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ABSTRACT
In this paper, we are concerned with the exponential
complexity of the Circuit Satisfiability (CktSat) prob-
lem and more generally with the exponential complexity
of NP-complete problems. Over the past 15 years or
so, researchers have obtained a number of exponential-
time algorithms with improved running times for ex-
actly solving a variety of NP-complete problems. The
improvements are typically in the form of better ex-
ponents compared to exhaustive search. Our goal is
to develop techniques to prove specific lower bounds
on the exponents under plausible complexity assump-
tions. We consider natural, though restricted, algorith-
mic paradigms and prove upper bounds on the success
probability. Our approach has the advantage of clarify-
ing the relative power of various algorithmic paradigms.

Our main technique is a a success probability ampli-
fication technique, called the Exponential Amplification
Lemma, which shows that for any f(n, m)-size bounded
probabilistic circuit family A that decides CktSat with
success probability at least 2−αn for α < 1 on inputs
which are circuits of size m with n variables, there is an-
other probabilistic circuit family B that decides CktSat

with size roughly f(αn, f(n, m)) and success probability

about 2−α2n > 2−αn. In contrast, the standard method
for boosting success probability by repeated trials will
improve it to (1−(1−2−αn)t) (≈ t2−αn for t = O(2αn))
using circuits of size about tf(n, m).

Using this lemma, we derive tight bounds on the expo-
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nent of the success probability for deciding the CktSat

problem in a variety of probabilistic computational mod-
els under complexity assumptions. For example, we
show that the success probability cannot be better than
2−n+o(n) for deciding CktSat by probabilistic polyno-
mial size circuits unless CktSat (thereby all of NP)

for polynomial size instances can be decided by 2nµ

size deterministic circuits for some µ < 1, which is
considered an unlikely event. As another example, we
show that probabilistic quasilinear size circuits cannot
achieve success probability better than 2−n+o(n) unless
CktSat (as well as NP) has O(mO(lg lg m)) size deter-
ministic circuits, which is very close to the statement
NP ⊆ P/poly, an unlikely scenario.

Categories and Subject Descriptors
F.2.3 [Theory of Computation]: ANALYSIS OF AL-
GORITHMS AND PROBLEM COMPLEXITY—Trade-
offs among Complexity Measures

General Terms
Algorithms,Theory

Keywords
Circuit Satisfiability, NP-completeness

1. INTRODUCTION
It is well-known that all NP-complete problems are

equivalent as far as polynomial-time solvability is con-
cerned. However, much less is known about the exact
complexity of these problems. If we assume NP 6= P

or other appropriate complexity statement, what can
we say about the exact worst-case complexity of NP-
complete problems? An important context for this ques-
tion is the development of a series of exact exponential-
time algorithms with improved run times for a number
of problems including IndependentSet, k-SAT, and k-
colorability. The series of improvements are typically
in the form of better exponents compared to exhaustive
search. However, exact worst-case complexity of these
problems seem to differ considerably. These improve-
ments prompt several complexity questions, chief among
them is whether we can expect continued improvements
in the exponent. Is there a limit beyond which one



should not expect improvement? How do these lim-
its differ for different problems? Can we explain the
differing limits in terms of the structural properties of
the problems? What are the likely exact complexities
of various NP-complete problems? Are the likely com-
plexities of various problems related?

The current state of the art in complexity theory is
far from being able to resolve these questions, especially
the question of best exponents, even under reasonable
complexity assumptions. We believe that it would be
productive to approach these questions from the view-
point of known algorithmic paradigms. Such an ap-
proach might be able to clarify the relative power of
various algorithmic paradigms and might even be able
to shed light on the best exponents in natural, though
restricted, computational models under complexity as-
sumptions. Furthermore, the study of the limitations of
algorithmic paradigms might result in sharper versions
of existing problems and suggest new directions of re-
search. This paper presents an attempt in this direction
and obtains nontrivial, interesting new results.

We propose to approach the randomized exact algo-
rithms for NP-complete problems by studying the im-
portant subclass OPP of algorithms and its general-
izations. OPP is the class of one-sided probabilistic
polynomial-time algorithms. In contrast to the con-
ventional complexity classes, OPP is a class of algo-
rithms rather than a class of problems. This class cap-
tures a common design paradigm for randomized ex-
act exponential-time algorithms: to repeat sufficiently
many times a one-sided error probabilistic polynomial-
time algorithm that is correct with an exponentially
small probability so that the overall algorithm finds a
witness with constant probability. OPP includes Davis-
Putnam-style backtracking algorithms developed in re-
cent times to provide improved exponential-time upper
bounds [4, 3, 33, 15, 14, 16, 12, 19, 18] for a variety of
NP-hard problems. While the original versions of some
of these algorithms are couched as exponential-time al-
gorithms, one can observe from a formalization by Epp-
stein [17] that these algorithms can be converted into
probabilistic polynomial-time algorithms whose success
probability is the reciprocal of the best exponential-time
bound. OPP also includes local search algorithms such
as Schöning’s [39]. OPP is interesting not just because
of ubiquity, but because such algorithms are ideal from
the point of view of space efficiency, parallelization, and
speed-up by quantum computation. What are the lim-
itations of such algorithms for deciding NP-complete
problems? Could the best algorithms for canonical NP-
complete problems such as CktSat (the problem of de-
ciding whether a circuit is satisfiable) or k-SAT be in
OPP?

In addition to OPP, there are several other important
algorithmic paradigms for designing exact algorithms
for NP-hard problems, for example, exponential-time
divide-and-conquer [27, 37], inclusion-exclusion/Möbius
inversion [25, 8, 6, 7], dynamic programming [20, 36],
group algebra [26, 44], sieve algorithms [2, 31], and
Voronoi cell computations [30]. However, we argue that
OPP and its generalizations could serve as an excellent

starting point for the study of exponential-time algo-
rithms for NP-complete problems in general.

Consider the problem of k-colorability for k ≥ 3. The
best-known algorithm [8] for this problem applies the

inclusion-exclusion principle to achieve an Õ(2n) algo-
rithm where n in the number of vertices of the graph.
This algorithm and the prior best-known algorithms [37,
16, 11, 9] do not belong to the class OPP. This raises
a natural question whether we can expect an OPP al-
gorithm for k-colorability whose success probability is
at least 2−n. Beyond this, can we expect OPP-style
optimal algorithms for k-colorability? Does there ex-
ist any OPP algorithm for k-colorability whose success
probability is at least c−n where c is independent of k?
Negative answers (or evidence to that effect) for these
questions would provide convincing proof (or evidence)
that exponential-time inclusion-exclusion and dynamic
programming paradigms are strictly more powerful than
that of OPP. On the other hand, results that would
show k-colorability can be solved by an OPP algorithm
with c−n success probability would be exciting. Simi-
lar situation exists with respect to the Hamiltonian path
problem where we know of no OPP algorithms that suc-
ceed with significantly better than 1/n! success proba-
bility whereas it is well-known that there are O(n22n) al-
gorithms [5, 25] based on exponential-time dynamic pro-
gramming and inclusion-exclusion techniques. It seems
that resolving the question, whether OPP-style opti-
mal algorithms exist for k-colorability and Hamiltonian
path, is related to a fundamental issue regarding the
tradeoff between time and success probability which in
turn might hold one of the keys (the others being P ver-
sus NP and derandomization) for the complexity theory
of exact algorithms for NP-complete problems.

To study the exponents in the exact complexity of
NP-complete problems, it is useful to parameterize NP

problem instances with two parameters. Usually, NP

problem instances are parameterized by the size of the
input. However, for the purpose of capturing the expo-
nential complexity, it is more natural to parameterize
the instances in terms of an additional complexity pa-
rameter. For example, the CktSat problem instances
are parameterized by n, the number of variables, and
m, the length of the input, which is a description of a
circuit. A graph problem such as k-colorability is pa-
rameterized by n, the number of vertices, and m, the
length of the representation of the graph. These param-
eters are natural and robust with respect to the repre-
sentation of the input. We assume that problems are
presented together with a complexity parameter. It is
also useful to endow the class NP with a canonical com-
plexity parameter so we can state properties of NP in
terms of the complexity parameter and the size of the
input. Consider an NP predicate in the form ∃xΦ(y, x)
where y is the input instance, x the witness, and Φ
is a polynomial-time (in the length of y) computable
predicate. We canonically parameterize NP problem
instances by n, the length of the witness, as well as m,
the length of the input. Focus on the length of the wit-
ness is natural when we consider exponential-time exact
algorithms.



We use the notation NP(n, m) and CktSat(n, m)
to be explicit about the parameterization. Complex-
ity bounds are usually expressed as functions of both n
and m. We would like to observe that any problem in-
stance in NP(n, m) can be reduced to a CktSat(n, m′)
instance in time t preserving the witness length, where
t and m′ are polynomially bounded in m.

The results in the paper concern the more general
class OP(T (n, m)) of one-sided probabilistic algorithms
that run in time T (n, m) with success probability bounded
by a small exponential function in n, independent of m.
In addition to the case where T (n, m) is polynomially
bounded in m, we consider other natural cases. In fact,
several of the branch-and-bound algorithms mentioned
earlier run in quasilinear time where the success prob-
ability is inverse of the exponential run time. We will
also consider more powerful models where the algorithm
can check exponentially many candidates to find a wit-
ness. In particular, we consider the class OP(T (n, m))
of algorithms for the following cases of T (n, m):

• T (n, m) is polynomially bounded in m,

• T (n, m) is quasilinearly bounded in m (of the form
O(m lgk m) for some k ≥ 0),

• T (n, m) is subexponential in n and quasilinear in
m, and

• T (n, m) is a small exponential in n and quasilinear
in m.

Our results include upper bounds on the success prob-
ability for deciding the CktSat problem in all of the
models mentioned above subject to various complex-
ity assumptions. These bounds are tight in the sense
they achieve the best possible constant in the expo-
nent. In particular, we show that the CktSat prob-
lem cannot be decided with success probability bet-
ter than 2−n+o(n) by OPP algorithms unless there are

m2O(nµ lg1−µ m) size deterministic circuits with µ < 1
for deciding CktSat(n, m) (Theorem 4). The latter
condition implies that CktSat(n, m) can be decided by

deterministic circuits of size 2nµ′

for some µ′ < 1 if m
is polynomially bounded in n, which is considered an
unlikely event.

We will also prove similar upper bounds on the success
probability for quasilinear probabilistic circuits. How-
ever, in this case, a much weaker assumption suffices.
In particular, we show that the success probability can-
not be better than 2−n+o(n) in quasilinear probabilistic
models unless CktSat(n, m) has O(poly(m)nO(lg lg m))
deterministic size circuits. The latter statement is very
close to the statement NP ∈ P/poly, which is an un-
likely event.

We will further show that the success probability in
the subexponential model cannot be better than 2−n+o(n)

unless CktSat(n, m) has 2o(n)poly(m) deterministic cir-
cuits (Theorem 6). In particular, the latter condition
violates ETH.

We will also show an optimal upper bound on the
success probability for small exponential time models
of the form 2αnm lgk m for α < 1. We show that the

success probability in this model cannot be better than
2−(1−α−ε)n+o(n) for any ε > 0 unless CktSat(n, m) has
2βnpoly(m) size deterministic circuits where β = 1/(1+
ε/α) < 1. Although the latter statement is weaker, it
still would be surprising if there is a constant factor
reduction in the number of existential quantifiers for all
of NP.

Our results essentially rule out any but exhaustive
search algorithms for CktSat in the OPP and other
models. We believe that our results are the first of
their kind. We hope that these results would put a
new emphasis on obtaining similar results for combina-
torial problems such as k-colorability and Hamiltonian
path as well as on the general problem of time-success
probability tradeoffs.

In Section 1.1, we present some related prior work.
In Section 1.2, we describe the key ideas underlying our
results. We define basic concepts and complexity mea-
sures in Section 2. In Section 3, we present informal
descriptions of the lemmas (Exponential Amplification
Lemma and the hash-down lemma) followed by their
proofs. Finally, in Section 3.3 we present our condi-
tional upperbounds on the success probability for de-
ciding CktSat.

1.1 Related Prior Work
While there is a large amount of literature on the

topic of the satisfiability problem, we will focus in this
section on previous research dealing with lower bounds
on the exponential complexity of CktSat and related
NP-complete problems.

Stearns and Hunt in their 1990 paper [40] considered
the concept of power index to characterize the exponen-
tial complexities of basic NP-complete problems. Power
index is defined to be the infimum of all θ for which the
problem is in DTIME(2mθ

) where m is the length of
the input. They have hypothesized that the power in-
dex of the CNF Satisfiability problem is 1 (Satisfiability
Hypothesis) and using this assumption they have shown
that the power index of the Clique problem is 1

2
(in

terms of the number of edges in the graph). They get
their results mainly by analyzing how reductions change
input lengths. The less a reduction blows up the input
size, the tighter the connection between the power in-
dices of the problems.

While these results are interesting, they are more sen-
sitive to how the input is represented. We feel that it
is more natural to parameterize NP in terms of wit-
ness size as well as input size, since the obvious ex-
haustive search algorithm is strongly exponential in the
witness size, but may only be weakly exponential (as
in the case of the Clique problem) in the input size.
More importantly, while [40] assumed the Satisfiabil-
ity Hypothesis to obtain lower bounds on the power in-
dices for other NP-complete problems, in this paper we
provide a justification for their assumption by showing
that an analogous power index (for the success prob-
ability) for a closely related problem, CktSat, is 1 in
OPP-style models under complexity assumptions that
are intimately related to the P versus NP question.
Moreover, success probability is parameterized using the
more natural and robust parameter, the witness length.



In an earlier paper, Schnorr [38] considered the prob-
lems in the classes NQL, the nondeterministic quasi-
linear time and QL, the deterministic quasilinear time,
under quasilinear time reductions. He showed that the
CNF Satisfiability problem (and thereby the CktSat

problem) are complete for NQL under quasilinear time
reductions. In fact, Stearns and Hunt cite this result to
provide an indirect justification for the Satisfiability Hy-
pothesis since the power index of the CNF Satisfiability
problems is at least as large as the power index of any
language in NQL. Schnorr in this paper comments that
P 6= NP implies QL 6= NQL but the converse is not
clear. Our Theorem 5 provides certain strengthening of
the forward implication: the probabilistic version of QL

cannot achieve better than 2−n+o(n) success probability
unless NP has almost polynomial size circuits.

More recently, Impagliazzo, Paturi and Zane [22] ex-
plored the question whether we can expect continued
improvements in terms of better exponents for the ex-
act complexity of problems such as k-SAT, k-colorability
and IndependentSet and showed that the possibility of
arbitrarily small exponents for various NP-complete prob-
lems is one and the same. In particular, they defined
the notion of subexponential time reduction families
(SERF) and showed that several search problems in-
cluding k-SAT, IndependentSet, k-Set Cover, Clique,
Vertex Cover and k-colorability are SERF-equivalent.
They also showed that some of these problems such as k-
SAT and k-colorability are SERF-complete for the class
of SNP of search problems expressible by second order
existential formulas whose first order part is universal.
If any of these problems can be solved subexponentially
(in terms of witness length), then every problem in SNP

can be solved in subexponential time (in terms of wit-
ness length). The key to the equivalence is a lemma
called the Sparsification Lemma which shows one can
achieve witness size-preserving reductions among these
problems in subexponential time.

In a subsequent paper [21], Impagliazzo and Paturi
considered the exact complexity sk of k-SAT where sk =
inf{ε|∃ a 2εn randomized algorithm for deciding k-SAT}.
Under the assumption s3 > 0, called the Exponential
Time Hypothesis (ETH), they showed that the sequence
is increasing infinitely often as k increases. Even under
ETH, it is an open question to prove a specific lower
bound for s3, that is, to prove s3 > c for some spe-
cific c > 0. It is also open whether s∞ = 1 where
s∞ = limk→∞ sk. More generally, it is an open ques-
tion to prove optimal exponential lower bounds for any
NP-complete problem under plausible complexity as-
sumptions.

Adopting ETH as an axiom casts light on the com-
plexity of many other problems. Marx [28, 29] used
Sparsification Lemma to show that ETH implies that
the complexity of database queries is determined by
their treewidth. Very recently, Traxler [41] has shown
that ETH implies (k, 2)-CSP has kcn complexity where
c is an absolute constant, thus ruling out the possibility
(under ETH) of a cn time algorithm where c is inde-
pendent of k. In contrast, k-coloring, a very important
case of (k, 2)-CSP, has long been known to have such a

cn algorithm for c independent of k, and very recently,
the c has been improved to 2 [8].

There are a number of results that relate the complex-
ity of CktSat in terms of the tractability of parameter-
ized problems. Abrahamson, Downey and Fellows have
shown that the existence of 2o(n)poly(m) algorithms for
CktSat problem for circuits of size m and n variables
is equivalent to the problem of the tractability of the
class of fixed parameter problems [1]. Other interesting
results regarding the connection between the possibil-
ities of somewhat improved algorithms for parameter-
ized problems and subexponential time algorithms of
the form 2o(n)poly(m) for CktSat can be found in [13].

While the work of [22] and the subsequent results
based on ETH as well as the results connecting the
complexity of CktSat with fixed parameter tractabil-
ity are interesting and represent progress, we still do
not have specific lower bounds on the exponents even
under ETH as the constants in results based on ETH

(such as those in [41]) depend on the assumed constant
s3 in ETH. In contrast, our results do obtain a specific
lower bound on the exponent of the success probability
for OPP and other models under reasonable complexity
assumptions. Interestingly, our work suggests the possi-
bility that the question of specific lower bounds on the
exponents is related to the questions of P versus NP

and time-success probability tradeoff for NP-complete
problems.

We would also like to mention the recent time-space
lower bounds (see [43] for a survey): the Formula Sat-
isfiability problem cannot be decided by a deterministic
random-access machine that runs in time m1.801 and
space mo(1) where m is the input length. Unlike our
results, these results do not depend on any complex-
ity assumptions. On the other hand, our results deal
with exponential time/probability and related algorith-
mic paradigms.

1.2 Key Ideas
Our key idea is a reduction which effects a simultane-

ous tradeoff between computational resources and prob-
lem instance parameters. Several basic conditions are
needed to obtain such a tradeoff. One of them is to
be able to parameterize the problem instances by two
parameters, witness size and input size. Another is to
be able to parameterize the computational models with
two resources or complexity parameters (as functions of
the instance parameters). For example, size and success
probability are the computational resources for proba-
bilistic circuit models. We then need a non black-box
reduction technique where the computation itself (after
hashing down) is the reduced instance. Identity of the
space of instances and the space of computations seems
to be crucially necessary for the reduction technique.
The last condition distinguishes the CktSat problem
from other satisfiability problems such as CNFSAT.
Consider a probabilistic computation that checks the
satisfiability of a CNF F . To represent the computation
as a CNF F ′, either F ′ would have to be of exponen-
tially large size or it would require an increase in the
number of variables. In either case, it is not clear how
to achieve the desired tradeoff between the complexity



parameters and instance parameters when CNFs are the
instances.

These basic ideas are brought together to obtain a
simultaneous tradeoff between computational resources
and between instance parameters to prove our key lemma,
the Exponential Amplification Lemma (Lemma 2). The
Exponential Amplification Lemma is a success proba-
bility amplification technique which shows that for any
f(n, m)-size bounded probabilistic circuit family A that
decides CktSat with success probability at least 2−αn

on inputs which are circuits of size m with n variables,
there is another probabilistic circuit family B that de-
cides CktSat with size roughly f(αn, f(n, m)) and suc-

cess probability about 2−α2n which is greater than 2−αn

for α < 1. In contrast, the standard method for boost-
ing success probability by repeated trials will improve
it to (1 − (1 − 2−αn)t) (≈ t2−αn for t = O(2αn)) using
circuits of size about tf(n, m). Consider the following
example that will make clear the advantage of the
Exponential Amplification Lemma over the standard prob-
ability boosting technique. Let f(n, m) = mk for some
k ≥ 0. If CktSat for polynomial size circuits can be
solved with 2−αn success probability by a probabilistic
circuit family of size mk, then the lemma guarantees
a probabilistic circuit family of size about m2k which
solves CktSat for polynomial size circuits with success

probability of about 2−α2n. On the other hand, the
standard boosting technique improves the success prob-
ability to mk2−αn using the same resources. From this
example, it is clear that the lemma provides an expo-
nential advantage for α < 1.

Elements of our technique are present in [21] where
instances of CNF satisfiability are parameterized by the
number of variables and the maximum width of the
clauses and a subexponential time reduction was used to
trade up the width for reducing the number of variables
thereby obtaining relationships among the exponents.
Traxler [41] also obtains a similar tradeoff between the
size of the domain and the number of variables for con-
straint satisfaction problems. Whereas the techniques in
[21, 41] only involve reductions among instances trad-
ing one parameter for another, our current technique for
CktSat obtains simultaneous tradeoffs between algo-
rithmic resources and instance parameters by effecting
them in terms of each other.

2. CIRCUITS, CIRCUIT SATISFIABIL-
ITY, AND CIRCUIT FAMILIES

Let C denote the class of circuits with a single output
over the standard, bounded fan-in basis AND, OR, and
NOT. Each source node in the directed acyclic graph
of a circuit C is either labeled by a variable or by a
constant. Let n = n(C) denote the number of variables
of C, Let size(C) denote the count of gates in the circuit
where each source node is counted as a gate. Encoding
of a circuit contains two parts: the first part encodes the
number of variables in unary notation and the second
part is a standard encoding of the circuit as a binary
string. For a circuit C, let desc(C) denote the encoding

of the circuit and let m(C) = |desc(C)|. m(C) is at
least n(C) and is O(size(C) lg(size(C))).

In this paper, we are primarily concerned with CktSat,
the Circuit Satisfiability problem: given an encoding of
C ∈ C, does there exist a x ∈ {0, 1}n(C), that is, a set-
ting of the variables of C, such that C with setting x
outputs 1. In such a case, we say that the circuit C is
satisfiable.

A probabilistic circuit is a circuit where each variable
is further distinguished as an input variable or a random
variable. For input variables y and random variables z,
C(y, z) denotes the output of the probabilistic circuit C.
Cy(z) denotes the specialization of the circuit when its
first argument is fixed at the value y. Let Pr[Cy(z) = 1]
denote the probability that the circuit C outputs 1 for
the input y, where the random variables z of C take the
values 0 or 1 with equal probability.

Input instances for the CktSat problem are encod-
ings of circuits and are parameterized by the number of
variables and the length of the encoding. In our con-
structions, we also deal with circuits with multiple out-
puts. Earlier notions and notation extend naturally to
such circuits.

We consider probabilistic circuit families indexed by
instance parameters as computational models. A fam-
ily F of circuits is a collection {Fn,m|n, m ≥ 1} where
Fn,m is a probabilistic circuit whose inputs are encod-
ings of circuits with n variables and of encoding length
m. For f : N × N → R, we say that a circuit family
{Fn,m} is f -bounded if size(Fn,m) ≤ O(f(n, m)). We
say that a circuit family {Fn,m} decides CktSat with
success probability p(n) if for all inputs which are encod-
ings of circuits with n variables and of encoding length
m, Fn,m outputs 1 with probability at least p(n) for all
satisfiable circuits and otherwise outputs 0 with proba-
bility 1. In other words, p(n) = infm,y Pr[F y

n,m(z) = 1],
where y is a length m string which is an encoding of
a satisfiable circuit with n variables and z denotes the
string of random variables of Fn,m.

Let F be a circuit family {Fn,m} deciding CktSat

with success probability p(n). We define the (exponen-
tial) complexity of F for deciding CktSat for inputs
which are circuits with n variables as

ECktSat(F , n) = lg(1/p(n))/n.

The idea is that ECktSat(F , n) captures the exponent c
of the success probability p(n) when expressed as (2−n)c.
The larger the exponent, the higher the complexity of
F . The complexity of F is defined as ECktSat(F) =
lim supn→∞ ECktSat(F , n).

We define the complexity ECktSat(f) of deciding CktSat

as the best exponent achievable by an f -bounded prob-
abilistic circuit family. More precisely,

ECktSat(f) = inf{ε|∃ an f -bounded family F for deciding

CktSat such thatECktSat(F) ≤ ε}.

We are interested in f -bounded circuit families where
f(n, m) = O(2α(n)nmk lgl m) where α(n) is 0, on(1),
or constant, k ≥ 1, and l ≥ 0. Such circuit families
support computing paradigms where one can evaluate
2α(n)n witnesses to find a satisfying solution since a cir-



cuit of encoding length m can be evaluated at a given
input by a circuit of size m lgl m for some l ≥ 0 [34, 35].

We use the notation Õ(f) to suppress polylogarithmic
factors in f .

3. COMPLEXITY OF CIRCUIT SATIS-
FIABILITY

We know that ECktSat(2
o(n)Õ(m)) ≤ ECktSat(m

k)

≤ ECktSat(Õ(m)) ≤ 1. We also know that

ECktSat(2
αnÕ(m)) ≤ 1 − α. It is open whether any of

these complexities can be lower bounded. In this pa-
per, we prove ECktSat(2

o(n)Õ(m)) = ECktSat(m
k) =

ECktSat(Õ(m)) = 1 under complexity assumptions. We
also prove that for any α < 1 and ε > 0,
ECktSat(2

αnÕ(m)) ≥ 1 − α − ε under a certain com-
plexity assumption.

Our results follow from a repeated application of the
Exponential Amplification Lemma, which shows how to
construct a probabilistic circuit family G for deciding

CktSat with improved success probability 2−α2n from
a given f -bounded circuit family F that decides CktSat

with success probability 2−αn. In the following, we pro-
vide an informal description of the proof of the lemma.

Let Fn,m be a probabilistic circuit in the family F
and let Fn,m(y, z) denote the probabilistic computation
of Fn,m on an input y where z represents the random
variables. Let y be the encoding of a circuit C with
n variables and encoding length m. Since Fn,m(y, z)
decides the satisfiability of C with one-sided error, the
specialization F y

n,m(z) and the circuit C are equivalent
with respect to satisfiability. We will treat the computa-
tion C′ = F y

n,m(z) as a CktSat problem instance. The
size of C′ is m′ = f(n, m) and it may have as many as
r = f(n, m) variables. The idea is to use the encoding
of C′ as input to the probabilistic circuit Fr,m′ from the
family F to decide the satisfiability of C.

So far the transformation from C to C ′ does not rep-
resent any useful tradeoff between the instance param-
eters. To make progress, we need the following crucial
observation. If C is satisfiable and if α < 1, then the
density of satisfying assignments in C ′ will be high, that
is, at least 2−αn. Using a technique of Valiant and Vazi-
rani [42], we can hash down the circuit C ′ to obtain
another circuit C′′ with reduced number of variables,
about αn, in such a way that C ′′ and C′ are equiva-
lent with respect to satisfiability and that the size of
C′′ is about the same as that of C ′ (up to polyloga-
rithmic factors). Overall, we can constructively trans-
form a circuit C with n variables and encoding length
m to C′′ with about αn variables and encoding length
m′′ ≈ f(n, m) (up to polylogarithmic factors). We will
then input C′′ to the probabilistic circuit Fαn,m′′ from
the family F to achieve an improved success probability

of about 2−α2n. The probabilistic circuit family G is
designed to implement this amplification in such a way
that G is g-bounded where g(n,m) ≈ f(αn, Õ(f(n, m))
(up to polylogarithmic factors).

In the next two subsections we state and prove the
hash-down lemma and the Exponential Amplification

Lemma. In the subsequent section, we state our results
on the exponential complexity of CktSat.

3.1 Hash-Down Lemma
As is clear from the previous description, an impor-

tant ingredient in the proof of the Exponential Amplifi-
cation Lemma is the construction of a circuit Sparse(C),
which equivalent to the circuit C with respect to satis-
fiability, but with fewer variables. This construction is
closely related to that of the unique satisfiability con-
struction of Valiant and Vazirani [42] and is captured in
the following hash-down lemma, Lemma 1.

Let C ∈ C be a satisfiable circuit with n variables and
let m denote its description length. Let SC ⊆ {0, 1}n

be the nonempty set of satisfying assignments to the
variables of C. Let s = blg |SC |c − 2; we will assume
that s > 0.

The intuition for the construction of Sparse(C) is as
follows. If the set SC is intersected with a random sub-
cube of dimension (n− s), we expect to get a nonempty
intersection. Therefore, (n − s) bits are sufficient to lo-
cate a satisfying assignment in the intersection. This
intuition is operationalized by restricting C to inputs
from a random coset of a random linear transforma-
tion from {0, 1}n to {0, 1}s. Such a restriction turns
out to be equivalent with respect to satisfiability since
the random coset contains a satisfying assignment with
sufficiently high probability. Moreover, members of the
coset can be generated by a small-size circuit given their
(n−s)-bit address in the coset. The details are provided
below.

We follow the standard idea of using pairwise inde-
pendent functions for hashing. However, rather than
using random linear transformations we will use ran-
dom Toeplitz matrices to achieve the desired pairwise
independence. It requires only a linear number of bits
to specify a random Toeplitz matrix over GF(2). Lin-
ear randomness together with fast GCD and convolu-
tion algorithms [10, 32] will only require a quasilinear
computation to select a random coset and to address its
members. While we can live with polynomial overhead
for some of our theorems, quasilinear hashing is neces-
sary when we work with quasilinear size circuit models.

Let n be fixed. Let t = (t−n+1, · · · , t−1, t0, t1, · · · , tn−1) ∈
{0, 1}2n−1. We will denote by Tt the Toeplitz matrix de-
termined by t, which is the matrix defined by Tt(i, j) =
t(j−i) for 0 ≤ i, j ≤ n − 1. For a column vector z ∈
{0, 1}n, let (Ttz)s denote the column vector of the first
s bits of Ttz, the product of the matrix Tt with the col-
umn vector z. For t ∈ {0, 1}2n−1 and w ∈ {0, 1}s, define
the affine linear transformation ht,w(z) = (Ttz)s + w.
It is well-known that {ht,w} is a pairwise independent
family of functions from {0, 1}n to {0, 1}s.

We would like to parameterize the cosets Ht,w =
{z|ht,w(z) = 0}. For w ∈ {0, 1}s and x ∈ {0, 1}n−s

we will define the column vector (w; x) to be the con-
catenation of w and x. For w ∈ {0, 1}s and t such that
Tt is invertible, we define Jt,w(x) := T−1

t (w; x) to obtain
the needed parameterization of the coset Ht,w. When
Tt is nonsingular, it is easy to see that Image(Jt,w) =
Ht,w. Indeed, if z ∈ Ht,w, then by definition ht,w(z) =



(Ttz)s + w = 0. This implies that there exists an x ∈
{0, 1}n−s such that Ttz + (w; x) = 0. Since we are
working over GF(2) and since Tt is nonsingular, it fol-
lows that z = T−1

t (w; x) = Jt,w(x). Similarly, if z ∈
Image(Jt,w), then z ∈ Ht,w.

The circuit Sparset,w(C) with (n−s) variables is the
composition of Jt,w with C, i.e., Sparset,w(C)(x) =
C(Jt,w(x)).

Lemma 1. C and Sparset,w(C) are equivalent with
respect to satisfiability with probability at least 1/4. Fur-

thermore, Sparset,w(C) can be constructed in size Õ(m)
and its description can be computed by a circuit of size
Õ(m) given desc(C), t and w.

Proof. Our goal is to prove

Prt,w[SC ∩ Image(Jt,w) 6= ∅] ≥ 1/4,

where we are assuming the uniform distribution on t ∈
{0, 1}2n−1 and w ∈ {0, 1}s. However, Image(Jt,w) =
Ht,w if Tt is nonsingular. We will first argue that
Prt,w[SC∩Ht,w 6= ∅] ≥ 3/4 assuming Tt is nonsingular.
We then use the result of Kaltofen and Lobo [24] which
states Pr[Tt is nonsingular] ≥ 1/2 to conclude

Prt,w[SC ∩ Image(Jt,w) 6= ∅]

≥ Prt,w[SC ∩ Ht,w 6= ∅] − Pr[Tt is singular] ≥ 1/4

For z ∈ SC , let qt,w(z) denote the indicator function
for the event z ∈ Ht,w, i.e., ht,w(z) = 0. Let Qt,w :=
P

z∈SC qt,w(z). We have Qt,w 6= 0 iff SC ∩ Ht,w 6=
∅. We will upper bound the probability of the event
Qt,w = 0 using Chebyshev’s inequality: Pr[Qt,w = 0] ≤
Var[Qt,w ]

(E[Qt,w])2
. Using the property of pairwise independence

of the functions ht,w, we get

Var[Qt,w] = E[Q2
t,w] −E[Qt,w]2

= (|SC |2 − |SC |)2−2s + |SC |2−s − |SC |22−2s

= |SC |(2−s − 2−2s).

Hence

Var[Qt,w]

E[Qt,w]2
=

|SC |(2−s − 2−2s)

|SC |22−2s

=
1 − 2−s

|SC |2−s
≤

1 − 2−s

4
< 1/4.

This completes the proof that C and Sparset,w(C)
are equivalent with respect to satisfiability with proba-
bility at least 1/4..

Using fast GCD and convolution algorithms as well
as the Gohberg-Semencul formula for the inverse of a
Toeplitz matrix [10, 32], one can compute Jt,w(x) =

T−1
t (w; x) with bit complexity Õ(n). Since m ≥ n, the

circuit Sparset,w(C) can be constructed in Õ(m) size.
It is easy to check that the description of Sparset,w(C)

can be computed by a circuit of size Õ(m).

It should be noted that there are linear size circuit
constructions [23] for pairwise independent hash func-
tions which would improve upon the construction in
Lemma 1 in terms of circuit size by eliminating the

polylogarithmic factor. However, we still need a log-
arithmic factor for describing the circuit and as a result
the improved construction would not make a significant
difference as far as our results are concerned.

3.2 Exponential Amplification Lemma

Lemma 2. Exponential Amplification Lemma:

Let F be an f-bounded family for some f : N × N → R

such that ECktSat(F) < δ for 0 < δ < 1. Assume
f(n, m) ≥ m for all n. Then there exists a g-bounded
circuit family G such that, for all sufficiently large n,
ECktSat(G) < δ2 where

g(n, m) = O(f(dδne + 5, Õ(f(n, m)))).

Proof. Let Fn,m be the probabilistic circuit from the
family F that decides CktSat for circuits of descrip-
tion size m and n variables. Fn,m itself has m input
variables which encode the description of a circuit D of
n variables. Also Fn,m has r random variables y. By
assumption size(Fn,m) = O(f(n, m)), r = O(f(n, m)),
and the success probability p(n) of Fn,m is greater than
2−δn for all sufficiently large n.

Let n′ = dδne + 5 and s = r − n′. It follows that

p(n) > 2−n′

. We will construct a g-bounded family G of
probabilistic circuits that decides CktSat with success
probability p(r− s) = p(n′) for circuits with n variables

where g(n,m) = O(f(n′, Õ(f(n, m)))). A key idea is,
for a given circuit D, to view Fn,m(desc(D), y) as a

(deterministic) boolean circuit C(y) := F
desc(D)
n,m (y) of

r variables. When D is satisfiable, it follows that C(y)

has at least 2(r−dδne) solutions for all sufficiently large
n. We apply the Sparse() function to C to obtain a
circuit with n′ variables which is equivalent to D with
respect to satisfiability. We then apply the description
of Sparse(C) as input to an appropriate circuit from
the family F to improve success probability. The de-
tails of this construction are presented in the following
algorithm and figures.
Circuit Gn,m (see Figure 1):

1 Input: desc(D) of D ∈ C with n variables and
description length m.

2 C(y) := F
desc(D)
n,m (y), the specialization of Fn,m

to the input desc(D).
3 If r > n′,
4 Select random t ∈ {0, 1}2r−1 and w ∈ {0, 1}s.
5 If Tt is invertible, compute the description of

a circuit Jt,w(x) that computes T−1
t (w; x) for

x ∈ {0, 1}n′

.
6 Sparset,w(C)(x) := C(Jt,w(x)).

7 H(x) := Sparset,w(C)(x) where x ∈ {0, 1}n′

.
(see Figure 2)

8 else
9 H(x) = C(x) where x ∈ {0, 1}r .
10 PrepCkt: Compute the description of the

circuit H. Let m′ = |desc(H)|.
11 Apply Fn′′,m′ to desc(H) where n′′ = n′ if

r > n′, otherwise n′′ = r.
12 Output: Fn′′,m′ (desc(H)).



We will first argue that D and H are equivalent with
respect to satisfiability. It is clear that if D is unsat-
isfiable, H is unsatisfiable. If D is satisfiable, then it
follows from Lemma 1 that Sparset,w(C) is satisfiable
with probability at least 1/4. Since n′′ ≤ dδne + 5, it
follows Fn′′,m′ outputs 1 on input desc(H) with prob-

ability at least 2−δn′′

, which implies that the success

probability of Gn,m is at least 2−δ′δn−6δ′−5 for some
δ′ < δ. It then follows that ECktSat(G, n) < δ2 for all
sufficiently large n.

We will now upper bound the size of Gn,m. By Lemma
1, Sparset,w(C)(x) can be described using at most m′ =

Õ(f(n, m)) bits and the description itself can be com-

puted by a circuit of size Õ(f(n, m))). It follows that

the size of H is also bounded by Õ(f(n, m)) whether
r > n′ or not.

Thus, the size of Gn,m is upper bounded by

f(n′′,m′)+Õ(f(n,m))≤f(dδne+5,Õ(f(n,m)))+Õ(f(n,m))

≤O(f(dδne+5,Õ(f(n,m)))) since f(n, m) ≥ m.
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Figure 1: Circuit Gn,m

We present the following lemma which states how to
boost the success probability by repeated independent
trails. The proof follows from standard arguments.

Lemma 3. If C is a probabilistic circuit of size M
deciding CktSat with success probability q > 0 for a set
of inputs, then there exists a deterministic circuit D of
size Õ(M2)/q that decides CktSat on the same set of
inputs. The same holds for any set in NP in place of
CktSat.

3.3 Results
In this section, we will show that for certain f(n, m),

any f(n, m)-bounded probabilistic circuit family decid-
ing CktSat cannot succeed with probability better than
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2−n+o(n), based on the assumption that CktSat does
not have small size deterministic circuits. The out-
line of our argument is as follows: we start with an
f(n, m)-bounded probabilistic circuit family that de-
cides CktSat with success probability 2−δn for δ < 1
and construct a deterministic circuit family for deciding
CktSat by repeated application of the Exponential Am-
plification Lemma followed by an application of Lemma
3. The size of the resulting deterministic circuit family
depends on f(n, m). The smaller the f , the smaller the
size of the deterministic circuit family.

In the following theorems we state the size of the re-
sulting deterministic circuits for deciding CktSat(n, m).
While our size bounds hold for any n and m, the im-
plausibility of small size deterministic circuits for decid-
ing CktSat(n, m) also depends on the relative size of m
with respect to n. For example, the CktSat problem for
circuits where the description length m is exponentially
large in n (say, m = 2n) is decidable by a polynomi-
ally bounded (say, f(n, m) = Ω(m2 lg m)) deterministic
circuit family since CktSat(n, m) can be decided by

circuits of size 2nÕ(m). In remarks following the theo-
rems, we point out explicitly for what values of m (as a
function of n) the existence of the resulting determinis-
tic circuit family is considered implausible.

Theorem 4. For k > 1, either ECktSat(m
k) = 1

or there exists a µ < 1 such that CktSat(n, m) can be

decided by deterministic circuits of size m2O(nµ lg1−µ m).

Remarks: Consider the second clause in the disjunc-
tion of the statement of the theorem: there exists a
µ < 1 such that CktSat(n, m) can be decided by deter-

ministic circuits of size m2O(nµ lg1−µ m). This statement

implies that CktSat(n, m) can be decided by O(2nµ′

)
size deterministic circuits for some µ′ < 1 for the case
where m is bounded by a polynomial in n. It is currently
believed that such circuits are unlikely to exist. Even



when m = 2o(n), the statement implies that CktSat

can be decided by deterministic circuits of size 2o(n),
which contradicts ETH.
Outline of the Proof: We assume that there exists
a family F of probabilistic circuits of size O(mk) for
some k > 1 achieving success probability 2−δn for some
δ < 1. We apply the Exponential Amplification Lemma
d = max(1, b(lg n

2 lg m+O(lg lg m)
)/(lg( 1

δ
+lg k)c) times fol-

lowed by an application of Lemma 3 to obtain a de-

terministic circuit family of size m2O(nµ lg1−µ m) where
µ = lg k

lg(k/δ)
< 1 and the constant in the big O notation

depends on k and δ.

Theorem 5. Either ECktSat(Õ(m)) = 1
or CktSat(n, m) can be decided by deterministic cir-

cuits of size O(poly(m)nO(lg lg m)).

Remarks: The statement CktSat(n, m) can be de-
cided by quasi-polynomial size deterministic circuits is
very close to the statement NP ⊆ P/poly, which is
considered unlikely. Theorem 5 is proved by applying
the Exponential Amplification Lemma about O(lg n)
times.

We will also get tight upper bounds on the success
probability when f(n, m) is quasilinear in m and subex-
ponential or exponential in n.

Theorem 6. Either ECktSat(2
o(n)Õ(m)) = 1

or CktSat(n, m) can be decided by deterministic cir-

cuits of size 2o(n)poly(m).

Remarks: Theorem 6 is proved by applying the Expo-
nential Amplification Lemma ωn(1) times. When we re-
strict m to be polynomial in n, the second clause in the
statement of the theorem implies that CktSat(n, m)
has subexponential size circuits, which contradicts ETH.

Theorem 7. For every α, ε > 0, either
ECktSat(2

αnÕ(m)) ≥ 1−α−ε or CktSat(n, m) can be

decided by deterministic circuits of size 2n/(1+ε/α)poly(m).

Remarks: In other words, if the success probability
is better than 2−(1−α)n+o(n), the theorem implies that
CktSat(n, m) can be decided by deterministic circuits
of size 2cnpoly(m) where c = 1/(1 + ε

α
) < 1. We note

that the standard success probability boosting technique
(as opposed to the Exponential Amplification Lemma)

would give deterministic circuits of size 2(1−ε)npoly(m).
It is easy to see that c < (1 − ε) as long as α < 1.
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SIAM Journal of Computing, 39(2):546–563, 2009.

[9] Hans Bodlaender and Dieter Kratsch. An exact
algorithm for graph coloring with polynomial
memory. Technical Report UU-CS-2006-015,
Utrecht University, 2006.

[10] Richard P. Brent, Fred G. Gustavson, and David
Y. Y. Yun. Fast solution of toeplitz systems of
equations and computation of padé approximants.
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