Guaranteed and robust error bounds for singularly perturbed problems in arbitrary dimension

Mark Ainsworth

Tomáš Vejchodský

Division of Applied Mathematics Brown University Providence, USA

Centre for Mathematical Biology Mathematical Institute University of Oxford

Institute of Mathematics Academy of Sciences Czech Republic

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

MAFELAP 2013, Brunel University, June 10-14, 2013

Outline

$$\begin{aligned} -\Delta u + \kappa^2 u &= f \quad \text{in } \Omega \subset \mathbb{R}^d \\ u &= g_N \quad \text{on } \partial \Omega \qquad \qquad \kappa > 0 \end{aligned}$$

- Arbitrary dimension
- Neumann boundary conditions
- Guaranteed and robust upper bound on error
- Guaranteed bounds of trace constants

M. Ainsworth, T. Vejchodský: *Fully computable robust a posteriori error bounds for singularly perturbed reaction-diffusion problems*, Numer. Math. 119 (2), 2011, 219–243.

Model problem

Classical formulation: $-\Delta u + \kappa^2 u = f \text{ in } \Omega \subset \mathbb{R}^d$ $u = g_N \text{ on } \partial \Omega \qquad \kappa > 0$

Weak formulation:

$$u \in V$$
: $\mathcal{B}(u, v) = (f, v)_{\Omega} \quad \forall v \in V$

Linear FEM on *d*-dimensional simplices:

$$u_h \in V_h$$
: $\mathcal{B}(u_h, v_h) = (f, v_h)_{\Omega}$ \forall

Notation:

$$\begin{split} V &= H_0^1(\Omega) \\ \mathcal{B}(u, v) &= (\nabla u, \nabla v)_{\Omega} + \kappa^2 (u, v)_{\Omega} \\ (f, v)_{\Omega} &= \int_{\Omega} f v \, \mathrm{d}x \\ V_h &= \{ v_h \in V : v_h |_K \in P^1(K), K \in \mathcal{T}_h \} \end{split}$$

3

・ロト ・四ト ・ヨト ・ヨト

Main result

Upper bound: $\|\|\boldsymbol{u} - \boldsymbol{u}_h\|\|^2 \leq \sum_{K \in \mathcal{T}_h} \left[\eta_K(\mathbf{y}) + \operatorname{osc}_K(f) + \operatorname{osc}_{\partial\Omega \cap \partial K}(g_N)\right]^2$ $\forall \mathbf{y} \in \mathbf{H}(\operatorname{div}, \Omega) : \mathbf{y} \cdot \mathbf{n} = \Pi_{\gamma}^K g_N \text{ on all } \gamma \subset \partial\Omega \cap \partial K$ Local efficiency: $\eta_K(\mathbf{y}) \leq C\left(\|\|\boldsymbol{u} - \boldsymbol{u}_h\|\|_{\widetilde{K}} + \min\{h_K, \kappa^{-1}\}\|f - \Pi f\|_{\widetilde{K}} + \min\{h_K, \kappa^{-1}\}^{1/2}\|g_N - \Pi_{\gamma}^K g_N\|_{\partial\Omega \cap \partial K}\right) \text{ for a special } \mathbf{y}$

•
$$\eta_{K}^{2}(\mathbf{y}) = \|\mathbf{y} - \nabla u_{h}\|_{0,K}^{2} + \kappa^{-2} \|\Pi_{K}f - \kappa^{2}u_{h} + \operatorname{div} \mathbf{y}\|_{0,K}^{2}$$

• $\operatorname{osc}_{\mathcal{K}}(f) = \min\left\{h_{\mathcal{K}}/\pi, \kappa^{-1}\right\} \|f - \Pi_{\mathcal{K}}f\|_{0,\mathcal{K}}$

• $\operatorname{osc}_{\partial\Omega\cap\partial K}(g_N) = \min\{C_{\mathrm{T}}^K, C_{\mathrm{T}}^{K,\kappa}\} \|g_N - \Pi_{\gamma}^K g_N\|_{\partial\Omega\cap\partial K}$

$$\Pi_{K} f \in P^{1}(K): \quad (f - \Pi_{K} f, \varphi)_{K} = 0 \quad \forall \varphi \in P^{1}(K)$$

$$\Pi_{\gamma}^{K} g_{N} \in P^{1}(\gamma): \quad (f - \Pi_{\gamma}^{K} g_{N}, \varphi)_{\gamma} = 0 \quad \forall \varphi \in P^{1}(\gamma)$$

Flux reconstruction

- Compute robust inter-element fluxes g_K
 - ► $g_K \approx \nabla u \cdot \mathbf{n}_K$ on ∂K [Ainsworth, Babuška, 1999], [Ainsworth, Vejchodský, 2011]
- For all elements K with $\kappa \rho_K \leq 1$ construct $\mathbf{y}_K^{(1)}$:

▶
$$\mathbf{y}_{K}^{(1)} \cdot \mathbf{n}_{K} = g_{K}$$
 on ∂K
▶ $\Pi_{K}f - \kappa^{2}u_{h} + \operatorname{div} \mathbf{y}_{K}^{(1)} =$

• For all elements K with $\kappa \rho_K > 1$ construct $\mathbf{y}_K^{(2)}$:

•
$$\mathbf{y}_{K}^{(2)} \cdot \mathbf{n}_{K} = g_{K}$$
 on ∂K

- Correct asymptotic behavior w.r.t. h and κ

$$\mathbf{y}|_{\mathcal{K}} = \left\{ \begin{array}{ll} \mathbf{y}_{\mathcal{K}}^{(1)} & \text{if } \kappa \rho_{\mathcal{K}} \leq 1, \\ \mathbf{y}_{\mathcal{K}}^{(2)} & \text{if } \kappa \rho_{\mathcal{K}} > 1, \end{array} \right.$$

Flux reconstruction #1

Definition:

$$\mathbf{y}_{K}^{(1)} = \nabla u_{h} + \mathbf{y}_{K}^{L} + \mathbf{y}_{K}^{Q}$$

$$\mathbf{y}_{K}^{L} = -\sum_{n=1}^{d+1} \lambda_{n} \sum_{\substack{m=1\\m\neq n}}^{d+1} R_{|\gamma_{m}}(\mathbf{x}_{n}) |\nabla \lambda_{m}| \mathbf{t}_{nm}$$

$$\mathbf{y}_{K}^{Q} = \frac{1}{d+1} \sum_{n=1}^{d+1} \sum_{\substack{m=2\\m>n}}^{d+1} \lambda_{m} \lambda_{n} \mathbf{t}_{mn} \mathbf{t}_{mn}^{T} \nabla r(\overline{\mathbf{x}}_{K})$$

Notation:

$$R = g_{K} - \nabla u_{h} \cdot \mathbf{n}_{K}$$

$$r = \Pi_{K} f - \kappa^{2} u_{h}$$

$$\lambda_{n} \dots \text{ barycentric coords in } K$$

$$\mathbf{t}_{mn} = \mathbf{x}_{m} - \mathbf{x}_{n} \dots \text{ edge vector}$$

$$\overline{\mathbf{x}}_{K} \dots \text{ barycentre of } K$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Flux reconstruction #2

Definition:

$$\mathbf{y}_{K}^{(2)} = \nabla u_{h} + \mathbf{y}_{K}^{O}$$

$$\mathbf{y}_{K}^{O}|_{K_{\gamma}} = \frac{1}{\rho_{K}} \mathrm{e}^{-\kappa x_{d}} (\mathbf{x} - \mathbf{x}_{K}) R(x_{1}, \dots, x_{d-1}) \quad \text{ for all } \gamma \subset \partial K$$

Notation:

 $R = g_K - \nabla u_h \cdot \mathbf{n}_K$ $\mathbf{x}_K \dots \text{ incentre of } K$ $\rho_K \dots \text{ inradius of } K$

Example (cube)

 $N_{\rm DOF} = 29791$ h = 0.03125

 $I_{\rm eff} = \frac{\eta}{\|\boldsymbol{u} - \boldsymbol{u}_h\|}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Trace constants

Neumann oscillations: $osc_{\partial\Omega\cap\partial K}(g_N) = \min\{C_{\mathrm{T}}^{K}, C_{\mathrm{T}}^{K,\kappa}\} \|g_N - \Pi_{\gamma}^{K}g_N\|_{\partial\Omega\cap\partial K}$

Trace theorems:

(1)
$$\|\mathbf{v} - \overline{\mathbf{v}}\|_{0,\partial K} \leq C_{\mathrm{T}}^{K} \|\nabla \mathbf{v}\|_{0,K} \quad \forall \mathbf{v} \in H^{1}(K) \quad \overline{\mathbf{v}} = \frac{1}{|\partial K|} \int_{\partial K} \mathbf{v} \, \mathrm{d}\mathbf{x}$$

(2) $\|\mathbf{v}\|_{0,\partial K} \leq C_{\mathrm{T}}^{K,\kappa} \left(\|\nabla \mathbf{v}\|_{0,K}^{2} + \kappa^{2} \|\mathbf{v}\|_{0,K}^{2}\right)^{1/2} \quad \forall \mathbf{v} \in H^{1}(K)$

Connection to eigenvalues:

Two-sided bounds: [Šebestová, Vejchodský, preprint 2013]

Trace constant (1) for triangles

$$\|v-\overline{v}\|_{0,\partial K} \leq C_{\mathrm{T}}^{K} \|
abla v\|_{0,K} \quad orall v \in H^{1}(K) \quad \overline{v} = rac{1}{|\partial K|} \int_{\partial K} v \, \mathrm{d}x$$

Scaling: $C_{\mathrm{T}}^{K} = h_{K}^{1/2} C_{\mathrm{T},h=1}^{K}$

- Upper bound
- Error 1%

Trace constant (2) for triangles $\|v\|_{0,\partial K} \leq C_{\mathrm{T}}^{K,\kappa} \left(\|\nabla v\|_{0,K}^{2} + \kappa^{2}\|v\|_{0,K}^{2}\right)^{1/2} \quad \forall v \in H^{1}(K)$

Scaling: $C_{\mathrm{T}}^{K,\kappa} \leq \max\{1,\kappa^{-1}\}h_{K}^{1/2}C_{\mathrm{T},h=1}^{K,\kappa=1}$

Trace constant (2) for triangles $\|v\|_{0,\partial K} \le C_{\mathrm{T}}^{K,\kappa} \left(\|\nabla v\|_{0,K}^{2} + \kappa^{2} \|v\|_{0,K}^{2}\right)^{1/2} \quad \forall v \in H^{1}(K)$ Numerical tests: $C_{\rm T}^{K,\kappa} \leq \kappa^{-1/2} h_K^{1/2} C_{\rm T}^{K,\kappa=1}$ for $\kappa > 1$ Trace const. vs. κ , triangles 10² 10¹ 10⁰ С_{то⁻¹} 10^{-2} * α=1 β=1 Ο α=1 β=89 10 ο α=60 β=60 10 10² 10³ 10⁵ 10⁶ 10^{4} 10^{1}

|▶ ◀圖▶ ◀필▶ ◀필▶ _ 필 _ 釣۹()

Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Fast flux reconstruction
- Guaranteed upper bound on error
- Robust for all values of κ
- Arbitrary dimension
- Neumann b.c. require bounds for trace constants

Thank you for your attention

Mark Ainsworth

Tomáš Vejchodský

Division of Applied Mathematics Brown University Providence, USA

Centre for Mathematical Biology Mathematical Institute University of Oxford

Institute of Mathematics Academy of Sciences Czech Republic

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

MAFELAP 2013, Brunel University, June 10-14, 2013