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Abstract

We consider the motion of a viscous compressible fluid confined to a physical space with a
time dependent kinematic boundary. We suppose that the characteristic speed of the fluid is
dominated by the speed of sound and perform the low Mach number limit in the framework of
weak solutions. The standard incompressible Navier-Stokes system is identified as the target
problem.
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1 Introduction

Since the seminal works of Ebin [5], Klainerman and Majda [10], there have been numerous studies
of singular limits of systems of equations arising in mathematical fluid dynamics, see the surveys
by Gallagher [9], Masmoudi [13], or Schochet [15]. While many of the results are either formal or
restricted to (possibly) very short life span of classical solutions of the underlying systems of nonlinear
equations, the mathematical theory of weak solutions to the barotropic Navier-Stokes system opened
a new possibility to attack the problem rigorously in the framework of weak solutions, see Desjardins
and Grenier [3], Desjardins et al. [4], Lions and Masmoudi [11], [12], Masmoudi [14], among others.

A rigorous analysis of singular limits is seriously hampered by the presence of physical boundaries,
in particular for viscous fluids. As a matter of fact, many of the results mentioned above deal with
the problems posed on the whole space RN , N = 1, 2, 3 or in the idealized space-periodic setting,
where the effect of the physical boundary is eliminated. On the other hand, Desjardins et al. [4]
showed that the boundary layer created in the incompressible limit of viscous fluids may eliminate
the effect of acoustic waves, at least for certain shapes of the kinematic boundaries.

In the present paper, we consider the incompressible (low Mach number) limit of a barotropic
compressible and viscous fluid in a domain with a time dependent boundary. To the best of our
knowledge, all the available results concerning such a situation are based on formal computations
under the principal hypothesis that the underlying system of equations admits smooth solutions, see
Al̀ı [1]. Note that the fluid motion is driven by the variable boundary rather than by external volume
forces in many real world applications.

2



The motion of a compressible viscous fluid is described by the mass density % = %(t,x) and the
velocity field u = u(t,x). In the low Mach number regime, where the characteristic fluid velocity is
dominated by the speed of sound, the time evolution of the dimensionless state variables % ≈ %/%char,
u ≈ u/uchar is described by the (scaled) Navier-Stokes system:

∂t%+ divx(%u) = 0, (1.1)

∂t(%u) + divx(%u⊗ u) +
1

ε2
∇xp(%) = divxS(∇xu) + %∇xg, (1.2)

S(∇xu) = µ

(
∇xu +∇t

xu−
2

3
divxuI

)
+ ηdivxuI, µ > 0, η ≥ 0, (1.3)

where p is the pressure, ∇xg the external force, and S is the viscous stress tensor determined by
Newton’s law (1.3), with the shear viscosity coefficient µ and the bulk viscosity coefficient η. The
parameter ε is the Mach number,

ε =
uchar√
pchar/%char

,

where Xchar denotes the characteristic value of a quantity X.
At each instant τ ≥ 0, the fluid occupies a bounded domain Ωτ ⊂ R3, with

Ωτ = X(τ,Ω0), Ω0 ⊂ R3,
dX(t)

dt
= V(t,X(t)), (1.4)

where V(t, ·) : R3 → R3 is a given regular velocity field. In addition, we assume that

divxV(τ, ·) = 0 yielding |Ωτ | = |Ω0| for any τ ≥ 0. (1.5)

Finally, we suppose that the boundary ∂Ωτ is impermeable and the fluid satisfies the complete
slip boundary conditions

(u−V) · n|∂Ωτ = 0, (S(∇xu) · n)× n|∂Ωτ = 0, (1.6)

where n denotes the outer normal vector to ∂Ωτ .
We consider a family of weak solutions [%ε,uε] of the problem (1.1 - 1.3), (1.5), (1.6) emanating

from the initial data

%ε(0, ·) = %0,ε = %+ ε%
(1)
0,ε, uε(0, ·) = u0,ε, % > 0 a positive constant, (1.7)
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where
‖%(1)

0,ε‖L∞(Ω0) ≤ c, u0,ε → u0 weakly in L2(Ω0;R3). (1.8)

Our main goal is to show that

%ε → %, uε → U as ε→ 0 in a certain sense,

where U satisfies the standard incompressible Navier-Stokes system

divxU = 0 (1.9)

% (∂tU + U · ∇xU) +∇xΠ = divxS(∇xU) (1.10)

S(∇xU) = µ
(
∇xU +∇t

xU
)
, (1.11)

supplemented with the boundary conditions

(U(τ, ·)−V(τ, ·)) · n|∂Ωτ = 0, (S(∇xU) · n)× n|∂Ωτ = 0, (1.12)

and the initial condition
U(0, ·) = U0 = H0[u0] in Ω0, (1.13)

where H0 denotes the Helmholtz projection onto the space of solenoidal functions in Ω0.
Our method is based on careful analysis of propagation of acoustic waves represented by the

gradient component of the velocity, which is supposed to “disappear” in the limit ε→ 0. In particular,
we study the time evolution of the Helmholtz projection operator Hτ associated to the domain Ωτ and
its gradient counterpart. Moreover, the propagation of acoustic waves is governed by the Neumann
Laplacean ∆N,τ , whose spectral properties and their dependence on τ are examined in detail. Note
that an alternative approach would be to adapt the local method proposed by Lions and Masmoudi
[12]. However, besides some unnecessary restrictions that would have to be imposed on the state
equation p = p(%), a direct use of the local method is also hampered by the fact that the Helmholtz
projection depends on time in our setting.

The plan of the paper is as follows. In Section 2, we summarize the known facts concerning the
weak solutions of the compressible Navier-Stokes system on time dependent domains and formulate
our main result. Sections 3 and 4 are the heart of the paper. Here, we discuss the spectral properties
of the Neumann Laplacean and their dependence on the domain as well as similar problems for the
Helmholtz projection. The convergence towards the target system is shown in Section 5.
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2 Preliminaries, weak solutions, main result

We suppose that the external force is given by a Lipschitz potential g, specifically,

g ∈ W 1,∞(R3). (2.1)

Moreover, we assume that the pressure p ∈ C[0,∞)∩C2(0,∞) is a strictly monotone function of the
density satisfying

p(0) = 0, p′(%) > 0 for all % > 0, lim
%→∞

p′(%)

%γ−1
= p∞ > 0 for a certain γ >

3

2
. (2.2)

2.1 Weak solutions of the primitive system

Following [8], we say the [%,u] is a weak solution of the compressible Navier-Stokes system (1.1 -
1.3), (1.6), (1.7) in the time interval (0, T ) if the following holds:

• Integrability.

% ≥ 0, the mapping t 7→ ‖%(t, ·)‖Lγ(Ωt) belongs to L∞(0, T ),

the mapping t 7→ ‖u(t, ·)‖W 1,2(Ωt,R3) belongs to L2(0, T ),

(u−V)(τ, ·) · n|∂Ωτ = 0 for a.a. τ ∈ (0, T ). (2.3)

• Equation of continuity. The equation of continuity (1.1) is replaced by a family of integral
identities ∫ T

0

∫
Ωt

(%∂tφ+ %u · ∇xφ) dxdt = −
∫

Ω0

%0,εφ(0, ·) dx (2.4)

for any test function φ ∈ C∞c ([0, T )×R3).

• Momentum equation. The momentum equation (1.2) is satisfied as∫ T

0

∫
Ωt

(
%u · ∂tϕ + %u⊗ u : ∇xϕ +

1

ε2
p(%)divxϕ

)
dxdt (2.5)

=

∫ T

0

∫
Ωt

(
S(∇xu) : ∇xϕ− %∇xg ·ϕ

)
dxdt−

∫
Ω0

%0,εu0,ε ·ϕ dx

for any test function ϕ ∈ C∞c ([0, T )×R3;R3) such that

ϕ(τ, ·) · n|∂Ωτ = 0 for any τ ∈ [0, T ].
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• Energy inequality. The energy inequality∫
Ωτ

(
1

2
%|u|2 +

1

ε2
P (%)

)
(τ, ·) dx +

∫ τ

0

∫
Ωt

S(∇xu) : ∇xu dxdt (2.6)

≤
∫

Ω0

(
1

2
%0,ε|u0,ε|2 +

1

ε2
P (%0,ε)

)
dx

+

∫
Ωτ

%u ·V(τ, ·) dx−
∫

Ω0

%0,εu0,ε ·V(0, ·) dx

+

∫ τ

0

∫
Ωt

[
µ

(
∇xu +∇t

xu−
2

3
divxuI

)
: ∇xV − %u · ∂tV − %u⊗ u : ∇xV

]
dxdt

+

∫ τ

0

∫
Ωt

%∇xg · (u−V) dxdt

holds for a.a. τ ∈ [0, T ], where

P (%) = %

∫ %

%

p(z)

z2
dz,

and V is the vector field determining the motion of the spatial domain introduced in (1.4),
(1.5).

The existence of global-in-time weak solutions under the hypotheses (2.1), (2.2) was shown in [8,
Theorem 2.1]. Note that the specific form of the energy inequality (2.6) results from the fact that,
in accordance with the hypothesis (1.5), the vector field V is solenoidal.

2.2 Weak solutions of the target system

We say that U is a weak solution of the incompressible Navier-Stokes system (1.9 - 1.13) if:

• Integrability.

the mapping t 7→ ‖U(t, ·)‖L2(Ωt;R3) belongs to L∞(0, T ),

the mapping t 7→ ‖U(t, ·)‖W 1,2(Ωt;R3) belongs to L2(0, T ),

divxU(τ, ·) = 0 a.a. in Ωτ , (U(τ, ·)−V(τ, ·)) · n|∂Ωτ = 0 for a.a. τ ∈ (0, T ). (2.7)
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• Momentum equation. The momentum equation (1.10) is replaced by the family of integral
identities∫ T

0

∫
Ωt

% (U · ∂tϕ + U⊗U : ∇xϕ) dxdt =

∫ T

0

∫
Ωt

S(∇xU) : ∇xϕ dxdt−
∫

Ω0

%U0 ·ϕ(0, ·) dx

(2.8)
for any test function ϕ ∈ C∞c ([0, T )×R3;R3) satisfying

divxϕ = 0, ϕ(t, ·) · n|∂Ωt = 0.

2.3 The main result

Let
Qτ =

{
(t, x)

∣∣∣ t ∈ (0, τ), x ∈ Ωt

}
be the space-time cylinder characterizing the fluid domain. Our main result reads:
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Theorem 2.1 Let Ω0 be a bounded domain of class C2+ν. Suppose that the driving force ∇xg
and the pressure p satisfy the hypotheses (2.1), (2.2). Assume that the vector field V belongs to
that class

V ∈ C1([0, T ];C3
c (R3;R3)), divxV(τ, ·) = 0 for all τ ∈ [0, T ].

Let [%ε,uε] be a family of weak solutions to the compressible Navier-Stokes system (1.1 - 1.3),
(1.6), (1.7) emanating from the initial data satisfying (1.7), (1.8),∫

Ω0

%
(1)
0,ε dx = 0.

Then
ess sup
t∈(0,T )

‖%ε(t, ·)− %‖Lq(Ωt) → 0 as ε→ 0, q = min{γ, 2}, (2.9)

and, for a suitable subsequence,
uε → U weakly in L2(QT ;R3),

∇xuε → ∇xU weakly in L2(QT ;R3×3),

 as ε→ 0, (2.10)

where U is a weak solution of the incompressible Navier-Stokes system (1.9 - 1.13), with

U0 = H0[u0].

The rest of the paper is devoted to the proof of Theorem 2.1.

2.4 Uniform estimates

In this section, we derive the necessary uniform bounds on the family of solutions {%ε,uε}ε>0 inde-
pendent of the small parameter ε.

Lemma 2.1 Under the assumptions of Theorem 2.1 the following version of the energy inequality
holds for a.a. τ ∈ [0, T ]
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∫
Ωτ

(
1

2
%ε|uε|2 +

1

ε2

[
P (%ε)− P ′(%̄)(%ε − %̄)− P (%̄)

])
(τ, ·) dx+

∫ τ

0

∫
Ωt

S(∇xuε) : ∇xuε dxdt (2.11)

≤
∫

Ω0

(
1

2
%0,ε|u0,ε|2 +

1

ε2

[
P (%0,ε)− P ′(%̄)(%ε − %̄)− P (%̄)

])
dx

+

∫
Ωτ

%εuε ·V(τ, ·) dx−
∫

Ω0

%0,εu0,ε ·V(0, ·) dx

+

∫ τ

0

∫
Ωt

[
µ

(
∇xuε +∇t

xuε −
2

3
divxuεI

)
: ∇xV − %εuε · ∂tV − %εuε ⊗ uε : ∇xV

]
dxdt

+

∫ τ

0

∫
Ωt

%ε∇xg · (uε −V) dxdt.

Next, it is convenient to introduce the essential part

[fε]ess := fε1{ ρ̄
2
≤%ε≤2ρ̄},

and the residual part
[fε]res := fε − [fε]ess

for any measurable function f in QT . From the energy inequality (2.11) we obtain the following
uniform estimates:

Lemma 2.2 Under assumptions of Theorem 2.1 it holds

ess supt∈(0,T )

∫
Ωt

%ε|uε|2dx ≤ c,

ess supt∈(0,T )

∫
Ωt

[
%ε − %̄
ε

]2

ess

dx ≤ c,

ess supt∈(0,T )

∫
Ωt

[%ε]
γ
res dx ≤ ε2c,

ess supt∈(0,T )

∫
Ωt

1resdx ≤ ε2c,

ess supt∈(0,T )

∫
Ωt

[
%ε − %̄
ε

]q
res

dx ≤ ε2−qc, q ∈ [1,min{γ, 2}],∫ T

0

∫
Ωt

∣∣∣∣∇xuε +∇xu
T
ε −

2

3
divxuεI

∣∣∣∣2 dxdt ≤ c,

where the generic constant c is independent of ε.
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These estimates, including the energy inequality in Lemma 2.1, can be obtained in a similar way
as those on fixed domain and we refer to [7, Chapter 5] for details. We also note that the previous
estimates, combined with a version of Korn’s inequality (see [7, Theorem 10.17]), give rise to∫ T

0

‖uε‖2
W 1,2(Ωt)

dt ≤ c. (2.12)

2.5 Weak convergence

We start our investigation concerning the convergence of density, velocity and momentum. To
this end, it is convenient to extend the density by the constant value %̄ outside the fluid domain
QT . Similarly, we extend the velocity to the whole space R3, where we use the standard extension
Et : W 1,2(Ωt)→ W 1,2(R3), uniformly bounded with respect to t ∈ [0, T ]. Note that the fluid domain
is regular at each time instant.

Keeping the previously introduced convention in mind, we deduce from Lemma 2.2 and the
continuity equation that

%ε − %→ 0 in L∞(0, T ;Lγ(R3))

%ε − %→ 0 in Cweak([0, T ];Lr(R3)), r ∈ [1, γ).

Furthermore, we get
Etuε → U weakly in L2(0, T ;W 1,2(R3;R3)),

passing to a suitable subsequence as the case may be.
Consequently, for any [T1, T2]×K ⊂ QT , where K denotes a compact set, it follows that

%εuε → %U weakly-* in L∞(T1, T2;L
2γ
γ+1 (K;R3)).

Similarly, using (2.12), together with the standard Sobolev embedding W 1,2(Ωt) ⊂ L6(Ωt), we deduce
that

%εuε ⊗ uε → %u⊗ u weakly in Lq((T1, T2)Lq(K;R3)) for a certain q > 1

if γ > 3
2
. Since the compact set K can taken arbitrarily close to the boundary of QT , the above

results yield weak convergence on the whole “fluid” cylinder QT .
Passing to the limit in the continuity equation we get

divxU = 0 a.e. in QT ,

while the momentum equation (2.5) gives rise to

10



∫ T

0

∫
Ωt

(%U · ∂tϕ + %u⊗ u : ∇xϕ) dxdt (2.13)

=

∫ T

0

∫
Ωt

S(∇xU) : ∇xϕ dxdt−
∫

Ω0

%u0 ·ϕ(0, ·) dx,

for all ϕ ∈ C∞c ([0, T )×R3;R3), divxϕ = 0, ϕ(t, ·) · n|∂Ωt = 0 for all t ∈ [0, T ].
Consequently, it remains to clarify in which sense we may assert the relation

%u⊗ u ≈ %U⊗U

that is necessary for completing the proof of Theorem 2.1.
To discuss this issue we investigate the spectral properties of the Neumann Laplacean and the

Helmholtz projection on moving domains.

3 Spectral properties of the Neumann Laplacean and the

Helmholtz projection

3.1 Domain dependence of the Helmholtz projection

The Helmholtz decomposition u = Ht[u] + H⊥t [u] in L2(Ωt;R
3) is defined in terms of the projection

H⊥t [u] = ∇xΨ which is given as the unique solution to the Neumann problem

∆Ψ = divxu in Ωt, ∇xΨ · n = u · n on ∂Ωt,

∫
Ωt

Ψ dx = 0. (3.1)

It is easy to see that divxHt[u] = 0 in Ωt and Ht[u] · n = 0 on ∂Ωt.
For a function u ∈ L2(QT ;R3) we set:

H[u](t,x) := Ht[u(t,x)] and H⊥[u](t,x) := H⊥t [u(t,x)].

We are going to show the differentiability of the mapping t 7→ Ht[u]. For this reason we adopt some
results on shape sensitivity analysis of the Neumann problem, see e.g. Sokolowski-Zolesio [16]. In
this context, the symbol ∂tu plays the role of the shape derivative of u. By the shape differential
calculus (see [16, Section 3.3]) one identifies the shape derivative ∂tΨ of solutions to (3.1) with the
unique solution of the problem

∆∂tΨ = ∂tdivxu, in Ωt,

∇x∂tΨ · n = div∂Ωt(V · n∇∂Ωt Ψ) + [divxu + κu · n]V · n + ∂tu · n− u · ∇xVn, on ∂Ωt

(3.2)
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where div∂Ωt , ∇∂Ωt , κ is the tangential divergence, the tangential gradient and the mean curvature
of ∂Ωt. In particular, if ∂tdivxu ∈ L2(Ωt;R

3) and ∂tu ∈ W 1/2,2(∂Ωt) then from [16, Proposition 3.3]
it follows ∂tΨ ∈ W 1,2(Ωt).

Assuming more regularity, specifically, ∂tdivxu ∈ W 2,2(Ωt;R
3) and ∂tu ∈ W 3/2,2(∂Ωt), we obtain

∂tH
⊥
t [u] = ∇x∂tΨ ∈ W 1,2(Ωt) and ∂tHt[u] = ∂tu− ∂tH⊥t [u] ∈ W 1,2(Ωt).

3.2 Compactness of the solenoidal part of velocity

Since U · n = V · n on ∂Ωt and divxU = divxV = 0, we can write

U = H[U] +∇xW, where ∇xW := H⊥[V].

In accordance with the standard elliptic regularity, cf. for instance [6],

‖Hτ [u]‖Lq(Ωτ ) ≤ c(q)‖u‖Lq(Ωτ ) for any 2 ≤ q <∞ and τ ∈ [0, T ], (3.3)

where, since the domains Ωτ are regular, the constant c(q) can be chosen to be independent of
τ ∈ [0, T ]. Moreover, as∫ T

0

∫
Ωt

H[uε −U] ·ϕ dxdt =

∫ T

0

∫
Ωt

(uε −U) ·H[ϕ] dxdt for any ϕ ∈ L2(QT ;R3),

the weak convergence of uε and (3.3) implies that

H[uε]→ H[U] weakly in L2(QT ;R3).

Using a similar argument we obtain that

∇xH[uε]→ ∇xH[U] weakly in L2(QT ;R3×3)

and consequently

H⊥[uε]→ ∇xW weakly in L2(QT ;R3), ∇xH
⊥[uε]→ ∇2

xW weakly in L2(QT ;R3×3).

The key property we need to show in this section is the strong convergence

H[uε]→ H[U] in L2(QT ;R3). (3.4)

To this end we show that

H[%εuε]→ H[%U] = %H[U] strongly in Cweak([T1, T2], L
2γ
γ+1 (K)) provided [T1, T2]×K ⊂ QT .

(3.5)
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Remark: In the proof below we systematically use of the continuity of the Helmhotz decomposition
on moving domains.

For any ϕ ∈ C∞(QT ) with ϕ(T, ·) = 0 and ϕ · n = 0 on ∂Ωt we define

Iεϕ(t) :=

(∫
Ωt

%εuε ·H[ϕ] dx

)
(t) =

(∫
Ωt

H[%εuε] ·ϕ dx

)
(t).

To use the Arzelá-Ascoli theorem we want to show that∣∣Iεϕ(t)− Iεϕ(t′)
∣∣ ≤ C |t− t′|α

for some α > 0. Using H[ϕ] as a test function in the momentum equation (2.5) we obtain:

Iεϕ(t)− Iεϕ(t′) =

∫ t′

t

∫
Ωs

%εuε ⊗ uε : ∇xH[ϕ]− S(uε) : ∇xH[ϕ] + %ε∇xg ·H[ϕ] + %εuε · ∂tH[ϕ] dxds.

The first three terms are easy to estimate using the apriori estimates we have and the smoothness
of H[ϕ] and ∇xH[ϕ], for the last term we use the result of the previous section.

Using Arzelá-Ascoli Theorem we have that the set of functions Iεϕ(t) is precompact in C(T1, T2)
which together with diagonalization argument yields (3.5).

Moreover
(%ε − %)uε → 0 strongly in L2(T1, T2, L

6
5 (K))

and thus

H[(%ε − %)uε]→ 0 and H⊥[(%ε − %)uε]→ 0 strongly in L2(T1, T2, L
6
5 (K))

for all T1, T2, K such that [T1, T2]×K ⊂ QT . Now writing

%|H[uε]|2 = H[(%− %ε)uε] ·H[uε] + H[%εuε] ·H[uε]

we see that
H[uε]→ H[U] strongly in L2(QT ;R3).

3.3 Decomposition of the convective term

Our aim is to show that∫ T

0

∫
Ωt

%εuε ⊗ uε : ∇xϕ dxdt→ %

∫ T

0

∫
Ωt

U⊗U : ∇xϕ dxdt

13



for all ϕ ∈ C∞(QT ) such that ϕ(T, ·) = 0, divxϕ = 0 and ϕ · n = 0 on ∂Ωt for all t ∈ [0, T ). To this
end, the convective term can be decomposed as follows:∫ T

0

∫
Ωt

%εuε ⊗ uε : ∇xϕ dxdt =

∫ T

0

∫
Ωt

H⊥[%εuε]⊗H[uε] : ∇xϕ dxdt+

+

∫ T

0

∫
Ωt

H[%εuε]⊗ uε : ∇xϕ dxdt+

∫ T

0

∫
Ωt

H⊥[%εuε]⊗H⊥[uε] : ∇xϕ dxdt.

We can pass to the limit in the first two terms using the convergence stated above to achieve:∫ T

0

∫
Ωt

H[%εuε]⊗ uε : ∇xϕ dxdt→
∫ T

0

∫
Ωt

%H[U]⊗U : ∇xϕ dxdt

and ∫ T

0

∫
Ωt

H⊥[%εuε]⊗H[uε] : ∇xϕ dxdt =

=

∫ T

0

∫
Ωt

H⊥[(%ε − %)uε]⊗H[uε] : ∇xϕ dxdt+ %

∫ T

0

∫
Ωt

H⊥[uε]⊗H[uε] : ∇xϕ dxdt→

→ %

∫ T

0

∫
Ωt

∇xW ⊗H[U] : ∇xϕ dxdt.

Thus it remains to show that∫ T

0

∫
Ωt

H⊥[%εuε]⊗H⊥[uε] : ∇xϕ dxdt→ %

∫ T

0

∫
Ωt

∇xW ⊗∇xW : ∇xϕ dxdt.

We split this term further in the following way:∫ T

0

∫
Ωt

H⊥[%εuε]⊗H⊥[uε] : ∇xϕ dxdt =

∫ T

0

∫
Ωt

H⊥[%εV]⊗H⊥[uε] : ∇xϕ dxdt+

+

∫ T

0

∫
Ωt

H⊥[%ε(uε −V)]⊗H⊥[V] : ∇xϕ dxdt+

+

∫ T

0

∫
Ωt

H⊥[%ε(uε −V)]⊗H⊥[(uε −V)] : ∇xϕ dxdt.

It is easy to see that the first term converges to
∫ T

0

∫
Ωt
%∇xW ⊗∇xW : ∇xϕ dxdt, while the second

term converges to zero. Finally, we have to show that the last term converges to zero. This will be
done in the next two sections.
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4 Spectral analysis of the wave equation

First we rewrite our system of equation (1.1), (1.2) in the form of an acoustic analogy. Denoting

rε :=
%ε − %
ε

, zε := %ε(uε −V),

we obtain
ε∂trε + divxzε = O(ε), ε∂tzε + p′(%)∇xrε = O(ε), zε · n|∂Ωt = 0,

or, more specifically in the weak formulation∫ T

0

∫
Ωt

εrε∂tϕ+ zε · ∇xϕ dxdt = −
∫ T

0

∫
Ωt

εrεV · ∇xϕ dxdt (4.1)

for all ϕ ∈ C∞c ((0, T )× Ωt), and∫ T

0

∫
Ωt

εzε · ∂tϕ + p′(%)rεdivxϕ dxdt = ε

∫ T

0

∫
Ωt

−(%εuε ⊗ uε) : ∇xϕ dxdt+

+ε

∫ T

0

∫
Ωt

S(∇xuε) : ∇xϕ +
(p(%ε)− p′(%)(%ε − %)− p(%))

ε2
divxϕ dxdt+

+ε

∫ T

0

∫
Ωt

%ε∂tV ·ϕ + %εuε ⊗V : ∇xϕ + %εuε · ∇xV ·ϕ dxdt

(4.2)

for all ϕ ∈ C∞c ((0, T )× Ωt) such that ϕ · n = 0 on (0, T )× ∂Ωt.
The idea is to use the spectral analysis to show, roughly speaking, that solutions of (4.1), (4.2),

and, in particular, H⊥[zε] ≈ H⊥[uε −Vε] can be written as a “small” part and a ”compact” part,
where the latter makes the integral∫ T

0

∫
Ωt

H⊥[%ε(uε −V)]⊗H⊥[(uε −V)] : ∇xϕ dxdt

converge to zero for solenoidal test functions ϕ. To this end, we introduce the following eigenvalue
problem

∇xω = −λ(t)a, divxa = −λ(t)ω in Ωt, a · n = 0 on ∂Ωt,

which is equivalent to the eigenvalue problem for the Laplace equation

−∆ω = Λ(t)ω in Ωt, ∇xω · n = 0 on ∂Ωt, λ2 = −Λ. (4.3)

The latter problem admits for any t ∈ [0, T ] a system of real eigenfunctions {ωj(t, ·)}∞j=0 which

forms an orthonormal basis in L2(Ωt), corresponding to real eigenvalues

0 = Λ0(t) < Λ1(t) ≤ Λ2(t) ≤ ... (4.4)
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Accordingly the original system admits solutions in the form

aj(t,x) =
i√

Λj(t)
∇xωj(t,x), λj(t) = i

√
Λj(t), j = 1, 2, ...,

where

{aj(t, ·)}∞j=1 forms an orthonormal basis in H⊥(L2(Ωt)) =
{

span {iaj(t, ·)}∞j=1

}L2(Ωt;R3)

and the eigenspace of λ0(t) = 0 is H(L2(Ωt)). We also observe that{
ωj(t, ·)√
1 + Λj(t)

}∞
j=0

is an orthonormal system in W 1,2(Ωt), t ∈ [0, T ].

We shall need some information on the time evolution of the eigenvalues and eigenfunctions.
Using [2, Theorem 4.3] and the properties of V we find that∣∣∣∣ 1

Λj(t1)
− 1

Λj(t2)

∣∣∣∣ ≤ C|t1 − t2|, t1, t2 ∈ [0, T ],

i.e. the functions Λ−1
j , j = 1, 2, . . . are equi-Lipschitz in [0, T ]. For the eigenfunctions such a property

cannot be expected in general. Instead, it is more convenient to work with the orthogonal projections
PM and QM on the eigenspaces spanned by {ωj}Mj=1, {aj}Mj=1, respectively, defined by

PM [ϕ](t, ·) =
M∑
j=1

ωj(t, ·)
∫

Ωt

ϕ(t,y)ωj(t,y) dy, ϕ ∈ L2(QT ),

QM [ϕ](t, ·) :=
M∑
j=1

aj(t, ·)
∫

Ωt

ϕ(t,y) · aj(t,y) dy, ϕ ∈ L2(QT ;R3).

By an easy calculation one can check that PM is also an orthogonal projection with respect to the
scalar product in W 1,2 and that

QM [ϕ](t, ·) = −∇xPM [ψ](t, ·), where H⊥[ϕ] = ∇xψ.

The Lipschitz continuity of the eigenprojections can be proved under the condition that the set
of corresponding eigenvalues remains isolated from the rest of the spectrum. If M were such that

ΛM+1 6= ΛM in [0, T ], (4.5)
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then [2, Theorem 4.4] and the properties of V would yield that the projection PM is in certain sense
equi-Lipschitz. In particular, for t1, t2 ∈ [0, T ], we would have

∀ϕ ∈ W 1,2(Ω0) :
∥∥PM [ϕ ◦X−1

t1
](t1) ◦Xt1 − PM [ϕ ◦X−1

t2
](t2) ◦Xt2

∥∥
W 1,2(Ω0)

≤ c|t1 − t2| ‖ϕ‖W 1,2(Ω0) .

This would further imply that ∂tPM exists a.a. in QT and satisfies

sup
τ∈(0,T )

‖∂tPM(τ)‖L(W 1,2(Ωτ ),W 1,2(Ωτ )) ≤ c.

However, in general the multiplicity of eigenvalues of Neumann Laplacean can be very sensitive
to the time evolution of the domain Ωt, so that such M which satisfies (4.5) need not exist even if Ωt

varies in a smooth way. Instead, we will split the interval [0, T ] into a finite number of sub-intervals
on which the smoothness of certain eigenprojections can be achieved.

Let M be given. Since the eigenvalues are continuous in time and limj→∞ Λj(t) = ∞ for every
t ∈ [0, T ], it follows that for every t ∈ [0, T ] there exists Mt ≥ M and a neighborhood It of t, such
that

ΛMt+1 6= ΛMt in It.

Consequently, the projections PMt and QMt are Lipschitz continuous with respect to time in It, with
the Lipschitz constant independent of t. From the system {It}t∈[0,T ] we can select a finite cover
{Itl}nl=1 of [0, T ].

Let us fix l ∈ {1, . . . , n}. For simplicity of notation, we will write Il := Itl and Ml := Mtl in what
follows. We test the acoustic version of the continuity equation (4.1) by the function ψ(t)PMl

[ϕ](t,x),
where ψ ∈ C∞c (Il) and ϕ ∈ C∞(QT ), which yields:∫

Il

ψ

∫
Ωt

(ε∂tPMl
[rε]− divxQMl

[zε])ϕ dxdt

= ε

∫
Il

ψ

∫
Ωt

(
rεV · ∇xPMl

[ϕ] + rε∂tPMl
[ϕ]−V · ∇x(PMl

[rε]ϕ)− PMl
rε∂tϕ

)
dxdt.

(4.6)

Similarly, testing (4.2) by ψ(t)QMl
[ϕ], where ψ ∈ C∞c (Il) and ϕ ∈ C∞(QT ;R3), ϕ · n = 0, we get:∫

Il

ψ

∫
Ωt

(ε∂tQMl
[zε]− p′(%)∇xPMl

[rε]) ·ϕ dxdt

= −ε
∫
Il

ψ

∫
Ωt

[%εuε ⊗V − %εuε ⊗ uε + S(∇xuε)] : ∇xQMl
[ϕ] dxdt

−ε
∫
Il

ψ

∫
Ωt

[
(p(%ε)− p′(%)(%ε − %)− p(%))

ε2
divxQMl

[ϕ]

]
dxdt

−ε
∫
Il

ψ

∫
Ωt

[%ε∂tV + %εuε · ∇xV] ·QMl
[ϕ] dxdt

−ε
∫
Il

ψ

∫
Ωt

[QMl
[zε] · ∂tϕ− zε · ∂tQMl

[ϕ] + V · ∇x(QMl
[zε] ·ϕ)] dxdt.

(4.7)

17



Denoting dε,l := PMl
[rε] and ∇xΨε,l := QMl

[H⊥[zε]], identities (4.6)-(4.7) can be rewritten as the
system

ε∂tdε,l + ∆Ψε,l = εfε,l, (4.8)

ε∂t∇xΨε,l + p′(%)∇xdε,l = εgε,l, (4.9)

satisfied in {(t,x); t ∈ Il, x ∈ Ωt}. Having collected all the necessary material, we complete the
proof of Theorem 2.1 in the next section.

5 Convergence

In accordance with the previous discussion our ultimate goal is to show that∫ T

0

∫
Ωt

H⊥[%ε(uε −V)]⊗H⊥[(uε −V)] : ∇xϕ dxdt→ 0 (5.1)

for any ϕ ∈ C∞(QT ;R3), divxϕ(t, ·) = 0, ϕ · n|∂Ωt = 0. To this end, we can write

H⊥[zε]⊗H⊥[(uε −V)] =
(
QMl

[H⊥[zε]] +
(
H⊥[zε]−QMl

[H⊥[zε]]
))
⊗

⊗
(
QMl

[H⊥[(uε −V)]] +
(
H⊥[(uε −V)]−QMl

[H⊥[(uε −V)]]
))

and moreover

H⊥[zε]−QMl
[H⊥[zε]] = H⊥[(%ε − %)(uε −V)]−QMl

[H⊥[(%ε − %)(uε −V)]]+
+%
(
H⊥[uε −V]−QMl

[H⊥[uε −V]]
)
.

It should be noted that we already know that

H⊥[(%ε − %)(uε −V)]−QMl
[H⊥[(%ε − %)(uε −V)]]→ 0 in L2(0, T, L

6
5 (Ωt;R

3)).

Next we can use the properties of the functions ωj and aj to write

‖divxuε‖2
L2(Ωt)

= ‖divx(uε −V)‖2
L2(Ωt)

=

∥∥∥∥∥
∞∑
j=1

divxaj

∫
Ωt

(uε −V) · aj dx

∥∥∥∥∥
2

L2(Ωt)

=

=

∥∥∥∥∥
∞∑
j=1

√
Λjωj

∫
Ωt

(uε −V) · aj dx

∥∥∥∥∥
2

L2(Ωt)

=
∞∑
j=1

Λj

(∫
Ωt

(uε −V) · aj dx

)2
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and consequently

∥∥H⊥[(uε −V)]−QMl
[H⊥[(uε −V)]]

∥∥
L2(Ωt)

=
∑
j>Ml

(∫
Ωt

(uε −V) · aj dx

)2

≤

≤ 1

infj>Ml
Λj(t)

‖divxuε‖2
L2(Ωt)

≤ 1

infj>M Λj(t)
‖divxuε‖2

L2(Ωt)
.

Choosing M large enough we can make 1/(inft∈[0,T ],j>M Λj(t)) as small as we want. Therefore it is
enough to prove ∫

Il

∫
Ωt

QMl
[H⊥[zε]]⊗QMl

[H⊥[(uε −V)]] : ∇xϕ dxdt→ 0

or equivalently ∫
Il

∫
Ωt

QMl
[H⊥[zε]]⊗QMl

[H⊥[zε]] : ∇xϕ dxdt→ 0

for any solenoidal test function ϕ and l = 1, . . . , n.
Now we write (using the summation convention with the indices j, k)∫

Il

∫
Ωt

QMl
[H⊥[zε]]⊗QMl

[H⊥[zε]] : ∇xϕ dxdt =

∫
Il

∫
Ωt

∂kΨε,l∂jΨε,l∂jϕk dxdt =

= −
∫
Il

∫
Ωt

∂kΨε,l∆Ψε,lϕk dxdt− 1

2

∫
Il

∫
Ωt

∂k |∇xΨε,l|2 ϕk dxdt,

where the second term on the right hand side is equal to zero due to the fact that the test function
ϕ is solenoidal. Next, we use equations (4.8), (4.9) to handle the first term

−
∫
Il

∫
Ωt

∂kΨε,l∆Ψε,lϕk dxdt = ε

∫
Il

∫
Ωt

(∂tdε,l − fε,l)∂kΨε,lϕk dxdt =

ε

∫
Il

∫
Ωt

(∂t(dε,l∂kΨε,l)ϕk − dε∂t(∂kΨε,l)ϕk − fε,l∂kΨε,lϕk) dxdt =

= ε

∫
Il

∫
Ωt

(
−dε,l∂kΨε,l∂tϕk +

1

2ε
p′(%)∂k |dε,l|2 ϕk − dε,lgε,l ·ϕ− fε,l∇xΨε,l ·ϕ

)
dxdt.

The second term is again equal to zero and the proof of the desired relation (5.1) is finished as soon
as we show that remaining terms tend to 0 as ε→ 0, i.e. that integrals∫

Il

∫
Ωt

dε,l∇xΨε,l · ∂tϕ dxdt,

∫
Il

∫
Ωt

dε,lgε,l ·ϕ dxdt,
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and ∫
Il

∫
Ωt

fε,l∇xΨε,l ·ϕ dxdt

are bounded uniformly with respect to l and ε → 0. But this is a consequence of the uniform esti-
mates, properties of V and smoothness of the eigenprojections PMl

, QMl
established in the preceding

part of the paper.
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