Seminář vybraných úspěšných projektů programu Nanotechnologie pro společnost

Akademie věd České republiky, 2013

Nové chemické a elektronické funkce diamantu pro biologická rozhraní

Bohuslav Rezek

Obsah přednášky

- Koncept projektu a historie vzniku
- Mezioborový řešitelský tým
 - Akademie věd, univerzitní fakulty, průmysl
- Vybrané významné výsledky
 - proč diamant a organické materiály
 - funkce povrchových atomů -> bio-rozhraní a bio-elektronika
 - **uspořádání buněk** do struktur pomocí diamantu
 - vliv vodivosti, smáčivosti, adsorbce a adheze proteinů, etc.
 - vliv buněčného prostředí na elektrické vlastnosti diamantu:
 Cell-FET senzor, role hranic zrn, proteinů a buněk
- Závěry a výhledy do budoucna
 - shrnutí, návazný výzkum a aplikace
 - významné výstupy a přínos pro ČR: patenty, publikace, funkční vzorky, vliv na ekonomiku

Historie vzniku projektu

- Zkušenosti a myšlenky z mé práce v zahraničí (5 let)
 - Německo, Švýcarsko, Japonsko
- Návrat díky podpoře Fellowship J.E.Purkyně AVČR (2006-11)
 - podařilo se vybudovat úspěšný výzkumný tým v ČR
 - velmi děkuji!
- Formování projektu pro 2. výzvu programu Nanotechnologie pro společnost (NpS)
 - Výhody programu NpS
 - trvání výzkumného projektu 5 let
 - možné významné přístrojové investice (řádově 10 MKč)
 - jednoduchá administrativa (finance, reporty)
 - to vše chybí v současné VaV a je přitom zásadní!

Formování projektu, výzkumný tým

FZÚ AVČR (B.Rezek et al.) - počátek a koordinace

 nano-materiály, hybridní organicko-anorganické systémy, mikroskopické metody, výpočty

1.LF UK (S. Kmoch et al.)

buňky a biomolekuly, detekce pro medicínu

MFF UK (P. Malý et al.)

optické spektroskopie pro studium materiálů a dynamiky elektronických procesů

FSI VUT Brno (T.Šikola et al.)

vytváření nanostruktur, plazmonika

Optaglio, s.r.o. (L. Kotačka et al.)

průmyslový partner, vytváření funkčních nanostruktur

VÝSLEDKY PROJEKTU

FZÚ

tenké vrstvy a anorganické nanostruktury organické nanostruktury a funkcionalizace

charakterizace vlastností a funkčnosti

1.LF

OPTAGLIO

MFF

VUT

OPTICAL MICROSTRUCTURE TECHNOLOGIES

Představení vybraných výsledků

Celá řada výsledků v při řešení projektu

- v oblasti vytváření nano-materiálů a nano-struktur
- v oblasti opto-elektroniky a přeměny energie
- v oblasti bio-elektroniky a bio-medicíny
- přehled např. <u>http://funs.fzu.cz</u>

Představíme vybrané významné výsledky z oblasti bioelektroniky a bio-medicíny

nové chemické a elektronické funkce diamantu pro biologická rozhraní

Nanotechnologie pro společnost

funkční hybridní nanosystémy polovodičů a kovů s organickými látkami

Diamond as gemstone

from the ancient Greek αδάμας – adámas "unbreakable"

traditional applications: jewelry, polishing pastes, cutting tools

Diamond as novel electronic material

we see diamond as <u>a class of materials</u> with properties and functions tailorable on demand: morphological, chemical, electronic, optical

Diamond synthesis on any surface

nucleation process

UDD diamond powder 5-10 nm dispersed in aqeous solution

UDD = ultradisperse diamond, produced by detonation (research of its own, including cells)

growth on "foreign" substrates (Si, glass, metals, polymers!)

[Kromka et al., Chem. Vap. Deposition 14 (2008) 181]

B.Rezek - Seminář NpS AVČR

Nanocrystalline diamond (NCD)

We employ mostly nanocrystalline diamond (NCD)

- fabrication easy, inexpensive, tailorable (compared to monocrystals) from methane in MW plasma [Kromka et al., CVD 14 (2008) 181]
- can be deposited on various substrates (silicon, glass, metals, plastic)
- large areas / numbers possible (linear antenna systems)
- direct growth of microstructures possible (via patterning nucleation)

10

Diamond is fascinating material for bio-interfaces, with unique set of properties:

- carbon purely
 - non-toxic, biocompatible, environmentally friendly
- transparent to visible light (~90%)
- semiconductor (wide band gap 5.5 eV):
 - devices and sensors (FET, UV, p-i-n) [Rezek et al., Sens. Act. B 122 (2007) 596]
- chemically inert and stable
 - good for electrochemical electrodes, harsh environments
 - yet surface can be changed and functionalized! [Nebel et al., J. Phys. D: Appl. Phys. 40 (2007) 6443]
 - most prominent surface moieties: H, O, N, CI, F

plasma discharge, ozone, photo- or electro-chemistry,...

Diamond – functional interface

Functionality of H/O surface atoms

- <u>opposite</u> dipoles, wetting, el. affinity
- surf. conductivity of intrinsic H-diamond
 - planar field-effect transistors (FET) without gate oxide
 - in solution sensitive to pH, molecules
 [Rezek et al., Sens.Act. B 122 (2007) 596]
 [Rezek et al., Thin Solid Films 517 (2009) 3738]

influence on cell growth

[Kalbacova et al., phys. stat. sol. (b) 245 (2008) 2124] [Rezek et al., Sensors 9 (2009) 3549]

H-diam: rounded cells

O-diam: spreaded cells

merging \rightarrow bio-electronic applications

Properties of H/O-micropatterns (basic device)

electrically resistive

optically fully transparent!

B. Rezek et al.: *Diamond as functional material for bioelectronics and biotechnology* In: "New Perspectives in Biosensors Technology and Applications" Intech 2011, pp. 177-196, ISBN 978-953-307-448-1

B.Rezek - Seminář NpS AVČR

Plating cells on diamond

medium for cell plating and growth

- McCoy's 5A medium + fetal bovine serum (FBS)
- McCoy's 5A: inorganic salts, aminoacids, vitamins, glucose, etc.
- FBS: cell growth factors (proteins), heat inactivated, conc. 0-15%
- penicillin, streptomycin

cell plating

- droplet with cell solution spread on sample
- concentration: 2.500 and 10.000 cells/cm²
- McCoy's medium added
- cell cultivation
 - tissue culture plates
 - 37°C, 5% CO₂, **2 days**
- cell types
 - osteoblastic cells SAOS-2 (standard, well defined line)
 - cells that form bone tissue and later mineralize it
 - other cell types (fibroblasts, HeLaG, neurons)

Diamond assembles cells into micro-arrays

osteoblasts

preferential arrangement of cells into micro-arrays

Cells strongly prefer diamond surfaces with O-termination, with sharp boundaries and cell stretching on narrow lines.

[Rezek et al., Sensors 9 (2009) 3549]

Cells on B-doped diamond (BNCD)

BNCD from K.Haenen, University Hasselt, IMO

100 um H/O-termination stripes, SAOS-2

McCoys, 15% FBS

Oppm (undoped)500 ppm1500 ppm6000 ppmImage: Descent stateImage: Descent

B-doped diamond doping nominal = 500-6000 ppm, B-concentration ~ 1e19-1e20 cm⁻³

Cell assembly independent of conductivity
 <l

Influence of cell concentration on selectivity

10.000 cells/cm2

2.500 cells/cm2

➔initial cell concentration is crucial factor for selectivity, if too large, cells colonize all surface

100 µm

B.Rezek - Seminář NpS AVČR

Influence of protein presence

SAOS-2 cells seeded in FBS-free medium, FBS added later for cultivation, 100 μ m H/O-termination stripes

no cell selectivity on bare H/O-diamond w/o FBS, independent of doping
 direct effect of diamond surf. dipoles excluded, proteins play crucial role
 what are properties of FBS proteins on H/O-diamond?

[Rezek et al., Sensors 9 (2009) 3549]

Protein adsorption on diamond

AFM in solution

- <u>advantages</u>: bio-environment, no meniscus at the tip
- silicon cantilevers, ~75kHz in air,
 ~29kHz in liquid, A₀ ~ 60 nm

protein adsorption

- diamond immersed in McCoy's
 5A medium +15 % FBS, 10 min
- rinsed by: a) McCoy's b) water
- measured by AFM: a) in air,
 b) McCoy's, c) in-situ w/o rinsing

[B. Rezek et al., pss(a) 204 (2007) 2888; Langmuir 23 (2007) 7626; JACS 128 (2006) 3884]

AFM nanoshaving

combined contact and non-contact regime to learn more

[B. Rezek et al., pss(a) 204 (2007) 2888 Editor's Choice] [B. Rezek et al., Langmuir 23 (2007) 7626] [B.Rezek et al., JACS 128 (2006) 3884]

FBS layers on H/O-diamond – AFM analysis

FBS layer adsorbed on both H/O-diamond, in similar thickness (2-4 nm)

- **rinsing** by water or McCoy's \rightarrow similar results \rightarrow no influence of McCoy's composition
- **in-situ** AFM in McCoy's (no rinsing) \rightarrow similar results

[Ukraintsev et al., pss(b) 246 (2009) 2832]

→typical protein "fingerprint" on both surfaces

[A.V.Kransnoslobodtsev, Nanomedicine 1 (2005) 300] [C. Popov, Diam.Relat.Mater. 16 (2007) 735]

Force spectroscopy: cantilever tip pressed to the surface and pulled back, force monitored.

statistics: 10%

measured in liquid

B.Rezek - Seminář NpS AVČR

FBS protein layers on diamond - AFM

H-diamond

O-diamond Z scale=3nm200 nm

RMS=1.7nm, Lx=18nm

Different:

in McCoy's cell medium

- thickness (2 4 nm)
- topography feature shape and size (Lx-autocorrelation)
- surface roughness
- **AFM** phase features

→ diamond surface atoms control protein conformations via wetting properties

[Rezek et al., Sensors 9 (2009) 3549] [Rezek et al., DRM 18 (2009) 918]

measured using same tip, same AFM parameters, on various spots

TOPO

Model: FBS on diamond in solution

- model in agreement with general effect of hydrophobic/-philic surfaces on proteins [Browne et al., Surf.Sci. 553 (2004) 155]
- independent of conductivity (good for electronic sensors)
- but wetting range of polymers 85°-125° vs. diamond 15°-85° ???

[Rezek et al., Sensors 9 (2009) 3549]

B.Rezek - Seminář NpS AVČR

Proteins on diamond driving cell selectivity

The cell selectivity is driven by different conformation of proteins on H/O-diamond in the cell medium

recall: not by a direct effect of H/O dipoles on cells

Yet other factors to be considered:

- different adhesion of proteins and cells to H/O diamond?
 - role of FBS inter-layer? cell movements (passive, active)?
 - adhesion of cells reduced by FBS on H-diamond (not on O-diamond)
- different FBS layer composition on H/O diamond?
 - what protein from FBS is responsible for the selective growth?
 - selective cell growth induced by Fn!

B.Rezek - Seminář NpS AVČR

Bio-electronická funkce diamantu

Diamond in-plane SG-FET scheme

side view scheme

solution-gated field-effect transistor (SG-FET) based on surface conductivity of H-diamond gate electrode: *Ag/AgCI reference electrode*

setup and sample view

to characterize (and amplify) electronic effects at diamond interfaces
 no gate oxide, direct contact between molecules and channel surface

[Rezek et al., Sens.Act. B 122 (2007) 596]

[Rezek et al, Biosens. Bioelectron. 26 (2010) 1307]

Effects of protein layer on diamond SG-FET

Specific effects on H-diamond

- protein adsorption: transfer characteristics shift negative (not a field effect!)
- decreased slope, i.e. lowered transconductance (~30 nS, gain ~ 0.9)
- remains persistent after washing/rinsing

Model of diamond-protein-cell interface

SPECIFIC MODEL FOR H-DIAMOND

recall AFM data

proteins modify original equilibrium of the surface conductivity system
(they replace ions in the very vicinity of the diamond surface)
→ negative shift of transfer char. and change of transconductance

[Rezek et al., Biosens.Bioelectr.26 (2010) 1307]

Role of grain boundaries in diamond function

Time [h]	Temper. [°C]	Grain size [nm]	Thickness [nm]	Roughness [nm]
4.3	550 - 600	250 ± 50	445	27
1	550 - 600	80 ± 50	108	19

- various grain sizes investigated (50-500 nm)
 even 100 nm thin transistor fully operational
- function controlled by C-H surface of grains, not by grain boundaries (they limit mobility)

➔ nanocrystals like monocrystal

[Krátká et al., Sens. Actuators B 20 (2012) 239] [Hubík et al., Diam. Relat. Mater. 24 (2012) 63]

1 µm

Funkční vzorek – přenosný senzor

- zařízení pro výzkum v naší laboratoři ~ 10 MKč
- znalosti a zkušenosti transformovány do funkčního vzorku:
 "DEMONSTRÁTOR SENZORU NA BÁZI NANO-DIAMANTU"
 (náklady ~10 tis.Kč, včetně diamantového senzoru)

Shrnutí a přínosy

Shrnutí výsledků

Carbon-based Biomaterials and Biointerfaces Virtual Research Center of the Institute of Physics ASCR, v. v. i.

Dosáhli jsme uspořádaného růstu buněk pomocí povrchových atomů na nanokrystalickém diamantu

- rozdíl ve smáčivost vede k různé konformaci proteinů, nezávisle na elektrické vodivosti a hrubosti diamantu
- **obecný jev** pro různé typy buněk (osteoblasty, karcinom, neurony)

Uspořádávání buněk můžeme řídit:

- **mikro-strukturováním** H/O atomů (30-200μm vs. uniformní)
- **ne/přítomností proteinů** během nanášení buněk (FBS, Fn)
- počáteční koncentrací buněk při nanášení

Ukázali jsme, že diamantové tranzistory jsou vysoce citlivé na biologické prostředí (proteiny, buňky)

- díky AFM v roztoku byl objasněn mechanismus citlivosti, který je specifický pro diamant (změna rovnováhy rozhraní)
- hranice zrn a malá zrna (< 100 nm) nevadí, funkce nanokrystalických senzorů je stejná jako u monokrystalu

tkáňové inženýrství, bio-senzory a bio-elektronika

32 😴

Návazný výzkum

- podařilo se vyvinout plazmatickou technologii pro jemné odstranění proteinů a tím obnovení citlivosti Cell-FET na proteiny [Int. J. Electrochem. Sci. 2013]
- podařilo se objasnit spínání proudů buňkami na hradle z diamantu (K⁺ ionty) a navrhnout senzor buněčných kultur [Appl. Phys. Lett., v recenzi] a mnoho dalšího řešíme…

Významné výstupy a přínos ČR

Významné výstupy k tomuto tématu

- EU patent (a další), funkční vzorky
- publikace v renomovaných časopisech: Biosensors and Bioelectronics, Sensors and Actuators, Langmuir, etc.
- dílčí ocenění: L'Oreal for Woman in Science 2010, Česká hlava Doktorandus 2012

Přínos pro ekonomiku ČR

- zvýšený obrat firmy ~20 MKč/rok
- pracovní místa, kvalifikovaná (~10)
- prodané licence průmyslu
- investice průmyslu do VaV, tento a nové společné projekty
- mezinárodní prestiž

Více na: www.fzu.cz/~rezek

studenti vítáni

direct growth of diamond micro-devices

guided-assembly of cells on diamond

polypyrrole-diamond nanosystems

conductivity map of Si nanocrystal array prepared by AFM electrical crystallization

multidimensional microscopic map of polymer blend for PV

local electrostatic charging of nanocrystalline diamond films

