions for dense
distributional chaos.

Definition 14. Given T ∈ B(X), a vector subspace Y of X is called a uniformly distribu-
tionally irregular manifold for T if there exists m ∈ N such that the orbit of every nonzero
vector y in Y is simultaneously distributionally m-unbounded and distributionally near
to 0.

It is easy to see that such a Y is a distributionally 2−m+1-scrambled set for T . Hence
the existence of a dense uniformly distributionally irregular manifold implies dense dis-
tributional chaos.

Theorem 15. Assume X separable. Suppose that T ∈ B(X) satisfies

T nx→ 0 for all x ∈ X0,

where X0 is a dense subset of X. Then the following assertions are equivalent:

(i) T is distributionally chaotic;

(ii) T is densely distributionally chaotic;

(iii) T admits a dense uniformly distributionally irregular manifold;

(iv) T admits a distributionally unbounded orbit.

We recall that Proposition 8 contains a very useful computable characterization of
the existence of a distributionally unbounded orbit. It will be used several times in
applications of the above theorem.

Proof. (iii) ⇒ (ii) ⇒ (i): Obvious.

(i) ⇒ (iv): Follows from Theorem 12.

(iv) ⇒ (iii): Without loss of generality we may assume that X0 is a dense subspace of X
and

‖Tx‖k ≤ ‖x‖k+1 for all x ∈ X and k ∈ N.

By hypothesis, there is a vector y ∈ X with distributionally unbounded orbit. So there
exist m ∈ N and B ⊂ N with dens(B) = 1 such that

lim
n∈B

‖T ny‖m = ∞.

Hence, for every L > 0 and k ∈ N, there exist x ∈ X as close to zero as we want and
n ∈ N as large as we want so that

card{1 ≤ i ≤ n : ‖T ix‖m > L} > n(1− k−1).

9



Clearly we can take x ∈ X0 and assume, without loss of generality, that m = 1.
Thus we can construct inductively a sequence (xk) of vectors in X0 with ‖xk‖k ≤ 1,

k ∈ N, and an increasing sequence (nk) of positive integers such that

card{1 ≤ i ≤ nk : ‖T ixk‖1 > k2k} > nk

(
1− 1

k2

)
, (2)

card{1 ≤ i ≤ nk : ‖T ixs‖k <
1

k
} > nk

(
1− 1

k2

)
, s = 1, . . . , k − 1. (3)

Given α, β ∈ {0, 1}N, we say that β ≤ α if βi ≤ αi for all i ∈ N. Consider an increasing
sequence (rj) of positive integers such that

rj+1 ≥ 1 + rj + nrj+1 for all j ∈ N. (4)

Fix α ∈ {0, 1}N defined by αn = 1 if and only if n = rj for some j ∈ N. Given β ∈ {0, 1}N

such that β ≤ α and β contains an infinite number of 1’s, we define the vector

xβ :=
∑
i

βi
2i
xi =

∑
j

βrj
2rj

xrj .

Observe that the above series is convergent since ‖xi‖i ≤ 1 for each i ∈ N. We will show
that the orbit of xβ is distributionally 1-unbounded and distributionally near to 0.

Let k ∈ N with βrk = 1. If 1 ≤ i ≤ nrk , ‖T ixrk‖1 > rk2
rk and ‖T ixs‖rk <

1

rk
for each

s < rk, then

‖T ixβ‖1 ≥
1

2rk
‖T ixrk‖1 −

∑
j 6=k

βrj
2rj

‖T ixrj‖1

> rk −
1

rk

∑
j<k

1

2rj
−

∑
j>k

‖xrj‖1+i

2rj

≥ rk − 1,

where we used the inequalities ‖xrj‖1+i ≤ 1 for j > k, which hold because 1+i ≤ 1+nrk ≤
1 + nrj−1

≤ rj (by (4)). Conditions (2) and (3) above imply that

card{1 ≤ i ≤ nrk : ‖T ixβ‖1 > rk − 1} ≥ nrk

(
1− 1

rk

)
,

and so the orbit of xβ is distributionally 1-unbounded.

On the other hand, if 1 ≤ i ≤ nrk+1 and ‖T ixs‖rk+1 <
1

rk + 1
for each s < rk +1, then

‖T ixβ‖rk+1 ≤
∑
j≤k

βrj‖T ixrj‖rk+1

2rj
+

∑
j>k

βrj‖T ixrj‖rk+1

2rj

≤ 1

rk + 1

∑
j≤k

1

2rj
+

∑
j>k

‖xrj‖1+rk+i

2rj

<
1

rk + 1
,
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where we used the inequalities ‖xrj‖1+rk+i ≤ 1 for j > k, which hold because 1 + rk + i ≤
1 + rk + nrk+1 ≤ 1 + rj−1 + nrj−1+1 ≤ rj (by (4)). Condition (3) above implies that

card
{
1 ≤ i ≤ nrk+1 : ‖T ixβ‖rk+1 <

1

rk + 1

}
≥ nrk+1

(
1− 1

rk + 1

)
,

and so the orbit of xβ is distributionally near to 0.
Since X is separable, we can select a dense sequence (yn) in X0 and a countable

collection γn ∈ {0, 1}N (n ∈ N) such that each sequence γn contains an infinite number of
1’s, γn ≤ α for every n ∈ N, and the sequences γn have mutually disjoint supports.

We set the sequence of vectors un :=
∑

i
γn,i

2i xi, n ∈ N. We already know that the
orbit of each un is distributionally 1-unbounded and distributionally near to 0. Define
now

zn := yn +
1

n
un, n ∈ N.

Since (yn) is dense inX and the un’s are uniformly bounded inX, we get that the sequence
(zn) is dense in X. We set Y := span{zn : n ∈ N}, which is a dense subspace of X. If
u ∈ Y \ {0}, then we can write

u = y0 +
∑
k

ρk
2k
xk,

where y0 ∈ X0 and the sequence of scalars (ρk) takes only a finite number of values (each
of them infinitely many times). As in the above proof we can show that the orbit of

v :=
∑
k

ρk
2k
xk

is distributionally 1-unbounded and distributionally near to 0. Since y = y0 + v and
limk T

ky0 = 0, the same is true for the orbit of y. Thus Y is a dense uniformly distribu-
tionally irregular manifold for T .

Theorem 16. Assume X separable. Suppose that T ∈ B(X) satisfies the following
conditions:

(I) There exists a dense subset X0 of X with limn→∞ T nx = 0 for all x ∈ X0.

(II) One of the following conditions is true:

(a) X is a Fréchet space and there exists an eigenvalue λ with |λ| > 1.

(b) X is a Banach space and
∑

1
‖Tn‖ <∞ (in particular if r(T ) > 1).

(c) X is a Hilbert space and
∑

1
‖Tn‖2 <∞ (in particular if σp(T ) ∩ T has positive

Lebesgue measure).

Then T is densely distributionally chaotic.

Proof. In view of Theorem 15, it is enough to prove the existence of a vector y ∈ X with
distributionally unbounded orbit. In case (a), it is enough to get an eigenvector y 6= 0
associated to an eigenvalue λ with |λ| > 1. In cases (b) and (c), it was proved in [18] that
there exists a vector y ∈ X such that ‖T ny‖ → ∞. In particular, y has distributionally
unbounded orbit.

By Theorem 1.1(i) in [9] (see also p. 239, Theorem 11 in [19]),
∑

1
‖Tn‖2 <∞ whenever

σp(T ) ∩ T has positive Lebesgue measure.

11



In [10] it is proved that, if T satisfies the Godefroy-Shapiro Criterion, then T is hy-
percyclic. As consequence of (a) in Theorem 16 we also obtain that

Corollary 17. If T satisfies the Godefroy-Shapiro Criterion then T is densely distribu-
tionally chaotic.

Since every continuous linear operator on H(CN) that commutes with any translation
operator and is not a scalar multiple of the identity satisfies the Godefroy-Shapiro criterion
[10], we get a natural class of densely distributionally chaotic operators.

Corollary 18. Every continuous linear operator on H(CN) that commutes with any
translation operator and is not a scalar multiple of the identity is densely distributionally
chaotic.

A series
∑∞

k=1 xk in X is said to be unconditionally convergent if for every ε > 0, there
exists N ≥ 1 such that

d
(∑
k∈F

xk, 0
)
< ε,

whenever F ⊂ N is finite and F ∩ {1, 2, . . . , N} = ∅.

Theorem 19. Assume X separable and let T ∈ B(X). Suppose that:

(a) There exists a dense subset X0 of X with limn→∞ T nx = 0 for all x ∈ X0.

(b) There exist a subset Y of X, a mapping S : Y → Y with TSy = y on Y , and a
vector z ∈ Y \ {0} such that

∑∞
n=1 T

nz and
∑∞

n=1 S
nz converge unconditionally.

Then T is densely distributionally chaotic.

Proof. If we define wk0 :=
∑∞

n=1 T
k0nz + z +

∑∞
n=1 S

k0nz, then wk0 6= 0 if k0 is sufficient
large and T k0wk0 = wk0 . Let yk :=

∑∞
n=k S

k0nz. Then yk → 0 and

T k0jyk =

j−k∑
n=1

T k0nz + z +
∞∑
n=1

Sk0nz → wk0

as j →∞. For 0 ≤ l < k0 we have

T lwk0 = lim
j→∞

T l+k0jyk.

Hence {T lwk0 : 0 ≤ l < k0} are accumulation points of the orbit of yk. Let ε :=
1
2
min{d(T lwk0 , 0) : 0 ≤ l < k0}. Then there exists an increasing sequence (Nk) of positive

integers such that

lim
k→∞

1

Nk

card{1 ≤ j ≤ Nk : d(T jyk, 0) > ε} = 1.

By Proposition 8, T admits a distributionally unbounded orbit. Thus, by Theorem 15, T
is densely distributionally chaotic.

In [8] it was observed that the Frequent Hypercyclicity Criterion implies that T is
frequently hypercyclic, Devaney chaotic and mixing. As a consequence of the above
theorem, we obtain that it also implies dense distributional chaos.

12



Corollary 20. Assume X separable and let T ∈ B(X). Suppose that there are a dense
subset X0 of X and a mapping S : X0 → X0 such that, for any x ∈ X0,

(a)
∑∞

n=1 T
nx converges unconditionally,

(b)
∑∞

n=1 S
nx converges unconditionally,

(c) TSx = x.

Then T is frequently hypercyclic, Devaney chaotic, mixing and densely distributionally
chaotic.

Definition 21. We say that a continuous linear operator T on a Banach space X has a
perfectly spanning set of eigenvectors associated to unimodular eigenvalues if there exists
a continuous probability measure σ on the unit circle T such that for every σ-measurable
subset A of T of σ-measure equal to 1, the span of

⋃
λ∈A ker(T − λ) is dense in X.

Theorem 22. Let T be a continuous linear operator on a Hilbert space X that has a
perfectly spanning set of eigenvectors associated to unimodular eigenvalues such that the
measure σ can be chosen to be absolutely continuous with respect to the Lebesgue length
measure on the unit circle. Then T is densely distributionally chaotic.

Proof. Under the conditions of the theorem, T satisfies the Hypercyclicity Criterion with
respect to the sequence (n) (see Theorems 2.4 and 2.5 in [1]) and thus there exists a
dense set X0 such that limn→∞ T nx = 0 for all x ∈ X0. Moreover, σp(T ) ∩ T has positive
Lebesgue measure. Thus, by Theorem 16, T is densely distributionally chaotic.

Problem 23. Is the above theorem true for Banach spaces?

As consequence of Corollary 20, we have a positive partial answer of the above problem
under certain conditions. Indeed, if T has a σ-spanning set of T-eigenvectors, where σ is
the length measure on T, then T satisfies the Frequent Hypercyclicity Criterion, and so
T is densely distributionally chaotic. The same conclusion holds if the eigenvector fields
are C2-functions or X does not contain c0 and the eigenvectors fields are α-Holderian for
some α > 1

2
([3, section 5.8]).

Since a composition operator with a parabolic or hyperbolic automorphism in H2(D)
has a perfectly spanning set of eigenvectors associated to unimodular eigenvalues with
respect to the Lebesgue length measure on the unit circle [2], we obtain

Corollary 24. Let ϕ be an automorphism of D. Then the composition operator Cϕ :
H2(D) → H2(D) is densely distributionally chaotic if and only if ϕ is not an elliptic
automorphism.

4 Densely distributionally chaotic weighted shifts

The next result characterizes dense distributional chaos for unilateral weighted backward
shifts on Fréchet sequence spaces in terms of the existence of a distributionally unbounded
orbit.

Theorem 25. Let X be a Fréchet sequence space in which (en)n∈N is a basis. Suppose
that the unilateral weighted backward shift

Bω

(
(xn)n∈N

)
:= (wnxn+1)n∈N

is an operator on X. Then the following assertions are equivalent:

13



(i) Bω is distributionally chaotic;

(ii) Bω is densely distributionally chaotic;

(iii) Bω admits a dense uniformly distributionally irregular manifold;

(iv) Bω admits a distributionally unbounded orbit.

Proof. Let X0 be the set of all finite linear combinations of the basis vectors en. Clearly
X0 is dense in X and (Bω)

nx→ 0 for all x ∈ X0. Thus the result is just a special case of
Theorem 15.

As an application of the previous theorem, we have the following computable sufficient
condition for dense distributional chaos for unilateral backward shifts on Fréchet sequence
spaces.

Theorem 26. Let X be a Fréchet sequence space in which (en)n∈N is a basis. Suppose
that the unilateral backward shift B is an operator on X. If there exists a set S ⊂ N with
dens(S) = 1 such that ∑

n∈S

en converges in X,

then B is densely distributionally chaotic.

Proof. For each k ∈ N, let

yk :=
∑

n∈S,n≥k

en.

Then limk→∞ yk = 0 and Bnyk = e1 + · · · for all n ∈ S with n ≥ k. Since the functional
x → x1 is continuous, there exists ε > 0 such that d(x, 0) ≤ ε implies |x1| < 1. Hence
d(Bnyk, 0) > ε for all n ∈ S with n ≥ k. So there is a sequence (Nk) of positive integers
increasing to ∞ such that

lim
k→∞

1

Nk

card
{
1 ≤ j ≤ Nk : d(Bjyk, 0) > ε

}
= 1.

By Proposition 8, T admits a distributionally unbounded orbit. Thus, by the previous
theorem, B is densely distributionally chaotic.

Corollary 27. Let X be a Fréchet sequence space in which (en)n∈N is a basis. Let (ωn)n∈N
be a sequence of positive weights. Suppose that the unilateral weighted backward shift
Bω is an operator on X. If there exists a set S ⊂ N with dens(S) = 1 such that

∑
n∈S

( n∏
ν=1

ων

)−1

en converges in X, (5)

then Bω is densely distributionally chaotic.

Proof. Follows from the previous theorem by conjugacy.

Corollary 28. Let X be a Fréchet sequence space in which (en)n∈N is an unconditional
basis. Suppose that the unilateral weighted backward shift Bω is an operator on X. If
Bω has a non-trivial periodic point, then Bω is densely distributionally chaotic.
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Proof. Under these hypothesis (5) holds ([11, Theorem 4.8(c)]). Hence it is enough to
apply the previous corollary.

Now we turn our attention to bilateral weighted forward shifts.

Theorem 29. Let X be a Fréchet sequence space over Z in which (en)n∈Z is a basis. Let
(ωn)n∈Z be positive weights and assume that

lim
n→∞

( n∏
ν=1

ων

)
en = 0. (6)

Suppose that the bilateral weighted forward shift

Fω
(
(xn)n∈Z

)
:= (wnxn−1)n∈Z

is an operator on X. Then the following assertions are equivalent:

(i) Fω is distributionally chaotic;

(ii) Fω is densely distributionally chaotic;

(iii) Fω admits a dense uniformly distributionally irregular manifold;

(iv) Fω admits a distributionally unbounded orbit.

Proof. LetX0 be the set of all finite linear combinations of the basis vectors en. ClearlyX0

is dense in X. Moreover, limn→∞(Fω)
nx = 0 for all x ∈ X0, because limn→∞(Fω)

nej = 0
for any j ∈ Z (by (6)). Hence it is enough to apply Theorem 15.

Theorem 30. Let X be a Fréchet sequence space over Z in which (en)n∈Z is a basis.
Suppose that the bilateral forward shift F is an operator on X. If limn→∞ en = 0 and
there exists a set S ⊂ N with dens(S) = 1 such that∑

n∈S

e−n converges in X,

then F is densely distributionally chaotic.

Proof. For each k ∈ N, let

yk :=
∑

n∈S,n≥k

e−n.

Then limk→∞ yk = 0 and F nyk = · · · + e1 + · · · for all n ∈ S with n ≥ k. Since the
functional x→ x1 is continuous, there exists ε > 0 such that d(x, 0) ≤ ε implies |x1| < 1.
Hence d(F nyk, 0) > ε for all n ∈ S with n ≥ k. So there is a sequence (Nk) of positive
integers increasing to ∞ such that

lim
k→∞

1

Nk

card{1 ≤ j ≤ Nk : d(F jyk, 0) > ε} = 1.

By Proposition 8, T admits a distributionally unbounded orbit. Thus, by the previous
theorem, F is densely distributionally chaotic.
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Corollary 31. Let X be a Fréchet sequence space over Z in which (en)n∈Z is a basis. Let
(ωn)n∈Z be positive weights. Suppose that the bilateral weighted forward shift Fω is an
operator on X. If limn→∞(

∏n
ν=1 ων)en = 0 and there exists a set S ⊂ N with dens(S) = 1

such that ∑
n∈S

( 0∏
ν=−n+1

ων

)−1

e−n converges in X,

then Fω is densely distributionally chaotic.

Corollary 32. Let X be a Fréchet sequence space over Z in which (en)n∈Z is an uncon-
ditional basis. Suppose that the bilateral weighted forward shift Fω is an operator on X.
If Fω has a non-trivial periodic point, then Fω is densely distributionally chaotic.

5 Densely distributionally chaotic composition oper-

ators

We begin this section by recalling the following result.

Theorem 33 (The Denjoy-Wolff Iteration Theorem). Suppose that ϕ is an analytic self-
map of D that is not an elliptic automorphism.

1. If ϕ has a fixed point p ∈ D, then (ϕn) converges uniformly on compact sets to p.

2. If ϕ has no fixed point in D, then there is a fixed point p ∈ ∂D such that (ϕn)
converges uniformly on compact sets to p.

Now we characterize dense distributional chaos for composition operators on the
Fréchet space H(D).

Theorem 34. Suppose that ϕ is an analytic self-map of D. Then the composition oper-
ator Cϕ : H(D) → H(D) is densely distributionally chaotic if and only if it has no fixed
point in D.

Proof. If ϕ is an elliptic automorphism, then ϕ is conjugated to a rotation, and so Cϕ is
not distributionally chaotic.

If ϕ is a non-elliptic automorphism with a fixed point p ∈ D, then (ϕn) converges
uniformly on compact sets to p. Thus (f ◦ ϕn) converges uniformly on compact sets to
f(p) and Cϕ is not distributionally chaotic.

If ϕ has no fixed point in D, let p be the Denjoy-Wolff point that belongs to ∂D such
that (ϕn) converges uniformly on compact sets to p. Let X0 denote the set of all functions
that are continuous on D, analytic on D and vanish at p. Then X0 is dense in H(D) and
limn→∞Cn

ϕf = 0 for all f ∈ X0. For each k ∈ N, let

gk(z) :=
1

k(p− z)
·

Then (gk) converges to zero and there is a sequence (Nk) of positive integers increasing
to ∞ such that

lim
k→∞

1

Nk

card
{
1 ≤ j ≤ Nk : d(Cj

ϕgk, 0) >
1

2

}
= 1.

By Proposition 8, T admits a distributionally unbounded orbit. Thus, by Theorem 15,
Cϕ is densely distributionally chaotic.
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Corollary 35. Let Ω be a simply connected domain in the complex plane and ϕ be an
automorphism of Ω. For the composition operator Cϕ : H(Ω) → H(Ω), the following
assertions are equivalent:

(i) Cϕ is chaotic;

(ii) Cϕ is mixing;

(iii) Cϕ is hypercyclic;

(iv) (ϕn) is a run-away sequence;

(v) ϕ has no fixed point in Ω;

(vi) Cϕ is densely distributionally chaotic.

Proof. The equivalences (i) ⇔ (ii) ⇔ (iii) ⇔ (iv) ⇔ (v) are known.
If Ω 6= C then the equivalence (v) ⇔ (vi) follows from the above theorem by conjuga-

tion.
If Ω = C and ϕ has no fixed point, then Cϕ is a translation operator, and so it is

densely distributionally chaotic. If ϕ has a fixed point, then Cϕ is conjugated to Cψ
where ψ(z) = az and thus it is not densely distributionally chaotic.

6 Miscellanea

It is well-known that if T is invertible and hypercyclic (mixing), then T−1 is hypercyclic
(mixing). In contrast, there exist operators T which are invertible and densely distribu-
tionally chaotic such that T−1 is not distributionally chaotic (see, e.g., [17]).

Also, there are densely distributionally chaotic operators on Banach spaces of the
form T = I +K, where K is a compact operator (see [6]). Such a T is neither frequently
hypercyclic nor Devaney chaotic.

Problem 36. Are there frequently hypercyclic operators which are not distributionally
chaotic?

For example, in [3] the authors constructed a frequently hypercyclic operator on c0
that is not Devaney chaotic (and not mixing). Is this operator distributionally chaotic?

Problem 37. Are there Devaney chaotic operators which are not distributionally chaotic?
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