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Abstract
This paper presents a parameter-free theory of shear-generated turbulence at asymptotically
high Reynolds numbers in incompressible fluids. It is based on a two-fluids concept. Both
components are materially identical and inviscid. The first component is an ensemble of
quasi-rigid dipole-vortex tubes (vortex filaments, excitations) as quasi-particles in chaotic
motion. The second is a superfluid performing evasive motions between the tubes. The local
dipole motions follow Helmholtz’ law. The vortex radii scale with the energy-containing
length scale. Collisions between quasi-particles lead either to annihilation (likewise rotation,
turbulent dissipation) or to scattering (counterrotation, turbulent diffusion). There are
analogies with birth and death processes of population dynamics and their master equations
and with Landau’s two-fluid theory of liquid helium. For free homogeneous decay the theory
predicts the turbulent kinetic energy to follow t−1. With an adiabatic wall condition it predicts
the logarithmic law with von Kármán’s constant as 1/

√
2 π = 0.399. Likewise rotating

couples form localized dissipative patches almost at rest (→ intermittency) wherein under
local quasi-steady conditions the spectrum evolves into an ‘Apollonian gear’ as discussed first
by Herrmann (1990 Correlation and Connectivity (Dordrecht: Kluwer) pp 108–20).
Dissipation happens exclusively at scale zero and at finite scales this system is frictionless and
reminds of Prigogine’s (1947 Etude Thermodynamique des Phenomenes Irreversibles (Liege:
Desoer) p 143) law of minimum (here: zero) entropy production. The theory predicts further
the prefactor of the 3D-wavenumber spectrum (a Kolmogorov constant) as 1

3 (4 π)2/3
= 1.802,

well within the scatter range of observational, experimental and direct numerical simulation
results.

PACS numbers: 47.27, 74.25, 47.70, 47.52

The diversity of problems in turbulence should not
obscur the fact that the heart of the subject belongs

to physics.
– Falkovich and Sreenivasan (2006) [22].

1. Introduction

Many efforts to solve the turbulence problem rest on the
idea that the Navier–Stokes equation (NSE) plays the role of
a God equation and the application of a certain number of
mathematical operations onto NSE could do it. In particular,
the Fridman–Keller [42] series expansion of NSE fuelled
expectations. Its first-moment element is the Reynolds [66]
equation and higher expansion elements for higher moments
are subject to various closure hypotheses (for an overview
see [82]).

It is often said that closure problems have fundamental
character; that they cannot be overcome due to the
nonlinearity of NSE. This is even mildly echoed in one
of the Millenium-Prize problems of the Clay Mathematical
Institute, announced in 2000. However, already physicists
of the Renaissance were confronted with strongly nonlinear
problems such as celestial (Newton, Kepler and Galileo)
and, later, molecular mechanics (Maxwell, Boltzmann)—and
solved them. As often, an adequate viewpoint matters.
Closure efforts could not answer most elementary questions
about turbulence, but they helped to navigate in the
jungle. Here, we present an alternative which profited from
them1.

1 Everywhere the pronoun ‘we’ is used in this text, it means the two of us,
the dear reader and the author.
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A first alternative was already proposed by Prandtl [62]
who discussed turbulence in terms of analogies with
molecular diffusion, gas kinetics and Brownian motion in
the interpretation by Einstein [21]. Prandtl related his mixing
length (Mischungsweg) to the mean-free path of kinetic gas
theory. This concept became popular but detailed questions
could not be answered without use of measurements.
Although Prandtl has been heavily criticized by Batchelor [6],
other authors designed free-hand analogies for turbulence,
too, e.g. the early K –ω model by Kolmogorov [44],
corrected and improved by Saffman [68], further improved by
Wilcox [82]. They are today part of a larger set of so-called
two-equation turbulence models like K –ε, K – KL, K –τ , etc.2

Three years before Prandtl, Debye and Hückel [16] based
their theory of electrolytes on the assumption that each ion
is surrounded by a spherical ‘cloud’ (or screen) of ions of
opposite charge, so ‘screening’ the ion. The ideas of Prandtl,
Debye and Hückel are early examples of constructive theories
for large many-particle ensembles in very different branches
of physics, where elementary knowledge of parts and pieces
does not suffice to describe the system’s global behavior.

A similar methodical challenge evolved later in the fields
of superconductivity and superfluidity for groups around
Landau and Feynman (see [3, 23, 49, 50]). They realized that
their fundamental equations and principles3 hold perfectly
for the single atom, but properties like electric conductivity
(or the gloss of metallic surfaces) emerge only when a
larger ensemble of atoms is put together so that new specific
features and interrelations come into play, without violation
of fundamental equations and principles, of course.

For superfluidity it was necessary to supplement
fundamental equations by the two-fluid theory of Landau
(1941)—a not too distant relative of the ion-cloud concept of
Debye and Hückel. The interesting point here is that the role
of the supplements becomes so strong that they dominate the
theory.

In many cases, the formation of ensembles means
the breaking of symmetries. So eventually the concept of
emergence and broken symmetries gave physics in the last few
years a new and much less reductionistic face than it had until
1923 (see [3, 27, 29, 51]).

Encouraged by the victory of the two-fluid concept in
superfluidity, Liepmann [54]) and later on Spiegel [74] made
steps to test it for classical fluid turbulence. Along this road,
which we follow here too, Spiegel was the very first who
used terms such as excitations, quasi-particles and two fluids
in the context of classical fluid turbulence, followed later by
Spalding [73].4

These authors were at least fully aware of the principle,
deep-rooted and almost philosophical problems with
reductionistically NSE-based approaches. Spiegel underlined
recently his thorough conviction again in his closing remarks
of the report on the final session of the Turbulence Colloquium
(Marseille 2011).5

Besides ancient precursors of these ideas like René
Descartes (1596–1650), who spoke about ‘tourbillons’

2 Comprehensive overviews on the history of turbulence theory can be found
in the works of Davidson et al [14, 15].
3 Schrödinger equation, Pauli principle, etc.
4 See www.archive.org/details/nasa/ techdoc/ 19860008217.
5 See http://turbulence.ens.fr/.

forming the universe, and Lord Kelvin, who coined in 1867
the notion ‘vortex atoms’ (loc. cit. Saffman [70]) we have
to mention Marmanis [56] who possibly was the first to
propose vortex dipoles as the fundamental quasi-particles of
turbulence. Finally, the numerical Monte-Carlo eddy-collision
methods with various vortex-filament primitives indicate that
ideas developed by practitioners are not too far away from our
theoretical views (e.g. [1]).

We elaborate below the two-fluid concept in greater
detail; not exhaustively because the number of potential
applications and side-problems is huge. However, we show
that, in an idealized sense, turbulence in an incompressible
and inviscid continuum fluid (Re → ∞) can be understood as
a statistical many-body ensemble—a tangle of vortex-dipole
tubes (or filaments) taken as interacting discrete particles. We
will answer a number of open questions of turbulence without
use of empirical parameters.

2. Broken symmetry and irreversibility

In his anti-reductionistic article summarizing experiences of
condensed-matter physics, Anderson [2] states that ‘more
is different’. The turbulence theory presented below is an
extreme example. While the case of one quasi-particle (an
almost frictionless vortex dipole of zero net circulation) in a
volume is non-dissipative and symmetric with respect to time
and circulation, already the presence of two quasi-particles in
a common volume has the potential to break the symmetry
and to give rise to the emergence of turbulent dissipation:
according to the laws of Helmholtz, dipoles are always
in motion, may thus collide and may—depending on the
occasional collision angle—form likewise-rotating and thus
unstable couples. Their centers of mass stay almost at rest
and evolve into a spectrum of smaller and smaller vortices
until their kinetic energy is converted into heat at scales of
size zero. In a sense, we have here a most simple many-body
problem because already the transition from N = 1 to 2
suffices to break the symmetry and allow the emergence of
dissipation.

Setting Re → ∞ in NSE means vanishing viscosity such
that only the Euler equation remains. However, the latter has
non-unique solutions, already visible in the trivial case of the
inviscid Burgers equation. Additional information is needed to
achieve uniqueness, i.e. with Re → ∞ we first delete physics
(viscosity) in NSE, to be forced then to add (from outside)
reasonable physics to finally reinstate uniqueness. However,
this is not yet all to be overcome. In addition, we have
the problem of localization and integrability of a solution.
Classical weak vortex solutions of the Euler equation extend
into the full volume and are thus not integrable. However,
real-world vortex ensembles exhibit individually localized
vortices and finite scales.

Those contradictions are easily resolved if we introduce
localized quasi-particles, in a sense embedded in the
two-fluid concept initiated earlier by Landau, Tisza, Feynman,
Liepmann, Spiegel and Spalding, resting all on Debye and
Hückel.

2
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3. Vortex tubes and dipoles: Batchelor couples and
von-Kármán couples

3.1. Potential vortex

The classical potential vortex around a closed vortex line
(e.g. the centerline of a smoke ring) represents an exact
weak solution of the Euler equation. The vortex line has
infinitely thin diameter, infinitely high angular velocity, but
finite circulation, c = πρ2 ω < ∞, where ρ and ω are the
radial coordinate and vorticity. The fluid outside the vortex
line is inviscid and irrotational and the radial velocity v =

ωρ ∼ 1/ρ decreases with distance ρ from the centerline and
extends into space.

The potential vortex is not applicable here as a model
body of a ‘vorticon’, also not its relative, the Rankine vortex.
They both are filling the space.

3.2. Vortex tube

Instead of the above we use the vortex-tube concept, which
is a Rankine vortex without sticking condition between its
forced and free parts, i.e. its radial velocity increases linearly
from center to tube radius r (like in a rigid body), but for
ρ > r there is an inviscid and independent potential flow
governed by volume conservation. Thus vorticity is confined
to the interior of a spaghetti-like tube as described e.g. by
Lugt [55] and in greater detail by Pullin and Saffman [65]
who quote papers by Kuo and Corrsin [46], and Brown and
Roshko [12], all discussing tubes as dominating characteristic
structures. A newer simulation study was presented in 2011
by Wilczek [83] in the form of instructive movies on vortex
ensembles in motion on the internet.6

The centerlines of our vortex tubes form either closed
loops or they are attached to boundaries. The problem of
stability of the tubes is discussed further below.

3.3. Batchelor couple

This is a vortex dipole made up of two anti-parallel vortices
[52] and symbolized here by (+ ⇑ −) or (− ⇑ +) where plus
and minus mean the signs of vorticity within the vortices and
the arrow the direction of motion of the couple or dipole. In
classical interpretation, the flow field of one vortex moves the
other vortex and vice versa. The total circulation of a dipole is
zero because the vorticities carry opposite signs. In practice,
such couples are stable over moderate propagation times. In
our idealized image, they are made up of vortex tubes, move
frictionless with local center-of-gravity velocity u = ωr and
conserve all their properties except their position in space
because they propagate with their local u in the same direction
as the fluid between the two tubes. In a dense ensemble of
Batchelor couples, their trajectories are no longer straight
lines due to mutual interactions. A couple’s kinetic energy
density is u2/2 = r2ω2/2.

6 http://pauli.uni-muenster.de/tp/menu/forschen/ag-friedrich/mitarbeiter/
wilczek-michael.html.

Figure 1. Collisions of two dipoles: the left pathway is ‘diffusive’;
it is a recombination of dipole elements and chaotically scatters the
trajectories (turbulent diffusion). The right pathway is ‘dissipative’;
it evolves into an unstable vortex configuration which decays
‘somehow’ into heat.

3.4. Von-Kármán couple

It is a counterpart of the Batchelor couple, made up likewise
of rotating vortex tubes and symbolized by (+ ‖ +) or (− ‖ −).
Its total circulation does not vanish. Such a couple is long
since known to be fundamentally unstable. Its kinetic energy
is eventually dissipated into heat (e.g. [47]). Further below we
discuss details of this process.

4. Dipole chemistry in reaction–diffusion
approximation

For two-dimensional (2D) vortex trajectories it has been
found by Aref and Eckhardt [4, 20] that the trajectories
are chaotic so that for very high Re and 3D motions of
tube-like vortex dipoles in the form of a dense 3D tangle we
may assume also chaotic motions where collisions cannot be
excluded. Let us consider an asymptotically high tube density
so that the chaotic trajectories between collisions are short
and locally homogeneous (in a statistical sense), e.g. in the
theory of Brownian motion. Then the total dynamic process
of the tangle may be described as [25] ‘. . . conservative
dynamics punctuated by dissipative events. . . ’: some ‘elastic’
collisions lead to energy-conserving reorganizations of
Batchelor couples, resembling turbulent diffusion, whereas
other collisions are dissipative or ‘inelastic’ and lead
to the formation of fundamentally unstable von-Kármán
couples whose energy moves to smaller and smallest scales
where it decays, resembling turbulent dissipation or dipole
annihilation.

Figure 1 shows the two equally possible results of
a dipole–dipole collision. For symmetry reasons the two
pathways have identical probabilities of 1

2 .
The simplest mathematical structure describing the

statistics of the above two irreversible processes of (turbulent)
diffusion and (turbulent) dissipation of dipoles is given by

3
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the following reaction–diffusion equation, which may be
understood also as a special case of the Oregonator (see e.g.
chapter 9 in [29]):

∂N
∂t

+
∂

∂Ex

(
EUN − ν

∂N
∂Ex

)
= F − βN 2. (1)

Here, N is the volume density of dipole tubes (or filaments),
ν is turbulent diffusivity, β is a constant, F is a source
term describing the generation of dipole tubes and set equal
to zero for the moment. ν and β are unknown so far. We
only know for sure that the exponent of N in the last term
of (1) is really two because it needs two colliding dipoles
to generate (with probability 1/2) unstable configurations
which dissipate energy. But if energy is gone, a whole dipole
is gone as our dipole tubes as quasi-particles differ from
their inviscid potential-flow environment only by their kinetic
energy. However, the fluid occupied by the ‘dead’ particle is
still there.

The presence of a mean flow and the corresponding
advection of dipoles with the flow is sketched in (1) for
reasons of completeness by the term with mean-flow vector
EU . For simplicity we always set further EU ≡ 0.

One may view (1) from a simplistic point as a pure
analogy with chemical reaction–diffusion processes. But one
may also derive this equation over many pages from scratch,
beginning with a master equation for the probabilities, as
sketched by Baumert ([7], chapter 5.6). Fortunately, this was
already done by other authors with the greatest care many
years ago for whole classes of such processes, and went into
the many textbooks on stochastic-dynamic systems, physical
kinetics and other fields ([29, 30, 45, 76, 77]). We refer the
more technically interested reader to the literature.

5. Two fluids, dressed and naked tubes

5.1. Two fluids

We consider a circulation-free volume filled with two different
forms of a materially uniform incompressible fluid:

(a) inviscid, quasi-rigid and incompressible but deformable
vortex tubes as quasi-particles with finite radius r and
vorticity module ω, vorticity bundled within the tube; in
our analogy with the kinetic theory of gases, dipole tubes
are the particles.

(b) the inviscid fluid between the dipole tubes; in our analogy
with the kinetic theory of gases it is the vacuum.

Fluid (b) behaves like a super-fluid and receives no force
from the moving quasi-rigid dipole tubes (d’Alembert’s
paradox). The fluids (a, b) differ only in their state of motion.
While the tubes rotate around their (in general curvilinear)
axes and move locally relative to the volume according
to Helmholtz’ laws, the fluid between the tubes performs
corresponding evasive motions according to the principle of
volume conservation.

5.2. Naked tubes

Above we have used the concept of vortex dipoles made
up of ideal vortex tubes immersed in an inviscid fluid and

exchanging no energy with it. However, this concept is only
applicable if the vortex is a rigid body. If it is a fluid, the
problem of stability arises because the quasi-rigid vortex tube
as an exact solution of the Euler equation is accompanied
by the following pressure head as a consequence of inertial
(centrifugal) forces:

p = p0 +
ρ

2
× ω2r2. (2)

Here, p0 is the background pressure of a laminar reference
flow, e.g. in the ocean the depth-depending hydrostatic
pressure. If the pressure outside the vortex were simply p0,
then, due to the action of the outward-directed pressure force
given by the second term in (2), the vortex would lose stability
against small perturbations.

5.3. Dressed tubes

This contradiction can be explained by the consideration of
ensemble effects. It has been noted in the introduction of
this paper that in many-body problems like turbulence the
phenomenon of emergence deserves special attention. This
means that in a (local) volume element with a larger number
(N � 1) of similar vortex tubes (a local ‘cloud’) the tube
ensemble itself generates the background pressure (2) which
eventually keeps all the individual tubes—at least in the center
of the cloud—in a ‘sufficiently stable’ state.

In thermodynamically open systems like turbulent flows
such a cloud is in a quasi-steady state (Fließgleichgewicht,
in the sense of Bertalanffy [10]), i.e. the processes of dipole
generation (see below) and their annihilation by collisions
almost compensate each other. Any quasi-particle (dipole) has
thus only a limited statistical lifetime. Therefore ‘sufficient
stabilization’ of a dressed dipole by a cloud is stability in a
statistical sense during its (statistical) lifetime. Here, Kelvin
waves at the surface of a tube play a secondary role because
they are not accompanied by friction, do not contribute to
dissipation.

6. Particle number, turbulent kinetic energy (TKE)
and rms vorticity frequency

Consider a small volume element δV populated by an
ensemble of j = 1 · · ·N dipoles with individual effective
vortex radii, r j , and rms vorticity moduli, ω j . The latter can
be interpreted as rms values of individual dipoles j as follows:

ω2
j =

1
2

[
(−ω̂ j )

2 + (+ω̂ j )
2
]
= ω̂2

j , (3)

where +ω̂ j and −ω̂ j are the individual vorticities of the two
vortex tubes forming the dipole.

The dipole energy is conserved as long as dissipative
events do not take place. The volume density of dipoles is
N/δV . The total TKE within δV is the sum of the kinetic
energies of the individual dipoles:

KδV =
1

δV

∑
j ∈ δV

1

2
r2

j ω2
j =

N
δV

k̄, (4)

4
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ω2
δV =

1

δV

∑
j ∈ δV

ω2
j =
N
δV

ω̄2. (5)

Multiplication of (4), (5) with δV gives

K = δV · KδV =

∑
j ∈ δV

1

2
r2

j ω2
j = N k̄ , (6)

ω2
= δV · ω2

δV =

∑
j ∈ δV

ω2
j =N ω̄2. (7)

KδV , ωδV are local volume densities of TKE and rms vorticity
magnitude, respectively. They and K , ω are extensive
variables by definition, i.e. they scale with the dipole number
in δV . k̄ and ω̄ are ensemble averages and, as such, intensive
variables which do not change when new particles with
average properties are added to δV:

k̄ =
1

N

∑
j ∈ δV

1

2
r2

j ω2
j , (8)

ω̄2
=

1

N

∑
j ∈ δV

ω2
j . (9)

We turn now to equation (1) where, according to (6) and (7),
we replace N with K/k̄ and ω/ω̄, respectively, to get
eventually balance equations for the extensive variables K
and � = ω/2π , provided that the intensive variables k̄ and ω̄

vary sufficiently weakly in time and space compared with the
dipole number N :

∂K

∂t
+

∂

∂Ex

(
EU K − ν

∂K

∂Ex

)
= FK − βK K 2, (10)

∂�

∂t
+

∂

∂Ex

(
EU� − ν

∂�

∂Ex

)
= F� − β��2. (11)

Here, � = 1/T is the ordinary7 vorticity frequency and
related to ω by the often used constant κ which further below
appears to be von-Kármán’s constant:

ω = 2π� = �/κ2 , (12)

κ = (2π)−1/2
≈ 0.399. (13)

We see that

βK = β/k̄, β� = 2πβ/ω̄, (14)

FK = k̄ F, F� = ω̄F/2π. (15)

7 While ω = 2π/T is an angular frequency, � = 1/T is an ordinary
frequency.

Figure 2. Local cross section through a dipole tangle far from
boundaries at maximum dipole density (Re → ∞). The dark gray
dipole in the left half square labels the initial situation, the right half
square a situation after a translation motion from left to right into its
collision position, where it is either annihilated or scattered.
A free dipole obviously occupies statistically a cross sectional area
of (4 r̄)2.

7. Mixing length and eddy viscosity

Prandtl [61] hypothesized that his mixing length has a twofold
meaning. It should be ‘considered as the diameter of the
masses of fluid moving as a whole’ (in our picture: as a
characteristic vortex radius) or ‘as the distance traversed
by a mass of this type before it becomes blended in with
neighboring masses . . . ’ (in our picture: as a mean free path);
i.e. he stated a tight relation between the radius and the
free path of a dipole in a dense ensemble. Indeed, for a
dipole tangle this can be shown (figure 2). We first define the
ensemble average, r̄ , of the vortex radii as an average over a
volume element weighted by vorticity as follows:

r̄2
=

∑
r2

j ω2
j∑

ω2
j

=
2K

ω2
=

2K

(2π�)2
. (16)

We now determine the eddy viscosity, ν, in analogy to
Einstein’s theory of Brownian motion in terms of a mean free
path, λ, and a mean free flight time, τ = λ/ū:

ν = λ2/2τ . (17)

Here, ū is the mean velocity of a dipole,

ū2
= 2K =

∑
u2

j =

∑
r2

j ω
2
j . (18)

For a turbulent tangle of dipole tubes at Re = ∞ in a
quasi-steady state far from solid boundaries the mean free
path will clearly be short but cannot vanish because there is
an equilibrium of dipole generation, annihilation and motions
that lead to the latter. This implies that [7]

λ = 2r̄ . (19)

Algebra finally gives the following:

ν = K/π�. (20)

This relation is called the Prandtl–Kolmogorov relation.

5
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8. Parameters βK, βΩ and ζ

We consider an initial-value problem (FK = 0, F� = 0) in
a spatially homogeneous volume where ∂K/∂Ex = 0 and
∂�/∂Ex = 0 such that equations (10), (11) reduce to

dK

dt
+ βK K 2

= 0, (21)

d�

dt
+ β� �2

= 0. (22)

For large t it follows that

K (t) = (βK t)−1, (23)

�(t) = (β� t)−1, (24)

and, according to (20), for eddy viscosity holds

ν(t) =
K (t)

π�(t)
=

β�

πβK
= const. (25)

Equation (23) coincides with the results of fairly general
similarity analyses of NSEs by Oberlack [58] and with
experimental results by Dickey and Mellor [17].

We now use the definition of the dissipation rate, ε, which
is the last term on the right-hand side of (10) and carries
the units of TKE (density) per time, i.e. ε ∼ K/T ∼ K�,
(m2 s−3). For reasons of convenience we write this
variable as follows and introduce a still unknown auxiliary
variable, ζ :

ε = βK K 2
= ζ

K�

π
= ζ

K 2

νπ2
, (26)

where we made use of (20). This implies

βK = ζ/νπ2 . (27)

When the dipoles behave in general like in free decay then we
may use (25) which gives then the expressions

β� = ζ/π, (28)

βK = ζ/νπ2. (29)

With these results we may rewrite (10) and (11) as follows:

∂K

∂t
+

∂

∂Ex

(
EU K − ν

∂K

∂Ex

)
= FK −

ζ K 2

νπ2
, (30)

∂�

∂t
+

∂

∂Ex

(
EU� − ν

∂�

∂Ex

)
= F� −

ζ

π
�2, (31)

with ν given by (20) and ζ ≡ 1 as shown further below.

9. TKE and vorticity generation by mean-flow shear

9.1. Generation of TKE

To further complete equations (30) and (31), we have, besides
ζ , to specify the source terms FK ,F�. The specification
of FK for shear flows is trivial because it is given by the

classical losses of the mean-flow energy balance and can
therefore be copied from textbooks (e.g. Wilcox [82] or
Schlichting–Gersten [71]):

FK = −

3∑
i, j=1

〈u′

i u′

j 〉
∂Ui

∂x j

= νS2
−

2

3
K

3∑
i, j=1

δi j
∂Ui

∂x j
, (32)

where −〈u′

i u′

j 〉 is the Reynolds stress tensor defined as

− 〈u′

i u′

j 〉 = 2νSi j −
2

3
δi j · K (33)

and Si j is the rate of strain tensor defined as

Si j =
1

2

(
∂Ui

∂x j
+

∂U j

∂xi

)
. (34)

S2 is the total instantaneous shear squared,

S2
=

3∑
i, j=1

(
∂U j

∂xi
+

∂Ui

∂x j

)
∂Ui

∂x j
, (35)

Ui is the i th component of the mean-flow velocity vector
EU = (U1, U2, U3)

T and δi j is the Kronecker symbol which is
zero for i 6= j and unity for i = j . In the simple case of a plane
horizontal flow with vertical shear like wind over plane terrain
or flow in a plane wide channel we have i = 1 and j = 3 such
that (32) reads as follows:

FK = νS2. (36)

9.2. Generation of vorticity

We use a fundamental macroscopic argument by Tennekes
[80]. It was first cast into mathematical form by Baumert
and Peters [8, 9] and carefully discussed by Kantha [39, 40],
Kantha et al [38] and Kantha and Clayson [41]. Tennekes
hypothesized that, in a neutrally stratified homogeneous shear
flow, an energy-containing turbulent length scale, L, cannot,
on dimensional grounds, depend on the ambient shear.

Further, also on dimensional grounds we have L ∼

K 1/2 �−1 and thus L2
∼ K�−2 such that the time evolution

of the length scale follows

1

L2

dL2

dt
∼

1

K

dK

dt
− 2

1

�

d�

dt
. (37)

We replace dK/dt with FK according to (32) and find

1

L2

dL2

dt
∼

S2

π�
− 2

1

�

d�

dt
. (38)

Tennekes’ hypothesis means that the evolution of L cannot be
controlled by S, which means dL2/dt = 0 and implies that

S2

π�
=

2F�

�
, (39)

where we replaced d�/dt with F�. Algebra gives

F� = S2/2π (40)
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and for the simple case of a plane horizontal flow with vertical
shear we may complete with some algebra equations (30)
and (31) as follows:

∂K

∂t
+

∂

∂Ex

(
EU K − ν

∂K

∂Ex

)
= ν

(
S2

− ζ�2
)
, (41)

∂�

∂t
+

∂

∂Ex

(
EU� − ν

∂�

∂Ex

)
=

1

π

(
S2

2
− ζ�2

)
(42)

with ν again given by (20).

10. Turbulent boundary layer

10.1. Boundary conditions

Consider a horizontally homogeneous flow and its stationary
boundary layer close to a plane solid wall at x3 = z = 0 where
for convenience z is introduced here as the only relevant
coordinate, pointing orthogonal from the wall into the fluid.
Thus the shear is

S = |dU/dz| . (43)

This special case means that in (41) and (42) the horizontal
and time derivatives vanish and it remains

−
d

dz

(
ν

dK

dz

)
= ν

(
S2

− ζ�2
)
, (44)

−
d

dz

(
ν

d�

dz

)
=

1

π

(
S2

2
− ζ�2

)
. (45)

The diffusive TKE flux into the viscous sublayer at z = z0 has
to vanish in the sense of an adiabatic boundary condition,

(νdK/dz)z=z0
= 0, (46)

such that also the flux divergence on the left-hand side of (44)
vanishes, giving K = K0 and ν (S2

− ζ�2) = 0 or

� = S/
√

ζ . (47)

10.2. Logarithmic law of the wall

We insert (47) into (45). The unknown ζ cancels out and we
have to solve the following equation for S = S(z),

2K0
d

dz

(
1

S

dS

dz

)
= S2, (48)

which gives

S(z) =
dU

dz
=

√
2K0

z
. (49)

Integration of (49) gives the logarithmic law of the wall.
In boundary layer theory the bottom shear stress is

defined in terms of the squared friction velocity, u2
f ,

u2
f = ν

dU

dz
=

K0

π�
S, (50)

and with (47) it follows that

K0 = πu2
f /

√
ζ . (51)

This allows (49) to be rewriten as follows:

dU

dz
=

uf

κ̃sz
, (52)

with κ̃ as a modified von-Kármán constant defined with
respect to (13) through

κ̃ = κ ζ 1/4. (53)

Integration of (52) provides us with

U (z) =
uf

κ̃
ln

(
z

z0

)
. (54)

10.3. Mixing length L

Consider the definition of the effective (statistically averaged)
dipole radius of an ensemble through (16). We solve this
equation for K and express the TKE in terms of r̄ and � as
follows:

K = 2π2r̄2�2. (55)

Following now Hinze ([33], p. 279, equation 5-2), in present
notation Prandtl’s mixing length L , which is also termed the
‘energy-containing length scale’ in the literature, is defined in
terms of eddy viscosity and shear as follows:

ν = L2

∣∣∣∣dU

dz

∣∣∣∣ = L2 S. (56)

Due to the eddy-viscosity formula (20), relation (56) gives

L2
=

K

π �2 ζ 1/2
, (57)

so that in the neighborhood of a solid wall we get with (47)
the following result:

K = π L2 �2
√

ζ . (58)

Comparing (55) with (58) gives

L = r̄/κ̃. (59)

The physical meaning of L can be understood as follows
(see figure 3). If we may set ζ = 1 then (59) gives together
with (13) and (53) the following relation:

L2
= 2 × (π r̄2). (60)

It means that L is the length of a square with an area equal to
the cross-sectional area of a dipole (in a statistically averaged
sense) because π r̄2 is the cross-sectional area of one vortex
tube. In an asymptotic sense this case corresponds to the
maximum deformation of a dipole and justifies setting ζ ≡ 1.

While Prandtl’s mixing-length concept was applicable
only in the vicinity of solid boundaries so that it attracted
respectful criticism (Wilcox [82]), our concept generalizes
Prandtl and works also far from boundaries, even in the
free stream of stratified fluids where L may approach the
Thorpe scale and/or the Ozmidov scale, depending on the
conditions [9].

We summarize this section as follows:

ν = uf L , (61)

L = κ z, (62)

z = L/κ = r̄/κ2. (63)

7
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Figure 3. Cross section through a dipole sheet at a solid boundary.
In this figure, we have r = r̄ , i.e. the sketched quasi-particle is to be
understood as an ensemble average.

11. Spectra, dissipative patches and spectral
constants

11.1. Spectra

Up to now our discussion was concentrated on only a few
scales like r̄ and L interrelated by κ , and on T interrelated
with � and ω etc. However, the reality of turbulence
exhibits a whole range of scales at which fluctuations
occur. They have relatively stable spectral distributions.
This problem attracted early attention by Richardson [67]
and Taylor [79]. Kolmogorov [43] found on dimensional
grounds that the kinetic energy spectrum as a function of
wavenumber, wherein energy flows steadily from the large
(energy-containing) scales to the much smaller dissipative
scales, may be written as follows,

dK = α1 εα2 k−α3 dk. (64)

Here, k = 2π/3 is the wave number and 3 the wavelength.
ε is the dissipation rate of TKE. Dimensional arguments
force that α2 = 2/3 and α3 = 5/3, in agreement with the
oceanographic observations by Grant et al [28] in a tidal inlet
with Re ≈ 108 and a depth of about 100 m. A value for α1 is
derived below.

11.2. Devil’s gear

Our view of the above Kolmogorov–Richardson cascade has
been filled with life through a numerical simulation study by
Herrmann [31] who demonstrated that Kolmogorov’s value
for α3 corresponds numerically to the data of a space-filling
bearing (see also Herrmann et al [32]). The latter is the
densest non-overlapping (Apollonian) circle packing in the
plane, with side condition that the circles are pointwise in
contact but able to rotate freely, without friction or slipping
(a ‘devil’s gear’ sensu Poeppe [60]). The contact condition for
two different ‘wheels’ with indices 1 and 2 of the gear reads

u = ω1r1 = ω2r2, (65)

Figure 4. Cross section through the first developmental stage of a
dissipative patch, i.e. of an unstable pair of likewise rotating vortices
resulting from a dipole–dipole collision (right pathway in figure 1).
The green circles represent primary energy-containing vortices.
They do not touch each other due to spontaneously formed
secondary vortices which initiate a whole vortex cascade. The
broken blue line and the arrows symbolize the slow rotation of the
patch around its center of mass.

where u is necessarily constant throughout the gear
and governed by the energy of the decaying (initially
energy-containing) vortex pair as u =

√
2K . It follows that

ω2 = ω1
r1

r2
, (66)

and for very small r2 the frequency ω2 may become high, even
acoustically relevant.

11.3. The dissipative patch

If the above gear is frictionless then the question arises
where energy can be dissipated. In a real fluid with non-zero
viscosity, dissipation happens at all scales, mainly but not
exclusively where the velocity gradient is highest, here: at a
scale vanishing with Re → ∞ to the size zero. Our dissipative
patch (figure 4 shows the first stage of its formation) is thus
‘almost frictionless’ and therefore a Hamiltonian clockwork,
excepting scales of size zero.

The formation of a fully developed spectrum of ‘wheels’
from figure 4 deserves certain perturbations ‘from the
sides’, a condition which is guaranteed by the random
reconnection/recombination and scatter processes sketched in
the left half of figure 1 and also by the incomplete mutual
pressure compensation of the vortices in our vortex ensemble.
In a quasi-steady state these perturbations initiate roll-up
instabilities at the boundaries of the respective larger vortices
so that eventually and in a statistical sense a patch like in
figure 4 is formed and evolves steadily into a fully developed
gear.

Figure 1 illustrates the possible results of a dipole–dipole
collision. While the left pathway shows the recombination of
counter-rotating vortices from counter-rotating vortices, the
right shows the formation of a couple of likewise rotating
vortices from counter-rotating vortices. The latter then revolve

8
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Figure 5. Outer limits of a dissipative patch (see figure 4). The
maximum wavelength is obviously equal to 30 = 2 r̄ .

around a common center of mass, which remains nearly at
rest (figure 4). Such a couple is fundamentally unstable [72],
a quasi-steady dissipative patch evolving into a full gear in the
sense of the mechanisms discussed in the last section. This
picture lets us expect that dissipation should exhibit spatially
patchy behavior, which we may also call intermittency. This
problem has been studied extensively by various authors from
other points of view (see e.g. Frisch [25]) and cannot yet be
discussed here from our new viewpoint in greater detail.

11.4. Kolmogorov’s constant α1

This constant belongs to the wavenumber spectrum and
deserves an idea about the outer limits and inner structure of
an unstable, dissipative patch as sketched in figure 5 for the
beginning of the cascade process evolving into a structure like
the one given in figure 4.

The most important message of figure 5 is that the
longest or energy-containing wavelength of the dissipative
patch equals 30 = 2 r̄ . The wavelength in a dipole is 4 r̄ . The
dipole performs chaotic trajectories in a white-noise sense
and forms no patch or spectrum. This difference between the
two configurations is essential. We use our 30 as a lower
integration limit for the spectral energy distribution. It is
important to underline that 30 labels the upper wavelength
limit (the longest wavelike motions) in a dissipative patch.
This limit is actually not influenced by the formation details
of the spectrum.

We integrate (64) over the dissipative patch in the sense
sketched in figures 4 and 5 and obtain

K = α1 ε2/3
∫

∞

k0

k−5/3 dk = α1
3

2

(
ε

k0

)2/3

, (67)

where k0 = 2 π/30 characterizes the lower end of the
turbulence spectrum in the wavenumber space. We loosely
assign the wavenumber range k = 0, . . . , k0 to the mean flow
which may basically be resolved in numerical models. The
dissipation rate ε in (67) can be expressed as follows:

ε = K/τ, (68)

with τ being the lifetime of a dissipative patch. Inserting (68)
in (67) and rearranging gives the following:

α1 =
2

3
(2π)2/3 K 1/3

( τ

2 r̄

)2/3
. (69)

In a local quasi-equilibrium sense for a dense vortex
ensemble the marching dipoles can occupy only those
places which are simultaneously ‘emptied’ through dipole
annihilation or dissipative patches by decay. This means that
the lifetime of a dissipative patch, τ = K/ε, should equal the
time of ‘free flight’ of a dipole over a distance 2 r̄ :

τ = K/ε = 2 r̄/u. (70)

Here, we used the scalar dipole velocity u,

u = ωr =
√

2K . (71)

After some algebra we get the pre-factor of the 3D
wavenumber spectrum as follows:

α1 =
1

3
(4π)2/3

= 1.802. (72)

The corresponding value of an ideal 1D spectrum is one third
of the above, i.e. 0.60.

12. Discussion

12.1. Equations of turbulent motion

The results of our considerations can be summarized as
follows:

∂K

∂t
+

∂

∂Ex

(
EU K − ν

∂K

∂Ex

)
= ν

(
S2

− �2
)
, (73)

∂�

∂t
+

∂

∂Ex

(
EU� − ν

∂�

∂Ex

)
=

1

π

(
S2

2
− �2

)
, (74)

ν =
K

π �
. (75)

These equations are structurally identical with the K –ω

closure model discussed by Wilcox. There are only slight
differences in the pre-factors of the terms.

This theory applies exclusively to locally homogeneous,
isotropic and moderately unsteady high-Reynolds number
flows. Extreme non-stationarities and/or sharp spatial
gradients like in shockwaves are possibly not covered. As a
rule, temporal changes of the mean flow should happen on
time scales sufficiently long compared with T = 1/� because
otherwise spectral universality (64) has possibly not enough
time to become well enough established.

Our equations reproduce the logarithmic law of the
wall and predict the universal von-Kármán’s constant as
κ = 1/

√
2 π = 0.399 ≈ 0.4, where the latter value counts as

an internationally accepted standard (see also [34]; we do
not follow the controversy of logarithmic versus power-law
boundary layer sensu Barenblatt [5]). The value corresponds
nicely to measurements under favorable pressure gradients.
Similar support comes from Jimenez and Moser [37] on the
basis of an extensive review. They state: The Kármán constant
κ ≈ 0.4 is approximately universal.

However, Landau and Lifshitz ([50], p 173) wrote that
. . . κ (is) a numerical constant, the von-Kármán constant,
whose value cannot be calculated theoretically and must be
determined experimentally. It is found to be κ = 0.4.
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Figure 6. Experimental and observational results for α1/3
measured, collected from the literature, and analyzed by
Sreenivasan [75]. The solid line follows our somewhat arbitrary
approximation 0.6 ×

√
Reλ/

(√
Re∗ +

√
Reλ

)
wherein α1/3 = 0.6 is

our theoretically derived asymptotic value. Here, we took Re∗ = 10.

With respect to the measurability of κ even the opposite
might be true: if ‘physics disappears’ (when Re → ∞),
only the laws of an ‘inert geometry’ (Euler and volume
conservation) remain, κ can possibly no longer be understood
as a classical physical quantity. For an ideal liquid it represents
pure geometry.

Our equations describe the free decay of turbulence
following K ∼ t−m with m = 1, in agreement with Dickey
and Mellor’s [17] high-Re laboratory experiments and with
Oberlack’s [58] theoretical result for the NSE. Today,
it is still not clear why some decay experiments lead
to m > 1. Possibly it is a matter of initial conditions
[36]: at high Re viscosity is comparatively small so that
its regularizing effect in the relaxation process towards a
fully self-similar spectrum will take more time than at
lower Re. In some cases this time may even exceed the
lifetime of turbulence. This underlines the necessity of deeper
experimental work.

12.2. Kolmogorov’s constant

The rounded numerical values α1 = 1.8 or α1/3 = 0.6
predicted by our theory for Kolmogorov’s universal constant
are situated well within the error bars of many high-Re
observations, NSE- and renormalization group-based
analytical approximations, laboratory and direct numerical
simulation of Navier–Stokes (DNS) experiments.

Based on observations, Tennekes and Lumley [81] gave
in 1972 the value α1 = 1.62, but still with some uncertainty.
The 1995 study by Sreenivasan [75] (see our figure 6) is
possibly the most comprehensive review of experimental and
observational values for the number α1/3 until now. Yeung
and Zhou [86] reported in 1997 a value of α1 = 1.62 based on
high-resolution DNS studies with up to 5123 grid points. In
2010 a study by Donzis and Sreenivasan [19] on a DNS grid
of 40963 reported α1 ≈ 1.58.

Much higher Reynolds numbers than in DNS were
found in oceanic measurements of Lagrangian frequency
spectra by Lien and D’Asaro [53]. These authors stated for
the prefactor β1 in the Lagrangian frequency spectrum that
. . . since the present uncertainty is comparable to that between
high quality estimates of the Eulerian one-dimensional

longitudinal Kolmogorov constant measured by many dozen
investigators over the last 50 years, large improvements in the
accuracy of the estimate of β1 seem unlikely.

There are other theoretical efforts to calculate the
universal constants, technically complex and mostly of
singular character. Beginning with an initiating work by
Forster et al [24], systematic analytical approximations using
RG methods and related techniques for NSE gave rise to some
estimates. For example, Yakhot and Orszag [84, 85] found
α1 ≈ 1.62, whereas McComb and Watt [57] derived α1 =

1.60 ± 0.01 and Park and Deem [59] obtained α1 = 1.68.

12.3. Coda

Saffman ([69], loc. cit. Davidson [14], p. 107) feared that
. . . in searching for a theory of turbulence, perhaps we are
looking for a chimera. This has recently been enforced by
Hunt [35]: . . . But there are good reasons why the answer
to the big question that Landau and Batchelor raised about
whether there is a general theory of turbulence is probably
‘no’.

In a most general sense these authors are possibly
right. But a comment is necessary. Turbulence as a physical
phenomenon is strange for more than one reason. There
is its finite lifetime during which it may change its face.
There is the extraordinary high scatter in the measurements of
universal constants of turbulence, compared with the precision
of fundamental constants of physics like, e.g., the mass of the
proton [26]. There is further the strange concept of a fluid as
a continuum where control volumes may be sub-divided into
sub-volumes ad infinitum—in contrast to real-world physical
fluids, which are made of molecules and carry absolute
scales, so that the idea Re → ∞ appears at first glance as
nonsense.

Turbulence in our sense (Re → ∞) is thus a reasonable
concept only within the limits of fluids as continua. Only
within these limits are our universal equations of turbulent
motion (73)–(75), the universal Kolmogorov spectrum (64)
and our universal von-Kármán (13) and Kolmogorov
constants (72) accurate approximations of real-world physical
fluids.

The experiments with ultra-high Reynolds numbers in
Princeton [87], Oregon [18] and in the European CICLoPE
[78] might go far beyond these limitations.
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