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ADAPTIVE FINITE ELEMENT METHOD ASSISTED BY
STOCHASTIC SIMULATION OF CHEMICAL SYSTEMS∗
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Abstract. Stochastic models of chemical systems are often analyzed by solving the correspond-
ing Fokker–Planck equation, which is a drift-diffusion partial differential equation for the probability
distribution function. Efficient numerical solution of the Fokker–Planck equation requires adaptive
mesh refinements. In this paper, we present a mesh refinement approach which makes use of a
stochastic simulation of the underlying chemical system. By observing the stochastic trajectory for
a relatively short amount of time, the areas of the state space with nonnegligible probability density
are identified. By refining the finite element mesh in these areas, and coarsening elsewhere, a suitable
mesh is constructed and used for the computation of the stationary probability density. Numerical
examples demonstrate that the presented method is competitive with existing a posteriori methods.
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1. Introduction. Stochastic simulation algorithms (SSAs) have been success-
fully used in recent years to aid in the understanding of a number of biochemical
models [3, 32, 43]. However, a systematic analysis of these models is challenging be-
cause of the computational intensity of SSAs. In some cases, analysis of stochastic
chemical models is possible by considering suitable Fokker–Planck equations which
are partial differential equations (PDEs) written for probability distribution func-
tions. Examples include the chemical Fokker–Planck equation [18, 26] and the ef-
fective Fokker–Planck equations, which describe small (interesting) components of
large chemical systems [13, 20]. In this paper, we will focus on solving the stationary
chemical Fokker–Planck equation, but the presented computational approach is also
applicable to solving effective Fokker–Planck equations.

Consider a well-mixed system ofN chemical species and denote by x=(x1, . . . , xN)
a vector of concentrations of these species. The stationary chemical Fokker–Planck
equation is a drift-diffusion PDE for an N -dimensional probability distribution func-
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tion p ≡ p(x), where x ∈ Ω ⊂ R
N , which can be written in the following form:

(1.1) div
[
D(x)∇p(x) − v(x)p(x)

]
= 0,

where D ≡ D(x) : Ω→ R
N×N is the diffusion matrix, v ≡ v(x) : Ω→ R

N is the drift
term, and div is the divergence operator.

There have been several methods developed in the literature to solve (1.1) for
moderately large N . They include adaptive finite element methods (FEMs), which
are commonly used for N ≤ 3 [4], and sparse grid approaches, which are applicable
for larger values of N [44]. In [40], a finite volume method was implemented in order
to solve the chemical Fokker–Planck equation for dimension N ≤ 4. A uniform mesh
was used, and it was shown that for low dimensional problems, the Fokker–Planck
approach can be more efficient than exhaustive stochastic simulations. On the other
hand, SSAs were more efficient than solution of the Fokker–Planck equations for
examples in three and four dimensions, because uniform meshes become inefficient
and computationally intractable for large values of N . Adaptive FEMs [4] can be
used to identify a suitable mesh which is refined in crucial regions and not in others.
Although these approaches can be used for the chemical Fokker–Planck equation,
they do not exploit the fact that the solution of (1.1) is a probability distribution of
a stochastic process.

In this paper, we present an adaptive mesh construction which is suitable for the
FEM solution of (1.1) if this equation arises from modeling of stochastic chemical
systems. The main idea is to exploit the fact that stochastic trajectories spend a
significant amount of time in parts of the state space where the mesh refinement is
needed. Since adaptive FEMs are mostly applicable for systems up to N = 3, we will
focus on systems of three chemical species. However, the presented methodology can
be modified for larger (multiscale) chemical systems provided that they have up to
n ≤ 3 important (slow) variables. In [13, 20], a method for estimation of coefficients
of an effective Fokker–Planck equation is presented. This effective equation is of the
same form as (1.1) but it is written in the dimension n which is smaller than a total
number N of chemical species. If one has a suitable SSA for simulating the low
dimensional slow dynamics [10,11,17], the presented mesh refinement can be applied.
However, since the main aim of this paper is to present the numerical methodology for
solving (1.1), we will not consider any dimensional reduction and restrict the study
to systems which are directly written in terms of N = 3 chemical species.

When using the Fokker–Planck approach to approximate the stationary probabil-
ity distribution function, one must also identify a suitable domain Ω on which to solve
(1.1). Too small a domain, and the solution will be inaccurate, even missing areas with
high probability with respect to the stationary probability distribution function. Too
large a domain, and the method becomes inefficient. Automated methods have been
developed to identify appropriate domains for finite state projections of the chemical
master equation [37], but to the best of our knowledge, automated approaches were
not used when solving the chemical Fokker–Planck equation. The method presented
in [37] uses an iterative approach for finding Ω, which increases the number of states
included in the approximation, until error tolerances have been achieved.

The presented method is useful in situations where the coefficients of the Fokker–
Planck equation are expensive to calculate, as in the scenario where they must be
estimated using a suitable multiscale algorithm [13, 20]. In this instance, an a priori
mesh generation method is preferable, since a posteriori methods would require more
evaluations of the coefficients at different sets of quadrature points. In this setting,
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the complexity is dominated by these estimations, and therefore any algorithm which
minimizes the number of evaluations is advantageous.

The paper is organized as follows. In section 2, we introduce our notation, the
Gillespie SSA, and the chemical Fokker–Planck equation. In section 3, we introduce
the standard finite element framework that we will use throughout the paper. We also
formulate the problem in its weak form in order to define the problem to be solved.
In section 4, we introduce the stochastic simulation assisted adaptive finite element
method (saFEM). In section 5, we offer some insight into how the algorithmic param-
eters of the saFEM may be chosen in practice. In section 6, implementational issues
related to the algorithm are addressed. Numerical results concerning convergence of
the method and comparison with an a posteriori method are presented in section 7.

2. Chemical Fokker–Planck equation. Let us consider a well-mixed system
of N chemical species Xi, i = 1, 2, . . . , N , which are subject to M chemical reac-
tions Rk, k = 1, 2, . . . ,M . The state of the system is described by the state vector
X(t) = [X1(t), X2(t), . . . , XN (t)], where Xi(t) denotes the number of molecules of the
corresponding chemical species. Each chemical reaction is described by its propen-
sity function and the stoichiometric vector [19, 24]. The propensity function αk(x) is
defined in such a way that αk(x)dt is the probability that the kth reaction occurs in
the infinitesimally small interval [t, t+dt) provided that X(t) = x. The stoichiometric
vector is νk = [νk1, νk2, . . . , νkN ], where νki is the change in Xi during reaction Rk,
k = 1, 2, . . . ,M . Stoichiometric vectors form the corresponding stoichiometric matrix
ν = (νki)

M,N
k,i=1.

The time evolution of the state vector X(t) is often simulated by the Gillespie
SSA [24], which is described in Table 2.1. Given the values of the propensity functions
(step [1]), the waiting time to the next reaction is given by

(2.1) τ = − log (u)

α0(X(t))
, where α0(X(t)) =

M∑
k=1

αk(X(t)),

and u is a uniformly distributed random number in (0, 1). The reaction Rj is chosen
in step [3] using another uniformly distributed random number.

The Gillespie SSA samples directly from the probability distribution pd ≡ pd(xd, t) :
N

N
0 × [0,∞)→ [0,∞), where N0 = {0, 1, 2, 3, 4, . . .}. The evolution of pd is governed

by the chemical master equation

(2.2)
∂pd

∂t
(xd, t) =

M∑
k=1

αk(x
d − νk) p

d(xd − νk, t)−
M∑
k=1

αk(x
d) pd(xd, t),

where pd(xd, t) is the probability that X(t) = xd. Here, the index d highlights that
the chemical master equation (2.2) is a large system of ordinary differential equations

Table 2.1

The pseudo code for the Gillespie SSA.

[1] Calculate propensity functions αk(X(t)), k = 1, 2, . . . ,M .

[2] Waiting time τ till next reaction is given by (2.1).

[3] Choose one j ∈ {1, 2, . . . ,M} with probability αj(X(t))/α0(X(t)), and perform reaction Rj ,
by adding νji to each Xi(t) for all i = 1, 2, . . . , N .

[4] Continue with step [1] with time t = t+ τ .
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(ODEs) for probabilities of discrete states xd ∈ N
N
0 . The stationary probability

distribution corresponding to the chemical system can be approximated by solving
the chemical Fokker–Planck equation [26], which is a continuous approximation of
the chemical master equation (2.2) and in fact describes the evolution of probability
densities of the chemical Langevin equation [26, 28]. The chemical Fokker–Planck
equation can be written in the form (1.1), where the diffusion and drift coefficients
are

dij(x) =
1

2

M∑
k=1

νkiνkjαk(x), i, j = 1, 2, . . . , N,(2.3)

vi(x) =

M∑
k=1

νkiαk(x)−
N∑
j=1

∂dij
∂xj

(x), i = 1, 2, . . . , N.(2.4)

This equation is solved on a bounded domain Ω ⊂ [0,∞)N in which the vast majority
of the invariant probability density sits [18]. On the boundary ∂Ω we introduce the
homogeneous Neumann boundary condition,

(2.5)
[
D(x)∇p(x) − v(x)p(x)

]
· n(x) = 0 for x ∈ ∂Ω,

where n(x) is the outward facing normal at x ∈ ∂Ω. We seek a solution of (1.1)
which corresponds to the probability distribution function. Therefore, we impose the
following normalization condition:

(2.6)

∫
Ω

p(x) dx = 1.

The choice of the computational domain Ω might be problematic if we have no a
priori information about the problem (1.1) with (2.5) and (2.6). In this case, the
stochastic simulations provide a reliable tool to determine the correct Ω as we will
show in section 4.2.

Our aim in this work is to approximate the steady state solution of the chemical
master equation (2.2) through solution of the chemical Fokker–Planck equation (1.1),
which is a continuous approximation of the master equation. However, this approx-
imation of the master equation can be poor if the system only rarely enters parts
of the state space for which the conditions specified in [26] hold. This puts further
restrictions on the region Ω. However, before discussing the details of the saFEM and
its applicability, we have to introduce some finite element terminology.

3. FEM. Equation (1.1) with boundary condition (2.5) can be numerically solved
by the FEM. Since the finite element formulation is based on the corresponding weak
formulation, we first introduce the weak solution p ∈ H1(Ω) by the equality

(3.1) a(p, φ) = 0 ∀φ ∈ H1(Ω),

where the bilinear form a(·, ·) is given by

(3.2) a(p, φ) =

∫
Ω

(D(x)∇p(x) − v(x)p(x)) · ∇φ(x) dx.

Further, p must satisfy the condition (2.6).
The finite element formulation is obtained by projecting the weak formulation

(3.1) into a finite dimensional subspace Vh of H1(Ω). Thus, we seek ph ∈ Vh such
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that

(3.3) a(ph, φh) = 0 ∀φh ∈ Vh
with the normalization condition

(3.4)

∫
Ω

ph(x) dx = 1.

We note that taking a basis φ1, φ2, . . . , φm of Vh, we can express the finite element
solution as

ph(x) =

m∑
i=1

piφi(x), x ∈ Ω.

Here, the coefficients pi ∈ R solve the system of linear algebraic equations

(3.5) Ap = 0,

where p = (p1, p2, . . . , pm)T and the stiffness matrix A ∈ R
m×m is defined by its

entries

(3.6) Aij = a(φj , φi), i, j = 1, 2, . . . ,m.

We construct the finite element space Vh and the corresponding basis functions
in the standard way [12]. In what follows, we will focus on computations in three
dimensions, i.e., N = 3. We consider the finite element mesh Th consisting of tetra-
hedral elements. The lowest order finite element space Vh then consists of globally
continuous and piecewise linear functions over the mesh Th:
(3.7) Vh = {φh ∈ H1(Ω) : φh|K ∈ P

1(K) ∀K ∈ Th},
where P

1(K) stands for the space of linear functions over the tetrahedron K ∈ Th.
If qj ∈ R

3, j = 1, 2, . . . ,m, stands for the nodes of the mesh Th, then the standard
finite element basis functions φi ∈ Vh are uniquely determined by the condition

φi(qj) = δij , i, j = 1, 2, . . . ,m,

where δij stands for Kronecker’s symbol.
An efficient solution to problem (3.3) can be obtained by employing adaptively

refined meshes [42]. The optimally adapted mesh leads to an approximation with
the smallest error, provided the number of degrees of freedom is fixed. Practically,
the optimal mesh can be hard to determine, but meshes close to the optimal can be
found. These meshes are fine in regions where the solution exhibits steep gradients,
boundary layers, interior layers, or singularities, and they are relatively coarse in the
other regions.

The standard numerical approach for construction of nearly optimal meshes is
the adaptive algorithm based on suitable a posteriori error estimators [4, 42]. This
algorithm starts with an initial coarse mesh and refines it adaptively by a sequence of
refinement steps. In each step, problem (3.3) has to be solved on the actual mesh, an
error indicator has to be computed for each element, and based on these indicators
the mesh is refined at suitable places (see section 7.2). Using the mesh refinements
assisted by stochastic simulations, we can avoid the sequence of refinement steps and
construct a suitably adapted mesh at once. We conclude this introductory section by
discussing basic properties of solutions to (3.1) under the constraint (2.6).

3.1. Existence and uniqueness of the solution. The existence of a nontriv-
ial solution to (3.1) follows by an application of the Fredholm alternative [21, p. 321]
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under the assumption of uniform positive definiteness of matrix D(x). This assump-
tion holds if the propensity functions satisfy αk(x) ≥ ε > 0 for all k = 1, 2, . . . ,M
and if the matrix νT ν is positive definite. In order to apply the Fredholm alternative
we define the corresponding nonhomogeneous problem: find p ∈ H1(Ω) such that

(3.8) a(p, φ) =

∫
Ω

fφdx ∀φ ∈ H1(Ω),

where f ∈ L2(Ω). Similarly, the corresponding adjoint problem reads: find z ∈ H1(Ω)
such that

(3.9) a(ψ, z) = 0 ∀ψ ∈ H1(Ω).

We observe that any constant function z solves the adjoint problem. Further, it is easy
to find a function f ∈ L2(Ω) such that

∫
Ω
fz dx �= 0 for a constant solution z of the

adjoint problem. Thus, the Fredholm alternative implies that the nonhomogeneous
problem (3.8) does not have a solution for this f and consequently there must be
a nontrivial solution of the homogeneous problem (3.1). Note that the Fredholm
alternative for linear elliptic operators was proved in [21, p. 321] for Dirichlet boundary
conditions. Generalization to Neumann boundary conditions (2.5) is an easy exercise.

The uniqueness of the weak solution p is guaranteed by the normalization condi-
tion (2.6) and by the fact that the space of all solutions to the homogeneous problem
(3.1) is one-dimensional. The one-dimensionality can be easily shown for domains
satisfying the interior ball condition and under the assumption of sufficient regularity
of the adjoint problem (3.9). In particular, let z ∈ C2(Ω)∩C(Ω) be a solution to the
adjoint problem (3.9). Then this z satisfies
(3.10)
div(D(x)∇z(x)) + v(x) · ∇z(x) = 0 in Ω and (D(x)∇z(x)) · n(x) = 0 on ∂Ω

in the classical pointwise sense. We consider x0 ∈ Ω such that z(x0) = max{z(x) :
x ∈ Ω} and we distinguish two cases. First, if x0 lies in the interior of Ω, then
the strong maximum principle [21, p. 349] implies that z is constant. Second, if x0

lies on the boundary ∂Ω, then we first assume that z(x0) > z(x) for all x in the
interior of Ω. A slight modification of Hopf’s lemma [21, p. 347] then yields inequality
(D(x0)∇z(x0)) · n(x0) > 0, which is a contradiction to the boundary condition for
the adjoint problem (3.10). Thus, there has to be a point x1 in the interior of Ω such
that z(x0) = z(x1). Repeating the argument from the first case for x1, we conclude
that z is constant even in the second case. Hence, we showed that the space of all
solutions to the adjoint problem is the one-dimensional space of constant functions.
The Fredholm alternative then implies that the space of solutions to the homogeneous
problem (3.1) is one-dimensional as well. Consequently, there exists a unique solution
of problem (3.1) with normalization condition (2.6).

Thus, solutions always exist once we restrict the problem to a bounded domain
Ω with Neumann boundary conditions, but these solutions are useful only if the
underlying stochastic problem is ergodic, i.e., if it has a unique invariant distribution.
If the system is not ergodic, then restricting the chemical Fokker–Planck equation to
Ω will result in a solution which has a nonnegligible probability density close to the
boundary of Ω. Necessary and sufficient conditions for the ergodicity of the chemical
Langevin equation are not trivial [36], and thus ergodicity is assumed.

Finally, if the finite element space Vh contains constant functions (and our choice
does), then the existence of nontrivial solutions to the finite element problem (3.3)
follows by the same argument as for the original problem (3.1).
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Table 4.1

Outline of the a priori mesh generation methodology using SSA trajectories within the saFEM.

[1] Identify steady states (stable and unstable) of the mean field approximation of the system or,
in the case of oscillatory systems, one (or more) coordinates along the limit cycle. We denote
these S ∈ N points by {yk}Sk=1.

[2] Run one (or more) Gillespie simulations of length B + T > 0 for each of the initial conditions
{yk}Sk=1. Here, B ≥ 0 is the length of a possible initial transient and T > 0. Take a subsample
of Q > 0 points per unit time per trajectory in the time interval [B,B+T ] and denote them
as in (4.2). We also denote by xmax

i (resp., xmin
i ) the maximal (resp., minimal) value of the

ith chemical species, i = 1, 2, 3, during time intervals [B,B + T ] of all S simulations.

[3] Use (4.3) to define a neighborhood Γ ⊂ [0,∞)N of the points (4.2) as the region of the domain
in which we require the finest level of refinement of the mesh. This is made up of ellipsoids
around each point with radii given by (4.5) with parameter β1 > 0.

[4] Define the domain of solution Ω by (4.6) using parameter β2 > 0.

[5] Start with the mesh as one single cuboid covering the whole of Ω.

[6] Loop over all cuboids in the mesh. If the cuboid is sufficiently close (as given by (4.7)) to Γ,
then split the cuboid into eight equally sized cuboids. Update the list of hanging nodes/hang
type (face/edge hanging node as shown in Figure 4.1 (left)).

[7] Repeat step [6] until the maximum resolution has been reached after H ∈ N iterations, or the
maximum total number of cuboids has been reached.

4. Adaptive mesh refinement assisted by stochastic simulations. Since
the chemical Fokker–Planck equation (1.1) is a continuous approximation of the sta-
tionary probability density given by the Gillespie SSA [24], one can expect that tra-
jectories simulated from the SSA will be informative. Once the trajectory has reached
probabilistic equilibrium,1 regions surrounding the path of the trajectory are likely
to be regions with nonnegligible invariant density with respect to the steady state
Fokker–Planck equation. We should be aiming to refine the finite element mesh in re-
gions where the rate of change of the gradient of the invariant density is larger. These
regions can be well approximated by the region which has nonnegligible invariant
density. Therefore, stochastic simulations of the chemical system can be informative
about a good choice of finite element mesh.

The construction of the locally adapted mesh assisted by stochastic simulations
is done in three stages. In Stage I, we use the stochastic simulations to identify those
regions of the state space where the system spends most of its time and hence where
we are interested in resolving the problem with the highest accuracy. In Stage II, we
identify the computational domain Ω as a cuboid that covers the region from Stage I
and its neighborhood. In Stage III, we construct the actual mesh in the computational
domain Ω based on the information from Stage I. In what follows, we provide detailed
descriptions of these three stages in the case of N = 3 chemical species. Following the
notation of section 2, the chemical species will be denoted as X1, X2, and X3. The
mesh generation algorithm is summarized in Table 4.1.

4.1. Stage I: Stochastic simulation. In step [1] of Table 4.1, we identify
structures that a priori should exist in the probability density. An indication of the
regions which may contain significant amounts of invariant density can be found by
analyzing the three-dimensional system of ODEs

(4.1)
dxi
dt

= vi(x1, x2, x3), i ∈ {1, 2, 3},

1Equilibrium can be reached simply by running the SSA until the state of the trajectory is
sufficiently decorrelated from its starting position, or by starting at a steady state of the mean field
approximation (4.1) of the chemical system.
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which is closely related to the mean field approximation of the chemical system.
Steady states of ODE system (4.1) will often coincide with regions of the solution
of the steady state Fokker–Planck equation (1.1) that have large density. The most
important things to identify are stable steady states of (4.1), which can be found by
solving an algebraic system [v1(x1, x2, x3), v2(x1, x2, x3), v3(x1, x2, x3)] = 0. In oscil-
lating systems, one can identify limit cycles. There are several tools in the literature
for analysis of ODEs of the form (4.1), such as AUTO [15].

In step [2], these steady states can then be used as starting points for SSA trajec-
tories, once the numbers of molecules of each species have been rounded to the nearest
integer. Since we cannot guarantee that steady states of the mean field approximation
are areas of interest with respect to the chemical Fokker–Planck equation, we might
additionally wish to ensure that each chain is starting in probabilistic equilibrium
by running a short simulation of length B ≥ 0 from these points before starting the
sampling procedure. The Gillespie SSA is detailed in Table 2.1. In the case of limit
cycles, several points along the limit cycle can be used as starting points for the SSA.
Either way, we denote the S starting positions for the trajectories by {yk}Sk=1 ⊂ R

3.
The trajectories simulated up to some time B+T > 0 using the SSA can help inform
us about the regions of domain which will have nonnegligible invariant density. Since
the trajectories will contain many points, we cannot store all the points that are sim-
ulated. Instead, we subsample from the trajectories at equidistant time points, at a
rate Q > 0 points per unit time. This leaves us with a set of sampled points

(4.2) {zk,l}S,�QT�
k=1,l=1 ⊂ R

3

from the invariant distribution, where QT � denotes the integer part of the real num-
ber QT . We hope to recover, from this set of points (4.2), information about what
might be an optimal finite element mesh. We also denote by xmax

i (resp., xmin
i ) the

maximal (resp., minimal) value of the ith chemical species, i = 1, 2, 3, during time
intervals [B,B + T ] of all S simulations. These numbers will be useful in (4.4)–(4.5).
In step [3], we make the approximation that the region which contains the majority
of the invariant density is a subset of the union of a set of ellipsoids centered at each
point (4.2), namely,

(4.3) Γ ≡
⋃
k,l

Er(zk,l).

Here, Er(zk,l) is an ellipsoid with radii r = [r1, r2, r3] centered at point zk,l for k =
1, 2, . . . , S, l = 1, 2, . . . , QT �. These radii can be picked to be proportional to the
range of each chemical species using the parameter β1 > 0 and numbers xmin

i , xmax
i ,

i = 1, 2, 3, computed in step [2]. Namely, we define

(4.4) xrangei = xmax
i − xmin

i , i = 1, 2, 3,

and

(4.5) r = β1 (x
range
1 , xrange2 , xrange3 ) .

One should note that the parameters B and T might in principle be different for
different initial conditions yk, but to simplify the notation, we do not stress this fact
by using the notation Bk and Tk and use simply B and T .

For some systems, the calculation of the position of all the steady states in system
(4.1) could be nontrivial. In this case, this a priori information may not be available
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to us, and as such longer SSA trajectories should be calculated in order to find all the
regions close to steady states. In some cases, this may be costly and the advantages
of using this methodology are lost.

4.2. Stage II: Automatic detection of the domain. Next, we would like
to identify the domain Ω on which we wish to solve (1.1). Since we already have an
approximation of the region which contains the majority of the probability density,
we can simply fit a cuboid around this region and then extend it by a factor. The
only other condition that we enforce is that the domain must be contained by the
positive quadrant of the state space. In step [4], we pick a parameter β2 > 0 to define
how much we would like to extend the cuboid:

(4.6) Ω = A1 ×A2 ×A3,

where

Ai =
(
max{0, xmin

i − β2 xrangei }, xmax
i + β2 x

range
i

)
, i = 1, 2, 3.

We then wish to solve (1.1) on the domain Ω with boundary conditions (2.5) on ∂Ω.
This method follows from [40], where the domain is chosen such that the solution

can be well approximated by zero outside it. The longer we run the SSA trajectories,
the better our approximation of the regions with nonnegligible invariant density.

4.3. Stage III: Construction of the adaptive mesh. In this stage, we con-
struct the adaptively refined mesh. In the previous stage we naturally defined the
computational domain as a cuboid (4.6). Therefore, we base our refinement approach
on simple splitting of a cuboid into eight congruent subcuboids. However, any other
standard mesh refinement technique can be utilized instead.

An advantage of the refinement of cuboids into eight subcuboids is its simplicity.
A disadvantage is that these refinements produce so-called hanging nodes in the mesh;
see Figure 4.1(a).

In step [5] of the mesh generation, our mesh consists of a single large cuboid. We
then, in step [6], iteratively refine cuboids in the following fashion. In each iteration
of the refinement procedure, we loop over all the current cuboids that exist following
the previous iteration of the method. For each of the cuboids I1 × I2 × I3, where

(a)

"Face" hanging nodes

"Edge" hanging node

(b)
1st order hanging nodes

2nd order hanging node

Fig. 4.1. (a) First order hanging nodes of different types in cuboid meshes. (b) Hanging nodes
of order 1 and order 2 on a two-dimensional mesh.
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I1, I2, I3 ⊂ [0,∞) are intervals, we compute the minimum distance between all points
in this cuboid and the set of points (4.3) in each coordinate, namely,

dist(Γ, Ii) = inf{|ai − bi| : [a1, a2, a3] ∈ Γ, bi ∈ Ii}, i = 1, 2, 3.

We refine the given cuboid I1 × I2 × I3 if

dist(Γ, Ii) < |Ii| is satisfied for every i = 1, 2, 3.(4.7)

If a cuboid is to be refined, it is split into eight cuboids of equal volume. As detailed
in step [7], this refinement condition can be iterated for a set number of times H ∈ N,
where N ≡ {1, 2, 3, . . .}, or until the number of cuboids present in the mesh is as large
as we would like or can deal with given our computational resources.

Notice that the algorithm described above produces hanging nodes of order 1
only. This means that either two neighboring elements in the mesh are of equal size
or one of them has eight times’ greater volume than the other one. This is important
for practical implementation, because the hanging nodes of order 1 are much easier
to work with than the hanging nodes of higher orders. See [41] for more details
and Figure 4.1(b) for an illustration in two dimensions. In order to guarantee the
continuity of the approximation, the value of the function at the hanging node is
necessarily decided by the values of the function at the vertices of the less refined
cube. Therefore the hanging nodes are not in fact additional degrees of freedom in
the problem. Thus, the dimension of problem (3.5) is equal to the total number
of vertices in the generated mesh, less the number of hanging nodes. This special
treatment of hanging nodes actually enforces on us a mesh which is highly refined in
the regions which we wish it to be, and then the mesh becomes gradually coarser as
we move away from those regions.

4.4. Tetrahedral mesh. Once the cuboid mesh has been generated by steps
[1]–[7] of Table 4.1, we can then implement an FEM on it. In the numerics shown in
this paper, we further split each cuboid into six path tetrahedra. However, there is
nothing to say that we could not use cubic elements, but we use tetrahedra to simplify
some implementational issues.

We choose a refinement regime in which the elements are clustered in groups of
six nonobtuse2 tetrahedra which together form each cuboid [8]. Figure 4.2(a) shows
how six tetrahedra of equal size and shape can tesselate into a cube; this gives us the
basis of our refinement scheme. The idea is that if we map each cuboid in our mesh
to the unit cube, then each element is of exactly the same shape and size.

A lot of refinement methods in the literature involve splitting each element into
several smaller elements [33]. However, if this is not done in a clever way, it can
lead to degradation of the quality of the elements. That is, some of the angles of the
elements may become too small, leading to long thin elements, which can lead to less
accuracy in the approximation [9].

In the method that we propose here, instead of splitting each element, we split
each cuboid into eight equally sized cuboids. Each cuboid is then split, as before, into
six equally sized and shaped (after a linear transformation if not a cube) tetrahedral
elements. Figure 4.2(b) shows a cube which has been refined once and been split into
48 elements with 27 vertices.

2All six dihedral angles between its faces are less than or equal to π/2.
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(a) (b)

Fig. 4.2. (a) Example of a unit cube split into six elements of equal size and shape. (b) Example
of a unit cube after a refinement iteration.

5. Parameter selection. The algorithm has several parameters, S, T , Q, B,
β1, β2, and H , whose values must be decided by the user. The parameters S, T , Q,
B relate to the implementation of the Gillespie SSA, and the remaining three, β1, β2,
H , relate to the selection of the domain and the mesh, given the recorded output of
the SSA. In this section we suggest how one might go about selecting values for these
parameters.

5.1. SSA parameters. The purpose of simulating the SSA trajectories, as de-
scribed in subsection 4.1, is to get an indication of the regions of the domain which
contain the majority of the invariant probability density. There are four parameters
to consider, S ∈ N, T > 0, Q > 0, and B ≥ 0. The parameter B represents the
length of the simulated trajectory that we ignore at the beginning of the simulation.
This period of simulation is simply used to ensure that the Markov chain has entered
probabilistic equilibrium. This ensures that it is highly likely the point in state space
where the rest of the trajectory starts has nonnegligible density with respect to the
invariant distribution. The final parameter, Q, represents the rate (per unit time) at
which we record samples from each trajectory in the time interval [B,B+T ]. This pa-
rameter is necessary since if we recorded every single state that the trajectory passed
through, we could quickly run out of memory.

Choosing sensible values for these parameters is not easy, since it is problem de-
pendent. However, our aim is not to run such a long trajectory that simply using a
histogram of the values would lead to an accurate approximation of the invariant den-
sity, as this would completely negate the need for the rest of the algorithm. Likewise,
if the trajectory is too short, we will have a very poor approximation of the areas of
the domain which contain the majority of the probability density. Our aim, therefore,
is to get as good an approximation of this region as possible with the shortest possible
trajectories.

As with many Monte Carlo estimates, due to the law of large numbers, the error
decays at a rate proportional to 1/

√
T . It is reasonable to expect that the approxima-

tion of the region which contains the majority of the invariant density should decay
at a similar rate. Since convergence diagnostics relating to Markov chains are an
open area with no hard and fast solution [14], we suggest that a sample trajectory
be created a priori to ascertain the relaxation time of the system. The parameter B
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can simply be set to be a proportion of the length T , for instance, B = T/10. The
parameter Q should be picked according to how much memory one would like to set
aside to store the sampled points. Since we are calculating minimum distances to any
point in this set in step [6] of the algorithm, the more points there are, the longer the
algorithm will take to run.

5.2. Domain and mesh generation parameters. The domain and mesh gen-
eration parameters are given by β1 > 0, β2 > 0, and H ∈ N. The parameter β2 defines
the size of the domain as seen in (4.6). Unless the trajectories from the SSA are very
short, the estimation of the domain should be relatively trivial, and a value of order
1 should suffice in most instances. The value of β1, which indicates how much error
we estimate there to be in our estimation of the region which contains the majority
of the invariant density, should be directly proportional to 1/

√
T . Too large a value

will lead to unnecessary refinement in some areas, while too small a value will lead
to not enough refinement and more error. The parameter H indicates the maximum
number of splits that the initial cubes of the mesh may undergo. In practice this can
be found at runtime by capping the total number of elements we allow in the mesh
due to memory and CPU constraints.

5.3. A numerical test of accuracy. Although the method has seven param-
eters which have to be specified, it is relatively easy to check that the computed
results are numerically accurate. Given the parameter set {S, T,Q,B, β1, β2, H}, we
can compare the computed results with the results obtained with the parameter set
{S, 2T, 2Q, 2B, 2β1, β2, H+1}. If the result does not change significantly, then we can
conclude that our parameters were chosen sufficiently large. Here, the parameters T ,
Q, B, and β1 are multiplied by 2 because increasing any of these parameters will
increase the accuracy of the solution. In a similar way H can be increased by one,
which means that the finest level of refinement in the mesh becomes smaller by a
factor of two in each coordinate. However, we do not propose to modify S and β2
for the following reasons. The number of starting points S can be determined by the
number of stable equilibria of (4.1). In this case, the parameter S does not have to
be changed during this a posteriori test of accuracy. Furthermore, β2 is used only to
choose the size of the domain, and multiplying the size of the domain by 2 would lead
to a smaller proportion of the domain being covered by Γ (given by (4.3)), and as
such a more accurate solution would not be guaranteed. If one wishes to test whether
β2 is large enough, the parameter H may have to be increased as a function of β2 in
order to maintain the same level of refinement in Γ.

6. Implementation of the saFEM. As soon as the computational mesh is
determined, the approximation ph ∈ Vh of the stationary distribution p(x) is com-
puted by the standard FEM approach [12,41]. In order to compute the entries of the
stiffness matrix (3.6), it is necessary to use suitable quadrature routines. In numerical
examples below, we consider chemical reactions of at most second order. Therefore,
the diffusion D(x) and drift v(x) coefficients are polynomials of degree at most two.
Since the finite element space consists of piecewise linear functions, it suffices to use a
tetrahedral quadrature rule of order three which integrates cubic polynomials exactly.
The optimal (Gauss) quadrature rule on tetrahedra of order three has five points [41].

Since the dimension of the resulting algebraic system (3.5) can be very large,
even for relatively coarse approximations, parallelization of the assembly process is of
paramount importance. Several packages exist for constructing matrices in parallel.
The Portable Extensible Toolkit for Scientific Computation (PETSc) is a suite of data



ADAPTIVE FEM ASSISTED BY STOCHASTIC SIMULATION B119

structures and routines for the scalable (parallel) solution of scientific applications
modeled by PDEs [6, 7]. The matrix is split into sections which are controlled by
each processor. If the degrees of freedom are ordered in a sensible way, then Message
Passing Interface traffic between the processors can be kept to a minimum, leading
to excellent scaling of processors versus computation time [7].

Once the stiffness matrix (3.6) is assembled, we have to find a nontrivial solution
of the algebraic system (3.5). Practically, we look for the eigenvector corresponding to
the zero eigenvalue of the matrix A. This eigenvector, once normalized, corresponds
to the approximation of solution of (1.1) projected onto the vector space Vh. To find
this eigenvector in parallel, we use a sister package of PETSc, which is called the
Scalable Library for Eigenvalue Problem Computations (SLEPc) [30]. In particular,
we used the MUltifrontal Massively Parallel sparse direct Solver [1,2] package for the
preconditioning and a power method to solve the resulting eigenvalue problem [34].
This is made easier since we know the exact value for which we wish to compute the
eigenvector (i.e., zero). Feeding this information to the power method implementation
within SLEPc allows us to quickly and accurately approximate the nontrivial solution
of (3.5).

Once we have calculated the eigenvector, it is then necessary to reconstruct the
solution of (3.1). For this, we use the information regarding the hanging nodes so that
we reconstruct all the vertices on the mesh. The function in question approximates
a probability density and therefore we normalize the obtained finite element solution
ph such that it satisfies the condition (3.4).

7. Numerical results. In this section, we first use a simple example chemical
system from [13] and implement the saFEM on a range of different mesh sizes and
with different algorithmic parameters. Then we present the results of saFEM for the
Oregonator [23].

7.1. Convergence of the numerical method. We will study the system of
three chemical species X1, X2, and X3 which are subject to the following system of
five chemical reactions [13]:

(7.1) ∅ k1−→ X1

k2−→←−
k3

X2
k4−→ X3

k5−→ ∅.

Then the propensity functions are defined by

α1(x) = k1V, α2(x) = k2x1, α3(x) = k3x2,

α4(x) = k4x2, α5(x) = k5x3,

where V is the volume of the reactor [13, 19]. In particular, N = 3 and M = 5 and
the stoichiometric matrix of the chemical system (7.1) is a 5× 3 matrix

ν =

⎛
⎜⎜⎜⎜⎝

1 0 0
−1 1 0
1 −1 0
0 −1 1
0 0 −1

⎞
⎟⎟⎟⎟⎠ .

We consider this system with the following set of nondimensionalized parameters:

(7.2) k1V = 100, k2 = k3 = 5, k4 = k5 = 1.
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As discussed in section 5, there are seven different algorithmic parameters, whose
values determine the accuracy and efficiency of the methods. In this section we will
analyze the effects and convergence of the method due to altering the three most
important of these parameters.

7.2. Convergence of approximation. First we consider how the error in the
approximation of the invariant distribution p decays as we refine the mesh, each time
using the same stochastic simulation, with S = 1, T = 105, Q = 0.1, B = 103, β1 =
0.01, and β2 = 0.55. We choose S = 1 since the corresponding ODE approximation
given by (4.1) with parameters (7.2) gives us

dx1
dt

= 100− 5x1 + 5x2,

dx2
dt

= 5x1 − 6x2 − 0.5,

dx3
dt

= x2 − x3,

which has a single steady state at (119.5, 99.5, 99.5). Therefore we pick the single
starting point for the SSA trajectory to be at (120, 100, 100). Note that the constant
term −0.5 in the second equation comes from the derivative of the diffusion terms as
given by (2.4), while these derivatives sum to zero for the first and third equations.

We compare the convergence of the saFEM with the standard adaptive algorithm,
which uses a posteriori error indicators to mark elements to be refined. In the numerics
that follow, we choose the usual explicit residual error indicator [4, 5, 42], ηE , given
by

(7.3) ηE = hE‖rE‖E +
∑

F∈F(E)

h
1/2
F ‖JF ‖F ,

where E is an element (tetrahedron) of the mesh, F(E) stands for the set of faces of
E, hE and hF are diameters of the element E and face F , respectively, and

rE = −div(D∇ph − vph),(7.4)

JF = (D∇p+h −D∇p
−
h ) · nF .(7.5)

Here ph is given by (3.3)–(3.4), nF is the outward normal to the face F , and p±h (x) =
lims→0+ ph(x ± snF ). Note that JF is the jump in conormal derivative. The norm
‖ · ‖E (resp., ‖ · ‖F ) is the standard L2 norm on the domain E (resp., F ).

The global error indicator ηG is then given by

(7.6) η2G =
∑
E

η2E ,

where the sum is taken over all elements in the mesh. To mark the elements, we use
the usual bulk criterion, namely, we reorder the indicators according to size, denote
the sorted sequence in descending order by {ηEi}, and find the smallest number ñ
such that

(7.7)

ñ∑
i=1

η2Ei
≥ θηG.
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Fig. 7.1. (a) Convergence of the saFEM (red squares) compared with the error indicator ap-
proach (blue triangles), with S = 1, T = 105, Q = 0.1, B = 103, β1 = 0.01, and β2 = 0.55 over
a range of mesh refinements, for the system (7.1). Errors are given by (7.8). (b) Comparison of
cost/error for the saFEM (red squares) and the standard error indicator approach (blue triangles),
with S = 1, T = 105, Q = 0.1, B = 103, β1 = 0.01, and β2 = 0.55 over a range of mesh refinements,
for the system (7.1). Errors are given by (7.8).

The elements E1, E2, . . . , Eñ are then marked for refinement. The parameter θ ∈ (0, 1)
can be freely chosen. We use θ = 0.5.

In the following numerical experiments, we start the standard adaptive algorithm
with the same cuboid domain as identified using the saFEM with initial mesh given by
the same six path tetrahedra as used in the saFEM. Elements marked for refinement
are split according to the longest edge bisection algorithm [39].

Figure 7.1(a) shows the convergence of the saFEM and the standard error indica-
tor approach as the number of degrees of freedom is increased. The error is calculated
for each method by comparison with an approximation using a very fine mesh for that
method:

(7.8) Error =

(∫
Ω

|pfine(x)− ph(x)|2dx
)1/2

,

where pfine is the saFEM solution with the finest mesh (with H = 8), which has
smallest elements with diameter 1.40 and largest elements with diameter 44.95, and
the mesh has 1.06 × 106 degrees of freedom. Similarly, the finest mesh in the error
indicator approach has just over 1.24 × 106 degrees of freedom. Note that the error
is small (almost of order 10−5) even for a very small number of degrees of freedom.
This is simply due to the fact that the probability density has L1 norm equal to 1,
and as the domain is large, it has very small L2 norm (equal to 1.96× 10−5).

The error as a function of computational cost (in CPU time) is plotted in Fig-
ure 7.1(b). Since some parts of the computation are parallelized, we defined the
computational cost for each part of the program as the runtime multiplied by the
number of processors used. The plotted computational cost (in seconds) is then given
by the sum of these costs.

When using a relatively coarse mesh, it is possible for the value of the approxi-
mation to be negative in regions. Since the function represents a probability density,
which is strictly nonnegative, this does not make sense. These negative areas can also
complicate the normalization of the function. We solve this problem by simply setting
all negative values to zero, before normalizing by (2.6). This problem is standard in
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Fig. 7.2. Convergence of the saFEM with S = 1, Q = 10, B = 103, β1 = 0.01, β2 = 0.4, and
H = 6 over a range of SSA lengths T for the system (7.1). Error is given by (7.9).

finite element computations and it comes from the fact that the probability density
function is very close to zero for large parts of the domain. Small numerical errors can
then lead to negative values in these regions. These negatives are very close to zero
even for moderately converged approximations. Moreover, since the exact solution is
nonnegative, rounding up the negative values to zero yields a better approximation
in the L2 sense.

In Figure 7.1 we see that the standard method creates a more efficient mesh in
terms of error per degree of freedom in the mesh. However, the saFEM is still compa-
rable if the drift and diffusion coefficients are expensive to compute, as mentioned in
the introduction with regards to multiscale methods [13,20]. It also allows us to con-
struct nonconforming meshes while ensuring that hanging nodes of order higher than
one are not present, allowing for greater flexibility in the choice of mesh generation.

Furthermore, in the numerics above, the standard method is taking some input
from the saFEM, in terms of the computational domain chosen to solve the problem
on. The automatic detection of this domain is a key feature of the saFEM which
allows for efficient approximation of the stationary density of the system. If too large
a domain is chosen on which to solve the problem, this introduces redundant degrees of
freedom in regions which have negligible stationary probability density p(x). Selection
of too small a domain leads to an incorrect approximation of the invariant density.

7.3. Length of stochastic simulation. Next we show convergence of the
method as T is increased with S = 1, Q = 10, B = 103, β1 = 0.01, β2 = 0.4
and H = 6. As in the previous section, the SSA trajectory is given initial condition
(X1, X2, X3) = (120, 100, 100).

As the system is ergodic, we would expect that as the length of stochastic simula-
tion increases and the number of samples increases, our sample becomes increasingly
representative of the stationary probability distribution p(x). This gives us more in-
formation about where we should be refining our mesh, which in turn should give us
a more accurate approximation.

Figure 7.2 shows the convergence of approximation as the length of stochastic
simulation is increased. The plotted error is the L2 difference between the approxi-
mations with varying T and the approximation calculated with T = 105, namely,

(7.9) Error(t) =

(∫
Ω

|pT=105(x) − pT=t(x)|2dx
)1/2

.

Note that in order to more easily compare the distributions, the domain selection for
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Fig. 7.3. Convergence of the saFEM with S = 1, T = 105, Q = 0.1, B = 103, β2 = 0.4, and
H = 6 over a range of radii of uncertainty β1 for the system (7.1). The error is defined by (7.10).

all the data points was made using the longest stochastic simulation with T = 105.
This shows that as the simulation length is increased we see a convergence of the
chosen mesh to one which well represents the region containing the invariant density.

7.4. Parameter β1. In certain situations the stochastic simulations may be
expensive and we may only be able to take a few samples from the stochastic trajec-
tory. In this case we still have a large amount of uncertainty about the region which
contains the vast majority of the invariant density. Therefore we can only hope to
approximate this by increasing the size of the ellipsoid around each sampled point
(4.2) that we include in the region Γ given by (4.3). Figure 7.3 shows the convergence
of the method as β1 is increased, with S = 1, T = 105, Q = 0.1, B = 103, β2 = 0.4,
and H = 6.

The error as plotted in Figure 7.3 is given by

(7.10) Error(β) =

(∫
Ω

|pβ1=1(x) − pβ1=β(x)|2dx
)1/2

.

Note that as β1 increases, it reaches a point where no improvement is seen in the error,
because the whole of the domain is covered by the union of ellipses Γ for sufficiently
large values of β1. Once this happens, the mesh generator returns a uniform mesh,
and increasing β1 further does not affect the produced mesh.

7.5. A numerical test of accuracy. In section 5.3 a brief test for sufficient
convergence was suggested, where two solutions were calculated, one with parameters

{S, T,Q,B, β1, β2, H},

and the second with parameters

(7.11) {S, 2T, 2Q, 2B, 2β1, β2, H + 1}.

If the two solutions are close up to some tolerance, then we can be fairly sure that
the method has converged to a reasonable degree.

The solution for the system (7.1) calculated with the parameter set

{S = 1, T = 105, Q = 0.05, B = 500, β1 = 10−3, β2 = 0.45, H = 7},

when compared with the solution using the parameters

{S = 1, T = 2× 105, Q = 0.1, B = 103, β1 = 2× 10−3, H = 8},
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gives L2 error of 1.99 × 10−4, which is significantly less than the L2 norm of the
solution (4.51 × 10−3). This gives a relative L2 error of 4.41 × 10−2. For ease of
comparison the domain Ω chosen using parameters (7.11) was used for both meshes.

7.6. Oregonator. Our final example is the Oregonator [23], which is a three-
species chemical system motivated by the Belousov–Zhabotinsky reaction. It exhibits
oscillatory behavior and is traditionally given by the following system of ODEs:

dx1
dt

= k1x2 − k2x1x2 + k3x1 − 2k4x
2
1,

dx2
dt

= −k1x2 − k2x1x2 +
1

2
kcx3,(7.12)

dx3
dt

= 2k3x1 − kcx3.

We now construct a set of reactions whose behavior is given by (7.12) in the mean-field
limit:

X2
k1−→ X1 X1 +X2

k2−→ ∅ X1
k3−→ 2X1 + 2X3(7.13)

2X1
k4−→ ∅ X3

k5=kc/2
−−−−−−→ ∅ X3

k6=kc/2
−−−−−−→ X2.

Note that the reaction with parameter kc has been split into two reactions R5 and
R6 in order to get the factor of half in the equation for the rate of change of x2 with
k5 = k6 = kc/2. This system (7.13) ofM = 6 reactions of N = 3 chemical species has
the following propensity functions:

α1(x) = k1x2, α2(x) = k2x1x2, α3(x) = k3x1,

α4(x) = k4x1(x1 − 1), α5(x) = k5x3, α6(x) = k6x3.

The stoichiometric matrix is given by

ν =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −1 0
−1 −1 0
1 0 2
−2 0 0
0 0 −1
0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎠
.

We consider this system with the following set of dimensionless parameters:

(7.14) k1 = 0.3, k2 = 4000, k3 = 5, k4 = 1200, kc = 0.02.

In this parameter regime the stochastic description of these reactions exhibits os-
cillatory behavior. Figure 7.4(a) shows normalized trajectories of the Oregonator
(7.13) with parameters given by (7.14), simulated using the Gillespie SSA. This figure
demonstrates the oscillatory behavior of the Oregonator in this parameter regime.

One thing of note should be mentioned at this point, regarding the ergodicity of
this system. The zero state, at the origin, is an absorbing state for this system, and
so trivially the invariant distribution for this system is a Dirac measure on this state.
However, we are interested in the behavior of this system conditioned on nonextinction
of the species. Therefore we ensure that our domain of solution does not include this
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Fig. 7.4. (a) Trajectories of the Oregonator (7.13) with parameters given by (7.14), simulated
using the Gillespie SSA. Plots show normalized trajectories with actual molecule numbers divided by
a time average (47.7, 211.5, and 2.4× 104, resp.). (b)–(d) Approximation of the marginal invariant
distributions (7.16) (conditioned on nonextinction of species X1) of (7.13) with system parameters
(7.14) in the (b) x1-x2 plane, (c) x1-x3 plane, and (d) x2-x3 plane by the saFEM with algorithmic
parameters given by (7.15).

state, and thus the transient states involved in the oscillation behavior now form the
regions with nonzero invariant density.

In the figures that follow, these algorithmic parameters were used to approximate
the steady state distribution (conditioned on nonextinction of species X1):

(7.15) S = 1, T = 106, Q = 10−2, B = 103, H = 8.

Since the system (7.12) has a single limit cycle, step [1] of the algorithm in Table 4.1
can be replaced by running the Gillespie SSA for a period of algorithm time until we
are reasonably sure that the chain has entered probabilistic equilibrium and using the
endpoint of this simulation as the starting point for the SSA in step [2]. We have
S = 1 and the initial condition (x1, x2, x3) = (100, 100, 100) was chosen.

Since we wish to condition on nonextinction of all of the species, we must ensure
that X1 never drops below 1. We can do this by slightly altering the domain Ω of
solution of the Fokker–Planck equation. We do this by replacing the first line of (4.6)
by Ω = A∗

1 ×A2 ×A3, where

A∗
1 =

(
max{1, xmin

1 − β2 xrange1 }, xmax
1 + β2 x

range
1

)
.

The longer the simulation in step [2] of the saFEM, the more sure we can be of the
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Fig. 7.5. Approximation of the stationary probability distribution (conditioned on nonextinc-
tion) of (7.13) with system parameters (7.14). Contours plots shown in several slices.

regions which have nonnegligible probability density and therefore the larger we can
make β2 and β1. We choose β1 = 0.01 and β2 = 0.1.

Using these parameters, a mesh was created by the saFEMwith 8.65×105 vertices,
out of a possible 1.70 × 107 with up to eight splits of each cuboid, with 1.17 × 105

hanging nodes. Therefore there were a total of 7.48× 105 degrees of freedom, a mere
4.4% of the degrees of freedom that would have been required to fill the domain
with cuboids of the finest refinement level. The mesh contained 4.79× 106 individual
tetrahedral elements. The finest saFEMmesh had the smallest (resp., largest) element
diameters of 1.58 × 102 (resp., 1.01 × 104). Note that these diameters are large due
to the anisotropic refinements in the algorithm due to the domain shape.

Figure 7.5 shows several slices of the approximated invariant probability density
conditioned on nonextinction of species X1, represented by contour plots. Since visu-
alization of a three-dimensional function on a two-dimensional page is problematic, we
present also in Figure 7.4(b)–(d) the marginal densities of the approximation of the
invariant density of the Oregonator system with parameters (7.14) in three different
planes. The marginal density in the xi − xj plane is defined to be

(7.16) pxi−xj (x) =

∫
xk

p(x).

To verify that the method is accurately representing the invariant distribution,
we can test the approximation as suggested in section 5.3. The approximation was
compared with one with the parameters given as follows:

S = 1, T = 5× 105, Q = 5× 10−3, B = 5× 102, H = 7, β1 = 5× 10−3.

We omit β2 here as the same domain chosen for the original parameter set was used for
ease of comparison of the two densities. The L2 difference between the two solutions
was 2.89× 10−11 with the original solution having an L2 norm of 1.74× 10−8, giving
a relative L2 error of 1.66× 10−3, verifying that our solution is well converged.

Furthermore, we can undertake a comparison with the results of the standard
adaptive algorithm with a posteriori error indicator as described in section 7.2. Fig-
ure 7.6(a) shows the errors of the two methods, as computed by comparison with an
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Fig. 7.6. (a) Convergence of the saFEM (red squares) compared with the standard error in-
dicator approach (blue triangles), with S = 1, T = 1 × 106, Q = 0.01, B = 103, β1 = 0.02, and
β2 = 0.1 over a range of mesh refinements, for the system (7.13). Errors are given by (7.8). (b)
Comparison of cost/error for the saFEM (red squares) and the standard error indicator approach
(blue triangles), with S = 1, T = 1× 106, Q = 0.01, B = 103, β1 = 0.02, and β2 = 0.1 over a range
of mesh refinements, for the system (7.1). Errors are given by (7.8).
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Fig. 7.7. Convergence of the saFEM (red squares) compared with the standard error indicator
approach (blue triangles) as a function of the total number of unique elements used, with S = 1,
T = 1× 106, Q = 0.01, B = 103, β1 = 0.02, and β2 = 0.1 over a range of mesh refinements, for the
system (7.13). Errors are given by (7.8).

approximation with a very fine mesh (1.06 × 106 and 1.02 × 106 degrees of freedom,
resp.). Note that as in Figure 7.1, the errors are of the order 10−8 even for low num-
bers of degrees of freedom as the L2 norm of the solution itself is of the order 10−8.
The computational cost plotted in Figure 7.6(b) was calculated in the same way as
Figure 7.1(b). Note that the saFEM incurs less error for the number of degrees of
freedom than the standard method. Since the computational cost for a given number
of degrees of freedom is less for the saFEM than the standard approach, the saFEM
is the better choice for this system.

This difference would be in even greater evidence if the drift and diffusion coef-
ficients were expensive to calculate, as discussed in section 1. This can be seen in
Figure 7.7, which shows the decay of error as a function of the total number of unique
elements used in the approximation of the invariant density for the two methods. For
the saFEM, this is simply the number of elements L ∈ N present in the mesh. For
the standard method, this includes all the unique elements used in all the meshes in
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all previous iterations of the method. Since we start with a mesh with six elements,
this is equal to 2 × Lfinal − 6, where Lfinal stands for the number of elements in the
final, i.e., the finest, mesh.

Each unique element would require a number of evaluations of the drift and
diffusion terms, depending on the quadrature rule used. Therefore, if the cost of
estimation of these terms dominates the complexity of the problem, then the total
number of unique elements used is approximately proportional to the computational
cost. Figure 7.7 shows that the saFEM requires far fewer function evaluations than
the standard method for a given order of accuracy for this system.

8. Discussion. In this paper we presented a method for solution of the steady
state Fokker–Planck equation for chemical systems. The method is based on the use of
stochastic trajectories to estimate the region in which we must refine our finite element
mesh the most. We showed numerically that the saFEM is comparable with standard
methods for the systems analyzed. Moreover, for systems which are sensitive to global
mesh structure, such as oscillatory systems, the saFEM was found to outperform the
standard error indicator method.

The use of the Fokker–Planck equation as a means to model chemical reactions of
the mesoscale has been present in the literature [25, 40]. As computational resources
have improved, the solving of such equations in more than one dimension has become
tractable. It has been shown using finite volume methods that the solution of the
Fokker–Planck equation is more efficient than using an SSA for the computation of
both time-dependent and steady state solutions, and with a high degree of accuracy
[22, 40].

The Fokker–Planck equation does suffer badly from the curse of dimensional-
ity, and different methods exist which find approximations of the solution of these
equations efficiently. Some involve dimension reduction of the equations themselves,
through simplifying assumptions, and through coupling with macroscopic reaction
rate equations for some of the species [35]. Sparse grid methods have also been used to
find the invariant density of the chemical master equation [29]. Sparse grids overcome
the curse of dimensionality by reducing greatly the number of degrees of freedom con-
sidered. This solution of the chemical master equation can also be coupled to Fokker–
Planck equations for the more abundant species using a hybrid method [29]. Other
methods have been used to approximate the solution of the chemical master equation,
including adaptive wavelet compression [31] and finite state projection [16, 37].

There are several alternative ways that stochastic trajectories could be calculated
in the saFEM, other than the standard SSA as detailed in Table 2.1. The τ -leap
method [27] approximates the trajectory by modeling several reactions in each itera-
tion of the algorithm, up to a fixed time step. This can accelerate the simulation of the
trajectory but could incur some errors, including the possibility that the trajectory
may become negative in one or more of the chemical species. Likewise, one could use
numerical approximations of the chemical Langevin equation [26], a stochastic differ-
ential equation (SDE) with a corresponding Fokker–Planck equation given by (1.1),
in step [2] in Table 4.1. As with the τ -leap method, the trajectories from this SDE
can become negative, and so with both these methods proper treatment of boundary
conditions is key to accurately approximating the region of the positive quadrant that
contains the majority of the probability density. Hybrid methods can be formulated
where the trajectory is simulated using the SSA in regions close to zero and by the
SDE elsewhere [29]. In summary, any approach that is ordinarily used in order to
accelerate the sampling of a trajectory could be used.
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More information could also be extracted from the stochastic trajectories. A
rudimentary approximation of the density could be made using the samples taken
from the simulations and used as a preconditioner for the eigensolver. As the eigen-
solver used is iterative, even a rough guess of the form of the solution could help to
reduce computation times. It has been previously shown that combining stochastic
simulations and solutions of differential equations can be used for preconditioning of
computations [38].

Our aim in this work is to efficiently approximate the steady state solution of
the chemical master equation (2.2) through approximation of the solutions of the
stationary chemical Fokker–Planck equation (1.1), itself a continuous approximation
of (2.2). The saFEM can still be used only for systems for which this continuous
approximation to the solution of (2.2) is “good enough,” i.e., systems which only
rarely enter regions where the copy number of one (or more) of the chemical species
becomes low [26]. In some biological systems, chemical species can oscillate between
low copy numbers and regions of the state space where they are more abundant. Thus,
a simultaneous treatment of the two domains is key to understanding these types of
systems. This method is efficient only for systems which do not have large regions of
the domain with nonnegligible invariant density that can be accurately approximated
by a linear function. Our assumption that regions which have high enough probability
density require high levels of refinement would be invalid in this case, and the mesh
produced would be inefficient.

Finally, the ideas explored in this paper could be used in conjunction with other
numerical methods for finding the solution of the stationary Fokker–Planck equation,
for instance, finite volume methods [40]. Exploiting the links between the PDE and
the stochastic process can lead to efficient and accurate methods for approximation
of the solution of the PDE.
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