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1 Introduction

The integral equation method is one of traditional methods in hydrodynamics
([3], [10],[11], [14], [15],[17]). This method is especially fruitful for transmission
problems ([1], [5], [6], [7],[8], [9],[14] ). In this paper we study the following
transmission problem: Let Ω = Ω+ ⊂ Rm, m > 2, be a bounded open set with
Lipschitz boundary. Denote Ω− = Rm \Ω+, where Ω+ is the closure of Ω+. Let
λ+, λ−, c+ be non-negative constants and a+, a−, b+, b− positive constants.
We study the transmission problem for the Brinkman system

−∆u± + λ±u± +∇p± = 0, ∇ · u± = 0 in Ω±,

a+u+ − a−u− = g, b+T (u+, p+)n+ − b−T (u−, p−)n+ + c+u+ = f on ∂Ω.

Here g ∈ W 1,2(∂Ω, Rm), f ∈ L2(∂Ω, Rm). We look for an L2-solution of the
problem, i.e. the nontangential maximal functions of u±, ∇u± and p± are in
L2(∂Ω) and the boundary conditions are fulfilled in the sense of the nontangen-
tial limit. This problem was studied in [14] for c+ = 0, λ± = 0, and in [6] for
a± = b± = 1, c+ = 0. We study the transmission problem for arbitrary λ±, a±,
b± and c+.

In all preceding papers the transmission problem is studied under additional
condition concerning behaviour of u− and p− at infinity. To remove this ad-
ditional condition we study behaviour of a solution of the Brinkman system at
infinity and we prove the theorem of Liouville’s type. From this we deduce that
if the nontangential maximal function corresponding to u− and p− is in L2(∂Ω),
then there exist u∞ ∈ Rm, p∞ ∈ R1 such that u−(x) → u∞, p−(x) → p∞ as
|x| → ∞, and |u−(x)−u∞(x)| = O(|x|2−m), |∇u−|+|p−(x)−p∞| = O(|x|1−m).

At the end we study the Robin–transmission and the Dirichlet–transmission
problems. Let G ⊂ Rm be a bounded domain with connected Lipschitz bound-
ary, Ω = Ω+ be a bounded open set with Lipschitz boundary such that Ω ⊂ G.
Denote Ω− = G \ Ω, and by n± the outward unit normal of Ω±. Let λ±, c±
be non-negative constants and a±, b± be positive constants. We study by the
integral equation method the Robin–transmission problem for the Brinkman
system

−∆u± + λ±u± +∇p± = 0, ∇ · u± = 0 in Ω±,
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a+u+ − a−u− = g, b+T (u+, p+)n+ − b−T (u−, p−)n+ + c+u+ = f on ∂Ω,

T (u−, p−)n− + c−u− = h on ∂G.

Here g ∈ W 1,2(∂Ω, Rm), f ∈ L2(∂Ω, Rm), h ∈ L2(∂G). We look for an L2-
solution of the problem, i.e. the nontangential maximal functions of u±, ∇u±
and p± are in L2(∂Ω−) and the boundary conditions are fulfilled in the sense
of the nontangential limit. This problem was studied in ([5]) for c± = 0, a± =
b± = 1, λ+ = 0.

Then the regular Dirichlet–transmission problem is studied by the integral
equation method:

−∆u± + λ±u± +∇p± = 0, ∇ · u± = 0 in Ω±,

a+u+ − a−u− = g, b+T (u+, p+)n+ − b−T (u−, p−)n+ + c+u+ = f on ∂Ω,

u− = h on ∂G.

Here g ∈ W 1,2(∂Ω, Rm), f ∈ L2(∂Ω, Rm), h ∈ W 1,2(∂G). We look for an L2-
solution of the problem, i.e. the nontangential maximal functions of u±, ∇u±
and p± are in L2(∂Ω−) and the boundary conditions are fulfilled in the sense
of the nontangential limit. This problem was studied in [8] for a± = b± = 1,
c+ = 0.

2 Formulation of the transmission problem

Let Ω = Ω+ ⊂ Rm, m > 2, be a bounded open set with Lipschitz boundary.
Denote Ω− = Rm \Ω+, where Ω+ is the closure of Ω+. Denote by n = n+ = nΩ

the outward unit normal of Ω+. Let λ+, λ−, c+ be non-negative constants and
a+, a−, b+, b− positive constants. We shall study the transmission problem for
the Brinkman system

−∆u± + λ±u± +∇p± = 0, ∇ · u± = 0 in Ω±, (1)

a+u+−a−u− = g, b+T (u+, p+)n+−b−T (u−, p−)n++c+u+ = f on ∂Ω. (2)

If u = (u1, . . . , um) is a velocity field, p is a pressure, denote

T (u, p) = 2∇̂u− pI

the corresponding stress tensor. Here I denotes the identity matrix and

∇̂u =
1
2
[∇u + (∇u)T ]

is the strain tensor, with (∇u)T as the matrix transposed to ∇u = (∂juk),
(k, j = 1, . . . ,m). Denote ∇ · u = ∂1u1 + . . . + ∂mum the divergence of u.
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Now we define an L2-solution of the transmission problem. Let G be an
open set with Lipschitz boundary. If x ∈ ∂G, a > 0 denote the non-tangential
approach region of opening a at the point x by

ΓG
a (x) := {y ∈ G; |x− y| < (1 + a) dist(y, ∂G)}.

If now v is a vector function defined in G we denote the non-tangential maximal
function of v on ∂G by

v∗G(x) := sup{|v(y)|;y ∈ ΓG
a (x)}.

If x ∈ ∂G, Γ(x) = ΓG
a (x) then

v(x) = lim
y → x

y ∈ Γ(x)

v(y)

is the non-tangential limit of v with respect to G at x.
Let g ∈ W 1,2(∂Ω, Rm), f ∈ L2(∂Ω, Rm). We say that u±, p± defined on

Ω± is an L2-solution of the transmission problem (1), (2) if u±, p± satisfy (1);
u∗±, p∗±, (∇u)∗± are from L2(∂Ω, R1); for almost all x ∈ ∂Ω there exist the non-
tangential limits of u±, ∇u±, p± at x and the condition (2) is fulfilled in the
sense of the nontangential limit a.e. on ∂Ω.

3 The surface potentials

We shall look for a solution of the transmission problem by the integral equation
method. The aim of this section is to assemble some basic facts on surface
potentials for the Brinkman system.

For λ ≥ 0 denote by Eλ(x) = {Eλ
ij(x)}i,j=1,...,m, Qλ(x) = {Qλ

j (x)}j=1,...,m

the fundamental matrix for the Brinkman system

−∆u + λu +∇p = 0, ∇ · u = 0 (3)

such that Eλ(x) → 0, Qλ(x) → 0 as |x| → ∞. If j is fixed, u = (E1j , . . . , Emj),
p = Qj then u, p is a solution of the Brinkman system (3) in Rm \ {0}. If λ = 0
then the fundamental matrix for the Stokes system is given by

E0
ij(x) =

1
2ωm

[
δij
|x|2−m

m− 2
+

xixj

|x|m

]
, Q0

j (x) =
xj

ωm|x|m
,

where ωm denotes the surface of the unit sphere in Rm. (See [17] or [14].) The
fundamental matrix for λ > 0 are studies in Chapter 2 of [17]:

Qλ(x) = Q0(x),
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Eλ
ij(x) =

1
ωm

[
δij

|x|m−2
A1(

√
λ|x|) +

xixj

|x|m
A2(

√
λ|x|)

]
,

A1(t) =
tm/2−1Km/2−1(t)
2m/2−1Γ(m/2)

+
tm/2−2Km/2(t)
2m/2−1Γ(m/2)

− 1
t2

,

A2(t) =
m

t2
−

tm/2−1Km/2+1(t)
2m/2−1Γ(m/2)

,

where Kν is the modified Bessel function of order ν. If λ > 0 then

|Eλ(x)| = O(|x|−m), |∇Eλ(x)| = O(|x|1−m) as |x| → ∞.

Since Eλ ∈ C∞(Rm \ {0};Rm×m), Qλ ∈ C∞(Rm \ {0};Rm), we can define
for Ψ ∈ L2(∂Ω, Rm) the single layer potential with density Ψ by

(Eλ
ΩΨ)(x) =

∫
∂Ω

Eλ(x− y)Ψ(y) dHm−1(y) (4)

and the corresponding pressure by

(Qλ
ΩΨ)(x) =

∫
∂Ω

Qλ(x− y)Ψ(y) dHm−1(y). (5)

Then Eλ
ΩΨ ∈ C∞(Rm \ ∂Ω, Rm), Qλ

ΩΨ ∈ C∞(Rm \ ∂Ω, R1), ∇Qλ
ΩΨ−∆Eλ

ΩΨ+
λEλ

ΩΨ = 0, ∇ · Eλ
ΩΨ = 0 in Rm \ ∂Ω.

Eλ
ΩΨ can be defined for almost all x ∈ ∂Ω and Eλ

ΩΨ(x) is the non-tangential
limit of Eλ

ΩΨ. The nontangential maximal function of Eλ
ΩΨ, ∇Eλ

ΩΨ, Qλ
ΩΨ with

respect to Ω+ and Ω− is in L2(∂Ω) (see [4], Lemma 2.1.4). Moreover, Eλ
Ω is

a bounded linear operator from L2(∂Ω, Rm) to W 1,2(∂Ω, Rm). (For λ = 0 see
[14], for λ > 0 see for example [5].)

Denote
Kλ

Ω(y,x) = −Tx(Eλ(x− y), Qλ(x− y))nΩ(x).

For Ψ ∈ L2(∂Ω, Rm) define

K ′
Ω,λΨ(x) = lim

ε↘0

∫
∂Ω\B(x;ε)

Kλ
Ω(y,x)Ψ(y) dHm−1(y),

where B(x; ε) = {y; |x − y| < ε}. Then K ′
Ω,λ is a bounded linear operator

on L2(∂Ω, Rm). If Ψ ∈ L2(∂Ω, Rm) then there exist the non-tangential limits
[∇Eλ

ΩΨ(x)]±, [Qλ
ΩΨ)(x)]± of ∇Eλ

ΩΨ, Qλ
ΩΨ with respect to Ω± at almost all

x ∈ ∂Ω, and

[T (Eλ
ΩΨ, Qλ

ΩΨ)]+nΩ =
1
2
Ψ−K ′

Ω,λΨ, (6)
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[T (Eλ
ΩΨ, Qλ

ΩΨ)]−nΩ = − 1
2
Ψ−K ′

Ω,λΨ. (7)

(For λ = 0 see [14], for λ > 0 see for example [5]. See also [13].)
Now we define a double layer potential. For Ψ ∈ L2(∂Ω, Rm) define in

Rm \ ∂Ω

(Dλ
ΩΨ)(x) =

∫
∂Ω

Kλ
Ω(x,y)Ψ(y) dHm−1(y), (8)

and the corresponding pressure by

(Πλ
ΩΨ)(x) =

∫
∂Ω

Πλ
Ω(x,y)Ψ(y) dHm−1(y), (9)

where

Πλ
Ω(x,y) =

1
ωm

{
−(y − x)

2m(y − x) · nΩ(y)
|y − x|m+2

+
2nΩ(y)
|y − x|m

− λ
|x− y|2−m

m− 2
nΩ(y)

}
.

Then Dλ
ΩΨ ∈ C∞(Rm \ ∂Ω, Rm), Πλ

ΩΨ ∈ C∞(Rm \ ∂Ω, R1) and ∇Πλ
ΩΨ −

∆Dλ
ΩΨ + λDλ

ΩΨ = 0, ∇ ·Dλ
ΩΨ = 0 in Rm \ ∂Ω.

Define

KΩ,λΨ(x) = lim
ε↘0

∫
∂Ω\B(x;ε)

Kλ
Ω(x,y)Ψ(y)dHm−1(y), x ∈ ∂Ω.

Then KΩ,λ is a bounded linear operator on L2(∂Ω; Rm) (adjoint to K ′
Ω,λ). There

exists the nontangential limit [Dλ
ΩΨ]+(x) of Dλ

ΩΨ with respect to Ω+ and the
nontangential limit [Dλ

ΩΨ]−(x) of Dλ
ΩΨ with respect to Ω− for almost all x ∈ ∂Ω

and

[Dλ
ΩΨ]+(x) =

1
2
Ψ(z)+KΩ,λΨ(z), [Dλ

ΩΨ]−(x) = − 1
2
Ψ(z)+KΩ,λΨ(z). (10)

If Ψ ∈ W 1,2(∂Ω, Rm) then [|Dλ
ΩΨ|]∗Ω± + [|∇Dλ

ΩΨ|]∗Ω± ∈ L2(∂Ω) and at almost
all points of ∂Ω there exist the nontangential limits of∇Dλ

ΩΨ with respect to Ω+

and with respect to Ω−. Moreover, [T (Dλ
ΩΨ,Πλ

ΩΨ)]+nΩ = [T (Dλ
ΩΨ,Πλ

ΩΨ)]−nΩ.
(For λ = 0 see [14], for λ > 0 see for example [5].)

4 Behaviour at infinity

Proposition 4.1. Let λ ≥ 0, u1, . . . , uk and p be tempered distributions in
Rk, k ≥ 2, u = (u1, . . . , uk). If −∆u + λu +∇p = 0, ∇ · u = 0 in the sense of
distributions in Rk, then u1, . . . , uk and p are polynomials.

Proof. Denote by Ff the Fourier transformation of f . Since −∆u + λu +
∇p = 0, ∇ · u = 0, the Fourier transformation gives

|x|2Fu(x) + λFu(x) + xFp(x) = 0, (11)
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x · Fu(x) = 0. (12)

Using (11), (12)

0 = x · [(|x|2 + λ)Fu + xFp(x)] = |x|2Fp(x).

Thus Fp = 0 on Rk \ {0}. If x ∈ Rk \ {0} then

0 = |x|2Fu(x) + λFu(x) + xFp(x) = (|x|2 + λ)Fu.

Therefore Fuj = 0 in Rk \ {0}. According to [16], Chapter II, §10, there exist
n ∈ N0 and constants aα such that

Fuj =
∑
|α|≤n

aα∂αδ0.

Set
Pj(x) =

∑
|α|≤n

aα(−ix)α.

Then
FPj =

∑
|α|≤n

aαF [(−ix)α1] =
∑
|α|≤n

aα∂αδ0 = Fuj .

Since the Fourier transform is an isomorphism on the space of tempered distri-
butions we infer that uj = Pj . Similarly for p.

Proposition 4.2. Let u, p be a bounded solution of the Brinkman system
−∆u + λu + ∇p = 0, ∇ · u = 0 in Rm \ F , where F is a compact subset
of Rm, m > 2, λ ≥ 0. Then there exist p∞ ∈ R1, u∞ ∈ Rm such that
p(x) → p∞, u(x) → u∞ as |x| → ∞. Moreover, |p(x) − p∞| = O(|x|1−m),
|u(x) − u∞| = O(|x|2−m), |∇u(x)| = O(|x|1−m) as |x| → ∞. If λ > 0 then
u∞ = 0.

Proof. Fix ϕ ∈ C∞(Rm) such that ϕ = 0 on a neighbourhood of F and
ϕ = 1 on Rm \ B(0; r) for some r > 0. Define ũ = ϕu, p̃ = ϕp on Rm \ F ;
ũ = 0, p̃ = on F . Denote (f1, . . . , fm)T = −∆ũ + λũ +∇p̃, fm+1 = ∇ · ũ, f =
(f1, . . . , fm+1)T . Define the (m+1)× (m+1) matrix function Ẽλ by Ẽλ

ij = Eλ
ij ,

Ẽλ
m+1,j = Ẽλ

j,m+1 = Qλ
j for i, j ≤ m, Ẽm+1,m+1(x) = δ(x) + λ|x|2−m/[(m −

2)ωm]. Denote (v1, . . . , vm, q)T = Ẽλ ∗ f , v = (v1, . . . , vm)T , where ∗ means the
convolution. Then −∆v +λv +∇q = (f1, . . . , fm)T , ∇·v = fm+1 by [17], §2.1.
According to a behaviour of Ẽλ at infinity we see that |v(x)| = O(|x|2−m),
|∇v(x)| + |q(x)| = O(|x|1−m) as |x| → ∞. Since the functions uj − vj , p − q
are bounded, they are tempered distributions (see [2], Example 14.22). Since
−∆(ũ− v) + λ(ũ− v) +∇(p̃− q) = 0, ∇ · (u− v) = 0 in Rm, Proposition 4.1
gives that ũj − vj , p̃− q are polynomials. Since ũj − vj , p̃− q are bounded there
exist p∞ ∈ R1, u∞ ∈ Rm such that p̃ − q = p∞, ũ − v = u∞. If λ > 0 then
0 = −∆(ũ− v) + λ(ũ− v) +∇(p̃− q) = λu∞ and thus u∞ = 0.
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5 Solution of the transmission problem

Put b̃± = b±/a±, c̃+ = c+/a+. If ũ± = a±u±, p̃± = a±p± then u±, p± is
an L2-solution of the transmission problem (1), (2) if and only if ũ±, p̃± is an
L2-solution of the transmission problem

−∆ũ± + λ±ũ± +∇p̃± = 0, ∇ · ũ± = 0 in Ω±, (13)

ũ+ − ũ− = g, b̃+T (ũ+, p̃+)n− b̃−T (ũ−, p̃−)n + c̃+ũ+ = f on ∂Ω. (14)

Let Φ ∈ W 1,2(∂Ω, Rm), Ψ ∈ L2(∂Ω, Rm). Put

ũ± = D
λ±
Ω Φ + E

λ±
Ω Ψ, p̃± = Πλ±

Ω Φ + Q
λ±
Ω Ψ in Ω±, (15)

τ
λ+,λ−
1 (Φ,Ψ) = Φ + KΩ,λ+Φ−KΩ,λ−Φ + E

λ+
Ω Ψ− E

λ−
Ω Ψ,

τ
λ+,λ−,b̃+,b̃−,c̃+
2 (Φ,Ψ) = b̃+[Ψ−K ′

Ω,λ+
]− b̃−[−Ψ−K ′

Ω,λ− ] + c̃+E
λ+
Ω Ψ

+b̃+[T (Dλ+
Ω Φ,Πλ+

Ω Φ)]+nΩ − b̃−[T (Dλ−
Ω Φ,Πλ−

Ω Φ)]−nΩ.

The operator τλ+,λ−,b̃+,b̃−,c̃+ = [τλ+,λ−
1 , τ

λ+,λ−,b̃+,b̃−,c̃+
2 ] is a bounded linear op-

erator on W 1,2(∂Ω, Rm) × L2(∂Ω, Rm). The functions ũ±, p̃± given by (15)
are an L2-solution of the transmission problem (13), (14) such ũ−(x) → 0,
p̃−(x) → 0 as |x| → ∞ if and only if τλ+,λ−,b̃+,b̃−,c+(Φ,Ψ) = [g, f ].

Lemma 5.1. Denote Rm = {v(x) = Ax + b;b ∈ Rm, A = (aij) an anti-
symmetric matrix, i.e. aij = −aji} the space of rigid motions. Let u ∈ Rm,
M = {x;u(x) = 0}. If Hm−1(M) > 0 then u ≡ 0.

Proof. There exist a matrix A = (aij) with aij = −aji and b ∈ Rm such
that u(x) = Ax + b. Suppose first aij 6= 0 for some indices i, j. Denote
Li = {x; ai1x1 + . . . + aimxm + bi = 0}, Lj = {x; aj1x1 + . . . + ajmxm + bi = 0}.
Since aii = ajj = 0, aji = −aij 6= 0 we have Hm−1(Li ∩ Lj) = 0. This
contradicts to M ⊂ Li ∩ Lj . Hence A = 0 and u is constant. M 6= ∅ forces
u ≡ 0.

Proposition 5.2. Let u±, p± be an L2-solution for the transmission problem
(1), (2). If f = 0, g = 0 and u−(x) → 0, p−(x) → 0 as |x| → ∞ then u± ≡ 0,
p± ≡ 0.

Proof. |p(x)| = O(|x|1−m), |u(x)| = O(|x|2−m), |∇u(x)| = O(|x|1−m) as
|x| → ∞ (see Proposition 4.2). Using Green’s formula

0 =
∫

∂Ω

u+ · [b+T (u+, p+)n− b−T (u−, p−)n + c+u+] dHm−1

7



= b+

∫
∂Ω−

u+ · T (u+, p+)nΩ+ dHm−1 +
∫

∂Ω−

c+|u+|2 dHm−1

+ lim
r→∞

b−
a−
a+

∫
∂(Ω−∩B(0;r))

u− · T (u−, p−)nΩ− = b+

∫
Ω+

[2|∇̂u+|2 + λ+|u+|2]

+
∫

∂Ω−

c+|u+|2 dHm−1 +
b−a−
a+

∫
Ω+

[2|∇̂u+|2 + λ−|u+|2] dHm.

Denote u = u± on Ω±. Then ∇̂u = 0 in Rm \ ∂Ω. Denote by ω0, ω1, . . . , ωk all
components of Rm \ ∂Ω, where ω0 is the unbounded component. According to
[12], Lemma 3.1 there exist antisymmetric matrices Aj and vectors Bj such that
u(x) = Ajx + Bj in ωj . Since u(x) → 0 as |x| → ∞, we deduce that u = 0 in
ω0. If ∂ω0∩∂ωj 6= ∅ then the condition a+u+ = a−u− gives that Ajx+Bj = 0
on ∂ω0 ∩ ∂ωj . Lemma 5.1 gives that Ajx + Bj ≡ 0. We can continue by this
way and prove that u = 0.

Proposition 5.3. The operator τλ+,λ−,b̃+,b̃−,c̃+ is an isomorphism on the space
W 1,2(∂Ω, Rm)× L2(∂Ω, Rm).

Proof. The operator τ0,0,b̃+,b̃−,0 is a Fredholm operator with index 0 on
W 1,2(∂Ω, Rm)× L2(∂Ω, Rm) by [14]. If λ ≥ 0 then KΩ,λ −KΩ,0 is compact on
W 1,2(∂Ω, Rm), K ′

Ω,λ −K ′
Ω,0 is compact on L2(∂Ω, Rm), Eλ

Ω −E0
Ω is a compact

operator from L2(∂Ω, Rm) to W 1,2(∂Ω, Rm) (see [5], Theorem 3.4). Since E0
Ω

is a bounded operator from L2(∂Ω, Rm) to W 1,2(∂Ω, Rm), it is a compact lin-
ear operator on L2(∂Ω, Rm). Thus τλ+,λ−,b̃+,b̃−,c̃+ − τ0,0,b̃+,b̃−,0 is a compact
operator on W 1,2(∂Ω, Rm)× L2(∂Ω, Rm). Hence τλ+,λ−,b̃+,b̃−,c+ is a Fredholm
operator with index 0. Therefore it is enough to prove that τλ+,λ−,b̃+,b̃−,c̃+ is
injective.

Let (Φ,Ψ) ∈ W 1,2(∂Ω, Rm) × L2(∂Ω, Rm), τλ+,λ−,b̃+,b̃−,c̃+(Φ,Ψ) = 0. Let
ũ±, p̃± be given by (15). Then ũ±, p̃± is an L2-solution of the problem (13),
(14) with g = 0, f = 0 such ũ−(x) → 0, p̃−(x) → 0 as |x| → ∞. Proposition 5.2
gives that ũ± = 0, p̃± = 0. Thus ũ±, p̃± is an L2-solution of the problem (13),

ũ+ − ũ− = 0, T (ũ+, p̃+)n− T (ũ−, p̃−)n = 0 on ∂Ω.

Denote λ̃+ = λ−, λ̃− = λ+,

v+ = D
λ−
Ω Φ + E

λ−
Ω Ψ, q+ = Πλ−

Ω Φ + Q
λ−
Ω Ψ, in Ω+,

v− = −D
λ+
Ω Φ− E

λ+
Ω Ψ, q+ = −Πλ+

Ω Φ−Q
λ+
Ω Ψ, in Ω−.

Using boundary behaviour of potentials we obtain on ∂Ω

v+ = Φ + ũ− = Φ,
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v− = −[−Φ + ũ+] = Φ,

[T (v+, q+)nΩ]+ = Ψ + [T (ũ−, p̃−)nΩ]− = Ψ,

[T (v−, q−)nΩ]− = −[−Ψ + [T (ũ+, p̃+)nΩ]+ = Ψ.

Therefore v±, q± is a solution of the transmission problem

−∆v± + λ̃±v± +∇q± = 0, ∇ · v± = 0 in Ω±,

v+ − v− = 0, T (v+, q+)n− T (v−, q−)n = 0 on ∂Ω,

v−(x) → 0, q−(x) → 0 as |x| → ∞.

Proposition 5.2 gives that v± ≡ 0, q± ≡ 0. We have on ∂Ω

Φ = v+ = 0,

Ψ = [T (v+, q+)nΩ]+ = 0.

Theorem 5.4. Let g ∈ W 1,2(∂Ω, Rm), f ∈ L2(∂Ω, Rm). Then there exists an
L2-solution of the transmission problem (1), (2). If u±, p± is an L2-solution
of the problem then there exist p∞ ∈ R1, u∞ ∈ Rm such that u−(x) → u∞,
p−(x) → p∞ as |x| → ∞. If λ− > 0 then u∞ = 0. Fix p∞ ∈ R1, u∞ ∈ Rm. If
λ− > 0 suppose that u∞ = 0. Then there exists a unique L2-solution u±, p±
of the transmission problem (1), (2) such that u−(x) → u∞, p−(x) → p∞ as
|x| → ∞.

Proof. If u±, p± is an L2-solution of the problem then there exist p∞ ∈ R1,
u∞ ∈ Rm such that u−(x) → u∞, p−(x) → p∞ as |x| → ∞. If λ− > 0 then
u∞ = 0. (See Proposition 4.2.)

Fix p∞ ∈ R1, u∞ ∈ Rm. If λ− > 0 suppose that u∞ = 0. Put u− =
v− + u∞, u+ = v+, p− = q− + p∞, p+ = q+. Then u±, p± is a solution of the
problem (1), (2), u−(x) → u∞, p−(x) → p∞ if and only if v±, q± is a solution
of the transmission problem (1),

a+v+−a−v− = g+a−u∞, b+T (v+, q+)n−b−T (v−, q−)n+c+v+ = f−b−p∞n,

v−(x) → 0, q−(x) → 0. According to Proposition 5.3 there exist Φ ∈ W 1,2(∂Ω, Rm),
Ψ ∈ L2(∂Ω, Rm) such that

v± = a−1
± [Dλ±

Ω Φ + E
λ±
Ω Ψ], q± = a−1

± [Πλ±
Ω Φ + Q

λ±
Ω Ψ] in Ω±

is a solution of the problem. The uniqueness of a solution follows from Propo-
sition 5.2.
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6 Robin–transmission problem

Let G ⊂ Rm be a bounded domain with connected Lipschitz boundary, Ω = Ω+

be a bounded open set with Lipschitz boundary such that Ω ⊂ G. Denote
Ω− = G \ Ω, and by n± the outward unit normal of Ω±. Let λ±, c± be non-
negative constants and a±, b± be positive constants. We shall study the Robin–
transmission problem for the Brinkman system (1), (2) accompanied with the
condition

T (u−, p−)n− + c−u− = h on ∂G. (16)

Let g ∈ W 1,2(∂Ω, Rm), f ∈ L2(∂Ω, Rm), h ∈ L2(∂G,Rm). We say that u±,
p± defined on Ω± is an L2-solution of the Robin–transmission problem (1), (2),
(16) if u±, p± satisfy (1); u∗±, p∗±, (∇u)∗± are from L2(∂Ω±, R1); for almost
all x ∈ ∂Ω± there exist the non-tangential limits of u±, ∇u±, p± at x and the
conditions (2), (16) are fulfilled in the sense of the nontangential limit a.e. on
∂Ω−.

Put b̃± = b±/a±, c̃+ = c+/a±. If ũ± = a±u±, p̃± = a±p± then u±, p± is
an L2-solution of the Robin–transmission problem (1), (2), (16) if and only if
ũ±, p̃± is an L2-solution of the Robin–transmission problem (13), (14),

T (ũ−, p̃−)n− + c−ũ− = a−h on ∂G. (17)

Let Φ ∈ W 1,2(∂Ω, Rm), Ψ ∈ L2(∂Ω, Rm), Θ ∈ L2(∂G,Rm). Let ũ+, p̃+ be
given by (15),

ũ− = D
λ−
Ω Φ + E

λ−
Ω Ψ + E

λ−
G Θ, p̃− = Πλ−

Ω Φ + Q
λ−
Ω Ψ + Q

λ−
G Θ in Ω−. (18)

Then ũ±, p̃± is an L2-solution of the Robin–transmission problem (13), (14),
(17) if and only if

Rλ+,λ−,b̃+,b̃−,c̃+,c−(Φ,Ψ,Θ) = [g, f , a−h],

where

Rλ+,λ−,b̃+,b̃−,c̃+,c−(Φ,Ψ,Θ) = [τλ+,λ−
1 (Φ,Ψ)− E

λ−
G Θ,

τ
λ+,λ−,b̃+,b̃−,c̃+
2 (Φ,Ψ)− b̃−T (Eλ−

G Θ, Q
λ−
G Θ)n+,

1
2
Θ−K ′

G,λ−Θ + T (Eλ−
Ω Ψ + D

λ−
Ω Φ, Q

λ−
G Ψ)n− + c−(Eλ−

G Θ + E
λ−
Ω Ψ + D

λ−
Ω Φ].

Lemma 6.1. The operator Rλ+,λ−,b̃+,b̃−,c̃+,c− is a Fredholm operator with in-
dex 0 on W 1,2(∂Ω, Rm)× L2(∂Ω, Rm)× L2(∂G,Rm).

Proof. R : (Φ,Ψ,Θ) 7→ [τλ+,λ−
1 (Φ,Ψ), τλ+,λ−,b̃+,b̃−,c̃+

2 (Φ,Ψ), 1
2Θ−K ′

G,0Θ]
is a Fredholm operator with index 0 on W 1,2(∂Ω, Rm)×L2(∂Ω, Rm)×L2(∂G,Rm)
by [14] and Proposition 5.3. If λ ≥ 0 then K ′

G,λ−K ′
G,0 is compact on L2(∂G,Rm),
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Eλ
G−E0

G is a compact operator from L2(∂G,Rm) to W 1,2(∂G,Rm) (see [5], The-
orem 3.4). Since E0

G is a bounded operator from L2(∂G,Rm) to W 1,2(∂G,Rm),
it is a compact linear operator on L2(∂G,Rm). Thus Rλ+,λ−,b̃+,b̃−,c̃+,c−−R is a
compact operator. Hence Rλ+,λ−,b̃+,b̃−,c̃+,c− is a Fredholm operator with index
0.

Lemma 6.2. Let ũ+, p̃+ be given by (15), and ũ−, p̃− by (18). If ũ± = 0,
p̃± = 0 in Ω± then Φ = 0, Ψ = 0, Θ = 0.

Proof. Define

v = D
λ−
Ω Φ + E

λ−
Ω Ψ + E

λ−
G Θ, q = Πλ−

Ω Φ + Q
λ−
Ω Ψ + Qλ

GΘ in ω = Rm \G.

Continuity of a single layer potential gives that v = u− = 0 on ∂G. Since
v(x) = O(|x|2−m), |∇v(x)| + |q(x)| = O(|x|1−m) as |x| → ∞ then Green’s
formula gives

0 =
∫
∂ω

v · T (v, q)nω dHm−1 =
∫
ω

[|2∇̂v|2 + λ−|v|2] dHm.

Since ∇̂v = 0 we have v ∈ Rm by [12], Lemma 3.1. Behaviour of potentials
at infinity gives that v(x) → 0 as |x| → ∞. This forces that v ≡ 0. Since
∇q = ∆v − λ−v = 0 we deduce that q is constant. Behaviour of potentials at
infinity gives that q ≡ 0.

By virtue of (6) and (7)

Θ = T (ũ−, p̃−)n− − T (v, q)n− = 0.

Denote ω+ = Ω+, ω− = Rm \ω+. If ũ±, p̃± is given by (15) in ω± then ũ±, p̃±
is an L2-solution of the transmission problem

−∆ũ± + λ±ũ± +∇p̃± = 0, ∇ · ũ± = 0 in ω±,

ũ+ − ũ− = 0, b̃+T (ũ+, p̃+)n+ − b̃−T (ũ−, p̃−)n+ + c̃+ũ+ = 0 on ∂ω+.

In particular, τ
λ+,λ−,b̃+,b̃−,c̃+
2 (Φ,Ψ) = 0. Proposition 5.3 gives that Φ = 0,

Ψ = 0.

Proposition 6.3. Let u±, p± be an L2-solution of the Robin–transmission
problem (1), (2), (16) with g = 0, f = 0, h = 0.

• If λ+ + λ− + c+ + c− > 0 then u± ≡ 0, p± ≡ 0.

• If λ+ + λ− + c+ + c− = 0 then p± ≡ 0 and there exists a rigid motion
v ∈ Rm such that u± = v/a±.
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Proof. Using Green’s formula

0 = b−1
−

∫
∂Ω

u− · [b+T (u+, p+)n+ − b−T (u−, p−)n+ + c+u+] dHm−1

+
∫

∂G

u− · [T (u−, p−)n− + c−u−] dHm−1 =
∫

Ω−

[2|∇̂u−|2 + λ−|u−|2] dHm

+
a+b+

a−b−

∫
Ω+

[2|∇̂u+|2+λ+|u+|2] dHm+
∫

∂G

c−|u−|2 dHm−1+
∫

∂Ω

c+a+|u+|2

a−
dHm−1.

Thus ∇̂u± = 0, λ±u± = 0 in Ω±, c+u+ = 0 on ∂Ω, c−u− = 0 on ∂G.
Define v = a±u± on Ω±. Denote by ω1, . . . , ωk all components of G \ ∂Ω.
According to [12], Lemma 3.1 there exist antisymmetric matrices Aj and vectors
Bj such that v(x) = Ajx + Bj in ωj . If ∂ωj ∩ ∂ωi 6= ∅, ωj ⊂ Ω+, ωi ⊂ Ω−
then a+u+ − a−u− = 0 gives (Ajx + Bj) − (Aix + Bi) = 0 on ∂ωj ∩ ∂ωi.
Lemma 5.1 gives that (Ajx + Bj) − (Aix + Bi) = 0 in Rm. Thus v ∈ Rm. If
λ+ + λ− + c+ + c− > 0 then Lemma 5.1 gives that v ≡ 0.

Since ∇p± = ∆u± − λ±u± = 0 there exist constant d1, . . . , dk such that
p = dj on ωj , where p = p± on Ω±. If ∂ωj ∩ ∂ωi 6= ∅, ωj ⊂ Ω+, ωi ⊂ Ω− then
0 = b+T (u+, p+)n+ − b−T (u−, p−)n+ + c+u+ = (bidi − b+dj)n+. Therefore
there is a constant d such that p± = d/b±. On ∂G we have 0 = T (u−, p−)n− =
−dn−/b−. This gives d = 0.

Theorem 6.4. Let λ++λ−+c++c− > 0. Then Rλ+,λ−,b̃+,b̃−,c̃+,c− is an isomor-
phism on W 1,2(∂Ω, Rm) × L2(∂Ω, Rm) × L2(∂G,Rm). Let g ∈ W 1,2(∂Ω, Rm),
f ∈ L2(∂Ω, Rm), h ∈ L2(∂G,Rm). Then there exists a unique L2-solution
u±, p± of the Robin–transmission problem (1), (2), (16). Moreover, u± ∈
H3/2(Ω±, Rm), p± ∈ H1/2(Ω±) and

‖u+‖H3/2(Ω+) + ‖u−‖H3/2(Ω−) + ‖p+‖H1/2(Ω+) + ‖p−‖H1/2(Ω1)

≤ C[‖g‖W 1,2(∂Ω,Rm) + ‖f‖L2(∂Ω,Rm) + ‖h‖L2(∂G,Rm), ]

where C does not depend on g, f and h.

Proof. Rλ+,λ−,b̃+,b̃−,c̃+,c− is a Fredholm operator with index 0 by Lemma 6.1.
Let Rλ+,λ−,b̃+,b̃−,c̃+,c−(Φ,Ψ,Θ) = 0. Let ũ+, p̃+ be given by (15), and ũ−, p̃−
by (18). Then ũ± = 0, p̃± = 0 by Proposition 6.3. Lemma 6.2 gives Φ = 0,
Ψ = 0, Θ = 0. Since Rλ+,λ−,b̃+,b̃−,c̃+,c− is a Fredholm operator with index 0,
we infer that Rλ+,λ−,b̃+,b̃−,c̃+,c− is an isomorphism.

Let g ∈ W 1,2(∂Ω, Rm), f ∈ L2(∂Ω, Rm), h ∈ L2(∂G,Rm) be fixed. Put

(Φ,Ψ,Θ) = (Rλ+,λ−,b̃+,b̃−,c̃+,c−)−1[g, f , a−h].
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Define ũ+, p̃+ by (15), and ũ−, p̃− by (18). Then ũ±, p̃± is an L2-solution of
the Robin–transmission problem (13), (14), (17). Denoting u± = ũ±/a±, p± =
p̃±/a± we obtain an L2 solution of the problem (1), (2), (16). The uniqueness
follows from Proposition 6.3. The rest is a consequence of the fact that E

λ±
Ω±

:

L2(∂Ω±, Rm) → H3/2(Ω±, Rm), D
λ±
Ω±

: W 1,2(∂Ω±, Rm) → H3/2(Ω±, Rm),

Q
λ±
Ω±

: L2(∂Ω±, Rm) → H1/2(Ω±, Rm), Πλ±
Ω±

: W 1,2(∂Ω±, Rm) → H1/2(Ω±, Rm)
are bounded linear operators (see [5] and [14]).

Theorem 6.5. Let λ+ = λ− = c+ = c− = 0, g ∈ W 1,2(∂Ω, Rm), f ∈
L2(∂Ω, Rm), h ∈ L2(∂G,Rm). Then there exists an L2-solution u±, p± of
the Robin–transmission problem (1), (2), (16) if and only if∫

∂Ω

v · f dHm−1 +
∫

∂G

b−v · h dHm−1 = 0 ∀v ∈ Rm. (19)

The general from of an L2-solution of the problem (1), (2), (16) is

u± + v/a±, p±, v ∈ Rm. (20)

Proof. Let u±, p± be an L2-solution of the Robin–transmission problem (1),
(2), (16), v ∈ Rm. Then∫

∂Ω±

v · T (u±, p±)nΩ± dHm−1 = 0

(see [14]). Thus

0 = b+

∫
∂Ω+

v · T (u+, p+)n+ + b−

∫
∂Ω−

v · T (u−, p−)n− =
∫

∂Ω

v · f +
∫

∂G

b−v · h.

Denote by Xb− the space of [g, f ,h] ∈ X = W 1,2(∂Ω, Rm)× L2(∂Ω, Rm)×
L2(∂G,Rm) satisfying (19). We have proved that R0,0,b̃+,b̃−,0,0(X) ⊂ X b̃− .
Therefore codim R0,0,b̃+,b̃−,0,0(X) ≥ codimX b̃− = dimRm.

Let [Φ,Ψ,Θ] ∈ KerR0,0,b̃+,b̃−,0,0. Let ũ+, p̃+ be given by (15), and ũ−,
p̃− by (18). According to Proposition 6.3 there exists v ∈ Rm such that
ũ± = v, p̃± = 0. If v = 0 then Φ = 0, Ψ = 0, Θ = 0 by Lemma 6.2.
Thus dim KerR0,0,b̃+,b̃−,0,0 ≤ dimRm. Since R0,0,b̃+,b̃−,0,0 is a Fredholm op-
erator with index 0 by Lemma 6.1, we deuce that dim KerR0,0,b̃+,b̃−,0,0 =
codim R0,0,b̃+,b̃−,0,0(X) = dimRm. Therefore R0,0,b̃+,b̃−,0,0(X) = X b̃− .

Let now [g, f ,h] ∈ X. We have proved that there exist [Φ,Ψ,Θ] such that
R0,0,b̃+,b̃−,0,0[Φ,Ψ,Θ] = [g, f , a−h]. Let ũ+, p̃+ be given by (15), and ũ−, p̃−

13



by (18), u± = ũ±/a±, p± = p̃±/a±. Then u±, p± is an L2-solution of the
Robin–transmission problem (1), (2), (16). Easy calculation yields that (20)
gives another solution of the problem. Proposition 6.3 gives that each solution
of the problem is of the form (20).

7 Regular Dirichlet–transmission problem

Let G ⊂ Rm be a bounded domain with connected Lipschitz boundary, Ω = Ω+

be a nonempty bounded open set with Lipschitz boundary such that Ω ⊂ G.
Denote Ω− = G \ Ω, and by n± the outward unit normal of Ω±. Let λ±, c+

be non-negative constants and a±, b± be positive constants. We shall study
the regular Dirichlet–transmission problem for the Brinkman system (1), (2)
accompanied with the condition

u− = h on ∂G. (21)

Let g ∈ W 1,2(∂Ω, Rm), f ∈ L2(∂Ω, Rm), h ∈ W 1,2(∂G,Rm). We say that
u±, p± defined on Ω± is an L2-solution of the regular Dirichlet–transmission
problem (1), (2), (21) if u±, p± satisfy (1); u∗±, p∗±, (∇u)∗± are from L2(∂Ω±, R1);
for almost all x ∈ ∂Ω± there exist the non-tangential limits of u±, ∇u±, p±
at x and the conditions (2), (21) are fulfilled in the sense of the nontangential
limit a.e. on ∂Ω−.

Put b̃± = b±/a±, c̃+ = c+/a±. If ũ± = a±u±, p̃± = a±p± then u±, p± is an
L2-solution of the regular Dirichlet–transmission problem (1), (2), (21) if and
only if ũ±, p̃± is an L2-solution of the regular Dirichlet–transmission problem
(13), (14),

ũ− = a−h on ∂G. (22)

Let Φ ∈ W 1,2(∂Ω, Rm), Ψ ∈ L2(∂Ω, Rm), Θ ∈ L2(∂G,Rm). Let ũ+, p̃+ be
given by (15), and ũ−, p̃− be given by (18). Then ũ±, p̃± is an L2-solution of
the regular Dirichlet–transmission problem (13), (14), (22) if and only if

R
λ+,λ−,b̃+,b̃−,c̃+
D (Φ,Ψ,Θ) = [g, f , a−h],

where

R
λ+,λ−,b̃+,b̃−,c̃+
D (Φ,Ψ,Θ) = [τλ+,λ−

1 (Φ,Ψ)− E
λ−
G Θ, τ

λ+,λ−,b̃+,b̃−,c̃+
2 (Φ,Ψ)

−b̃−T (Eλ−
G Θ, Q

λ−
G Θ)n+, D

λ−
Ω Φ + E

λ−
Ω Ψ + E

λ−
G Θ].

Proposition 7.1. Let u±, p± be an L2-solution of the regular Dirichlet–
transmission problem (1), (2), (21) with g = 0, f = 0, h = 0. Then there
exists a constant c such that u± = 0, p± = c/b±.

Proof. Using Green’s formula

0 = b−1
−

∫
∂Ω

u− · [b+T (u+, p+)n+ − b−T (u−, p−)n+ + c+u+] dHm−1
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+
∫

∂G

u− · T (u−, p−)n− dHm−1 =
∫

Ω−

[2|∇̂u−|2 + λ−|u−|2] dHm

+
a+b+

a−b−

∫
Ω+

[2|∇̂u+|2 + λ+|u+|2] dHm +
∫

∂Ω

c+a+|u+|2

a−
dHm−1.

Thus ∇̂u± = 0. According to [12], Lemma 3.1 there exist an antisymmetric
matrix A and a vector B such that u−(x) = Ax + B. Since u− = 0 on ∂G,
Lemma 5.1 gives that u− = 0. Since ∇p− = ∆u− − λ−u− = 0 there exists a
constant c such that p− = c/b−. Let ω be a component of Ω+. According to
[12], Lemma 3.1 there exist an antisymmetric matrix A and a vector B such
that u+(x) = Ax + B in ω. Since u+ = a−u−/a+ = 0 on ∂ω, Lemma 5.1 gives
that u+ = 0 in ω. Since ∇p+ = ∆u+−λ+u+ = 0 there exists a constant C such
that p+ = C in ω. We have 0 = b+T (u+, p+)n+ − b−T (u−, p−)n+ + c+u+ =
−b+Cn+ + b−(c/b−)n+ on ∂ω. Hence p+ = C = c/b+.

Theorem 7.2. Let g ∈ W 1,2(∂Ω, Rm), f ∈ L2(∂Ω, Rm), h ∈ W 1,2(∂G,Rm).
There there exists an L2-solution u±, p± of the regular Dirichlet–transmission
problem (1), (2), (21) if and only if∫

∂Ω

n+ · g dHm−1 + a−

∫
∂G

n− · h dHm−1 = 0 (23)

The general form of a solution of the problem is u±, p± + c/b±, where c is a
constant.

Proof. Suppose that u±, p± be an L2-solution u±, p± of the regular
Dirichlet–transmission problem (1), (2), (21). Then

0 = a+

∫
∂Ω

n+ · u+ + a−

∫
∂G

n− · u− =
∫

∂Ω

n+ · g dHm−1 + a−

∫
∂G

n− · h dHm−1.

R : (Φ,Ψ,Θ) 7→ [τλ+,λ−
1 (Φ,Ψ), τλ+,λ−,b̃+,b̃−,c̃+

2 (Φ,Ψ), E0
GΘ] is a Fredholm

operator with index 0 from X = W 1,2(∂Ω, Rm) × L2(∂Ω, Rm) × L2(∂G,Rm)
to the space Y = W 1,2(∂Ω, Rm) × L2(∂Ω, Rm) × W 1,2(∂G,Rm) by [14] and
Proposition 5.3. If λ ≥ 0 then Eλ

G−E0
G is a compact operator from L2(∂G,Rm)

to W 1,2(∂G,Rm) (see [5], Theorem 3.4). Thus R
λ+,λ−,b̃+,b̃−,c̃+
D −R is a compact

operator. Hence R
λ+,λ−,b̃+,b̃−,c̃+
D is a Fredholm operator from X to Y with index

0. Denote by Z(a−) the set of all [g, f ,h] ∈ Y satisfying (23). We have proved

that R
λ+,λ−,b̃+,b̃−,c̃+
D (X) ⊂ Z(1). Thus codim R

λ+,λ−,b̃+,b̃−,c̃+
D (X) ≥ 1.

Let now R
λ+,λ−,b̃+,b̃−,c̃+
D (Φ,Ψ,Θ) = 0. Let ũ+, p̃+ be given by (15), and

ũ−, p̃− be given by (18). Then ũ±, p̃± is an L2-solution of the regular Dirichlet–
transmission problem (13), (14), (22) with g = 0, f = 0, h = 0. Proposition 7.1
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gives that there exists a constant c such that u± = 0, p± = c/b̃±. If c = 0

then Φ = 0, Ψ = 0, Θ = 0 by Lemma 6.2. Therefore dim KerR
λ+,λ−,b̃+,b̃−,c̃+
D ≤

1. Hence 1 ≤ codim R
λ+,λ−,b̃+,b̃−,c̃+
D (X) = dim KerR

λ+,λ−,b̃+,b̃−,c̃+
D ≤ 1. This

forces R
λ+,λ−,b̃+,b̃−,c̃+
D (X) = Z(1).

Suppose now that (23) is fulfilled. We have proved that there exists [Φ,Ψ,Θ] ∈
X such that R

λ+,λ−,b̃+,b̃−,c̃+
D (Φ,Ψ,Θ) = [g, f , a−h]. Let ũ+, p̃+ be given by

(15), and ũ−, p̃− be given by (18). Then ũ±, p̃± is an L2-solution of the regular
Dirichlet–transmission problem (13), (14), (22). So u± = ũ±/a±, p± = p̃±/a±
is an L2-solution of (1), (2), (21). If c is a constant, then easy calculation gives
that u±, p±+ c/b± is a solution of the problem, too. Proposition 7.1 gives that
each solution of the problem has this form.
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Žitná 25,
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