INSTITUTE of MATHEMATICS

ACADEMY of SCIENCES of the CZECH REPUBLIC

Transmission problem for the Brinkman system

Dagmar Medková

Preprint No. 43-2013
PRAHA 2013

Transmission problem for the Brinkman system

D. Medková

Abstract

L^{2}\)-solutions of the transmission problem, the Robin-transmission problem and the Dirichlet-transmission problem for the Brinkman system are studied by the integral equation method. The necessary and sufficient conditions for the solvability are given. The uniqueness of a solution is also studied.

Keywords. Brinkman system, transmission problem, single layer potential, double layer potential

MSC 2000: 35Q35, 35Q30

1 Introduction

The integral equation method is one of traditional methods in hydrodynamics ([3], [10],[11], [14], [15], [17]). This method is especially fruitful for transmission problems ([1], [5], [6], [7],[8], [9],[14]). In this paper we study the following transmission problem: Let $\Omega=\Omega_{+} \subset R^{m}, m>2$, be a bounded open set with Lipschitz boundary. Denote $\Omega_{-}=R^{m} \backslash \bar{\Omega}_{+}$, where $\bar{\Omega}_{+}$is the closure of Ω_{+}. Let $\lambda_{+}, \lambda_{-}, c_{+}$be non-negative constants and $a_{+}, a_{-}, b_{+}, b_{-}$positive constants. We study the transmission problem for the Brinkman system

$$
\begin{gathered}
-\Delta \mathbf{u}_{ \pm}+\lambda_{ \pm} \mathbf{u}_{ \pm}+\nabla p_{ \pm}=0, \quad \nabla \cdot \mathbf{u}_{ \pm}=0 \quad \text { in } \quad \Omega_{ \pm} \\
a_{+} \mathbf{u}_{+}-a_{-} \mathbf{u}_{-}=\mathbf{g}, \quad b_{+} T\left(\mathbf{u}_{+}, p_{+}\right) \mathbf{n}_{+}-b_{-} T\left(\mathbf{u}_{-}, p_{-}\right) \mathbf{n}_{+}+c_{+} \mathbf{u}_{+}=\mathbf{f} \quad \text { on } \partial \Omega
\end{gathered}
$$

Here $\mathbf{g} \in W^{1,2}\left(\partial \Omega, R^{m}\right), \mathbf{f} \in L^{2}\left(\partial \Omega, R^{m}\right)$. We look for an L^{2}-solution of the problem, i.e. the nontangential maximal functions of $\mathbf{u}_{ \pm}, \nabla \mathbf{u}_{ \pm}$and $p_{ \pm}$are in $L^{2}(\partial \Omega)$ and the boundary conditions are fulfilled in the sense of the nontangential limit. This problem was studied in [14] for $c_{+}=0, \lambda_{ \pm}=0$, and in [6] for $a_{ \pm}=b_{ \pm}=1, c_{+}=0$. We study the transmission problem for arbitrary $\lambda_{ \pm}, a_{ \pm}$, $b_{ \pm}$and c_{+}.

In all preceding papers the transmission problem is studied under additional condition concerning behaviour of \mathbf{u}_{-}and p_{-}at infinity. To remove this additional condition we study behaviour of a solution of the Brinkman system at infinity and we prove the theorem of Liouville's type. From this we deduce that if the nontangential maximal function corresponding to \mathbf{u}_{-}and p_{-}is in $L^{2}(\partial \Omega)$, then there exist $\mathbf{u}_{\infty} \in R^{m}, p_{\infty} \in R^{1}$ such that $\mathbf{u}_{-}(\mathbf{x}) \rightarrow \mathbf{u}_{\infty}, p_{-}(\mathbf{x}) \rightarrow p_{\infty}$ as $|\mathbf{x}| \rightarrow \infty$, and $\left|\mathbf{u}_{-}(\mathbf{x})-\mathbf{u}_{\infty}(\mathbf{x})\right|=O\left(|\mathbf{x}|^{2-m}\right),\left|\nabla \mathbf{u}_{-}\right|+\left|p_{-}(\mathbf{x})-p_{\infty}\right|=O\left(|\mathbf{x}|^{1-m}\right)$.

At the end we study the Robin-transmission and the Dirichlet-transmission problems. Let $G \subset R^{m}$ be a bounded domain with connected Lipschitz boundary, $\Omega=\Omega_{+}$be a bounded open set with Lipschitz boundary such that $\bar{\Omega} \subset G$. Denote $\Omega_{-}=G \backslash \bar{\Omega}$, and by $\mathbf{n}_{ \pm}$the outward unit normal of $\Omega_{ \pm}$. Let $\lambda_{ \pm}, c_{ \pm}$ be non-negative constants and $a_{ \pm}, b_{ \pm}$be positive constants. We study by the integral equation method the Robin-transmission problem for the Brinkman system

$$
-\Delta \mathbf{u}_{ \pm}+\lambda_{ \pm} \mathbf{u}_{ \pm}+\nabla p_{ \pm}=0, \quad \nabla \cdot \mathbf{u}_{ \pm}=0 \quad \text { in } \quad \Omega_{ \pm}
$$

$$
\begin{array}{cc}
a_{+} \mathbf{u}_{+}-a_{-} \mathbf{u}_{-}=\mathbf{g}, & b_{+} T\left(\mathbf{u}_{+}, p_{+}\right) \mathbf{n}_{+}-b_{-} T\left(\mathbf{u}_{-}, p_{-}\right) \mathbf{n}_{+}+c_{+} \mathbf{u}_{+}=\mathbf{f} \quad \text { on } \partial \Omega, \\
& T\left(\mathbf{u}_{-}, p_{-}\right) \mathbf{n}_{-}+c_{-} \mathbf{u}_{-}=\mathbf{h} \\
\text { on } \partial G .
\end{array}
$$

Here $\mathbf{g} \in W^{1,2}\left(\partial \Omega, R^{m}\right), \mathbf{f} \in L^{2}\left(\partial \Omega, R^{m}\right), \mathbf{h} \in L^{2}(\partial G)$. We look for an L^{2} solution of the problem, i.e. the nontangential maximal functions of $\mathbf{u}_{ \pm}, \nabla \mathbf{u}_{ \pm}$ and $p_{ \pm}$are in $L^{2}\left(\partial \Omega_{-}\right)$and the boundary conditions are fulfilled in the sense of the nontangential limit. This problem was studied in ([5]) for $c_{ \pm}=0, a_{ \pm}=$ $b_{ \pm}=1, \lambda_{+}=0$.

Then the regular Dirichlet-transmission problem is studied by the integral equation method:

$$
\begin{gathered}
-\Delta \mathbf{u}_{ \pm}+\lambda_{ \pm} \mathbf{u}_{ \pm}+\nabla p_{ \pm}=0, \quad \nabla \cdot \mathbf{u}_{ \pm}=0 \quad \text { in } \quad \Omega_{ \pm} \\
a_{+} \mathbf{u}_{+}-a_{-} \mathbf{u}_{-}=\mathbf{g}, \quad b_{+} T\left(\mathbf{u}_{+}, p_{+}\right) \mathbf{n}_{+}-b_{-} T\left(\mathbf{u}_{-}, p_{-}\right) \mathbf{n}_{+}+c_{+} \mathbf{u}_{+}=\mathbf{f} \quad \text { on } \partial \Omega \\
\mathbf{u}_{-}=\mathbf{h} \quad \text { on } \partial G
\end{gathered}
$$

Here $\mathbf{g} \in W^{1,2}\left(\partial \Omega, R^{m}\right), \mathbf{f} \in L^{2}\left(\partial \Omega, R^{m}\right), \mathbf{h} \in W^{1,2}(\partial G)$. We look for an L^{2} solution of the problem, i.e. the nontangential maximal functions of $\mathbf{u}_{ \pm}, \nabla \mathbf{u}_{ \pm}$ and $p_{ \pm}$are in $L^{2}\left(\partial \Omega_{-}\right)$and the boundary conditions are fulfilled in the sense of the nontangential limit. This problem was studied in [8] for $a_{ \pm}=b_{ \pm}=1$, $c_{+}=0$.

2 Formulation of the transmission problem

Let $\Omega=\Omega_{+} \subset R^{m}, m>2$, be a bounded open set with Lipschitz boundary. Denote $\Omega_{-}=R^{m} \backslash \bar{\Omega}_{+}$, where $\bar{\Omega}_{+}$is the closure of Ω_{+}. Denote by $\mathbf{n}=\mathbf{n}_{+}=\mathbf{n}^{\Omega}$ the outward unit normal of Ω_{+}. Let $\lambda_{+}, \lambda_{-}, c_{+}$be non-negative constants and $a_{+}, a_{-}, b_{+}, b_{-}$positive constants. We shall study the transmission problem for the Brinkman system

$$
\begin{align*}
&-\Delta \mathbf{u}_{ \pm}+\lambda_{ \pm} \mathbf{u}_{ \pm}+\nabla p_{ \pm}=0, \quad \nabla \cdot \mathbf{u}_{ \pm}=0 \quad \text { in } \quad \Omega_{ \pm} \tag{1}\\
& a_{+} \mathbf{u}_{+}-a_{-} \mathbf{u}_{-}=\mathbf{g}, b_{+} T\left(\mathbf{u}_{+}, p_{+}\right) \mathbf{n}_{+}-b_{-} T\left(\mathbf{u}_{-}, p_{-}\right) \mathbf{n}_{+}+c_{+} \mathbf{u}_{+}=\mathbf{f} \quad \text { on } \partial \Omega
\end{align*}
$$

If $\mathbf{u}=\left(u_{1}, \ldots, u_{m}\right)$ is a velocity field, p is a pressure, denote

$$
T(\mathbf{u}, p)=2 \hat{\nabla} \mathbf{u}-p I
$$

the corresponding stress tensor. Here I denotes the identity matrix and

$$
\hat{\nabla} \mathbf{u}=\frac{1}{2}\left[\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}\right]
$$

is the strain tensor, with $(\nabla \mathbf{u})^{T}$ as the matrix transposed to $\nabla \mathbf{u}=\left(\partial_{j} u_{k}\right)$, $(k, j=1, \ldots, m)$. Denote $\nabla \cdot \mathbf{u}=\partial_{1} u_{1}+\ldots+\partial_{m} u_{m}$ the divergence of \mathbf{u}.

Now we define an L^{2}-solution of the transmission problem. Let G be an open set with Lipschitz boundary. If $\mathbf{x} \in \partial G, a>0$ denote the non-tangential approach region of opening a at the point \mathbf{x} by

$$
\Gamma_{a}^{G}(\mathbf{x}):=\{\mathbf{y} \in G ;|\mathbf{x}-\mathbf{y}|<(1+a) \operatorname{dist}(\mathbf{y}, \partial G)\}
$$

If now \mathbf{v} is a vector function defined in G we denote the non-tangential maximal function of \mathbf{v} on ∂G by

$$
\mathbf{v}_{G}^{*}(\mathbf{x}):=\sup \left\{|\mathbf{v}(\mathbf{y})| ; \mathbf{y} \in \Gamma_{a}^{G}(\mathbf{x})\right\}
$$

If $\mathbf{x} \in \partial G, \Gamma(\mathbf{x})=\Gamma_{a}^{G}(\mathbf{x})$ then

$$
\mathbf{v}(\mathbf{x})=\lim _{\substack{\mathbf{y} \rightarrow \mathbf{x} \\ \mathbf{y} \in \Gamma(\mathbf{x})}} \mathbf{v}(\mathbf{y})
$$

is the non-tangential limit of \mathbf{v} with respect to G at \mathbf{x}.
Let $\mathbf{g} \in W^{1,2}\left(\partial \Omega, R^{m}\right), \mathbf{f} \in L^{2}\left(\partial \Omega, R^{m}\right)$. We say that $\mathbf{u}_{ \pm}$, $p_{ \pm}$defined on $\Omega_{ \pm}$is an L^{2}-solution of the transmission problem (1), (2) if $\mathbf{u}_{ \pm}, p_{ \pm}$satisfy (1); $\mathbf{u}_{ \pm}^{*}, p_{ \pm}^{*},(\nabla \mathbf{u})_{ \pm}^{*}$ are from $L^{2}\left(\partial \Omega, R^{1}\right)$; for almost all $\mathbf{x} \in \partial \Omega$ there exist the nontangential limits of $\mathbf{u}_{ \pm}, \nabla \mathbf{u}_{ \pm}, p_{ \pm}$at \mathbf{x} and the condition (2) is fulfilled in the sense of the nontangential limit a.e. on $\partial \Omega$.

3 The surface potentials

We shall look for a solution of the transmission problem by the integral equation method. The aim of this section is to assemble some basic facts on surface potentials for the Brinkman system.

For $\lambda \geq 0$ denote by $E^{\lambda}(\mathbf{x})=\left\{E_{i j}^{\lambda}(\mathbf{x})\right\}_{i, j=1, \ldots, m}, Q^{\lambda}(\mathbf{x})=\left\{Q_{j}^{\lambda}(\mathbf{x})\right\}_{j=1, \ldots, m}$ the fundamental matrix for the Brinkman system

$$
\begin{equation*}
-\Delta \mathbf{u}+\lambda \mathbf{u}+\nabla p=0, \quad \nabla \cdot \mathbf{u}=0 \tag{3}
\end{equation*}
$$

such that $E^{\lambda}(\mathbf{x}) \rightarrow 0, Q^{\lambda}(\mathbf{x}) \rightarrow 0$ as $|\mathbf{x}| \rightarrow \infty$. If j is fixed, $\mathbf{u}=\left(E_{1 j}, \ldots, E_{m j}\right)$, $p=Q_{j}$ then \mathbf{u}, p is a solution of the Brinkman system (3) in $R^{m} \backslash\{0\}$. If $\lambda=0$ then the fundamental matrix for the Stokes system is given by

$$
E_{i j}^{0}(\mathbf{x})=\frac{1}{2 \omega_{m}}\left[\delta_{i j} \frac{|\mathbf{x}|^{2-m}}{m-2}+\frac{x_{i} x_{j}}{|\mathbf{x}|^{m}}\right], \quad Q_{j}^{0}(\mathbf{x})=\frac{x_{j}}{\omega_{m}|\mathbf{x}|^{m}}
$$

where ω_{m} denotes the surface of the unit sphere in R^{m}. (See [17] or [14].) The fundamental matrix for $\lambda>0$ are studies in Chapter 2 of [17]:

$$
Q^{\lambda}(\mathbf{x})=Q^{0}(\mathbf{x})
$$

$$
\begin{aligned}
E_{i j}^{\lambda}(\mathbf{x})= & \frac{1}{\omega_{m}}\left[\frac{\delta_{i j}}{|\mathbf{x}|^{m-2}} A_{1}(\sqrt{\lambda}|\mathbf{x}|)+\frac{x_{i} x_{j}}{|\mathbf{x}|^{m}} A_{2}(\sqrt{\lambda}|\mathbf{x}|)\right] \\
A_{1}(t)= & \frac{t^{m / 2-1} K_{m / 2-1}(t)}{2^{m / 2-1} \Gamma(m / 2)}+\frac{t^{m / 2-2} K_{m / 2}(t)}{2^{m / 2-1} \Gamma(m / 2)}-\frac{1}{t^{2}} \\
& A_{2}(t)=\frac{m}{t^{2}}-\frac{t^{m / 2-1} K_{m / 2+1}(t)}{2^{m / 2-1} \Gamma(m / 2)}
\end{aligned}
$$

where K_{ν} is the modified Bessel function of order ν. If $\lambda>0$ then

$$
\left|E^{\lambda}(\mathbf{x})\right|=O\left(|\mathbf{x}|^{-m}\right), \quad\left|\nabla E^{\lambda}(\mathbf{x})\right|=O\left(|\mathbf{x}|^{1-m}\right) \quad \text { as }|\mathbf{x}| \rightarrow \infty
$$

Since $E^{\lambda} \in \mathcal{C}^{\infty}\left(R^{m} \backslash\{0\} ; R^{m \times m}\right), Q^{\lambda} \in \mathcal{C}^{\infty}\left(R^{m} \backslash\{0\} ; R^{m}\right)$, we can define for $\boldsymbol{\Psi} \in L^{2}\left(\partial \Omega, R^{m}\right)$ the single layer potential with density $\boldsymbol{\Psi}$ by

$$
\begin{equation*}
\left(E_{\Omega}^{\lambda} \mathbf{\Psi}\right)(\mathbf{x})=\int_{\partial \Omega} E^{\lambda}(\mathbf{x}-\mathbf{y}) \boldsymbol{\Psi}(\mathbf{y}) \mathrm{d} \mathcal{H}_{m-1}(\mathbf{y}) \tag{4}
\end{equation*}
$$

and the corresponding pressure by

$$
\begin{equation*}
\left(Q_{\Omega}^{\lambda} \Psi\right)(\mathbf{x})=\int_{\partial \Omega} Q^{\lambda}(\mathbf{x}-\mathbf{y}) \mathbf{\Psi}(\mathbf{y}) \mathrm{d} \mathcal{H}_{m-1}(\mathbf{y}) \tag{5}
\end{equation*}
$$

Then $E_{\Omega}^{\lambda} \boldsymbol{\Psi} \in \mathcal{C}^{\infty}\left(R^{m} \backslash \partial \Omega, R^{m}\right), Q_{\Omega}^{\lambda} \boldsymbol{\Psi} \in \mathcal{C}^{\infty}\left(R^{m} \backslash \partial \Omega, R^{1}\right), \nabla Q_{\Omega}^{\lambda} \boldsymbol{\Psi}-\Delta E_{\Omega}^{\lambda} \boldsymbol{\Psi}+$ $\lambda E_{\Omega}^{\lambda} \boldsymbol{\Psi}=0, \nabla \cdot E_{\Omega}^{\lambda} \boldsymbol{\Psi}=0$ in $R^{m} \backslash \partial \Omega$.
$E_{\Omega}^{\lambda} \boldsymbol{\Psi}$ can be defined for almost all $\mathbf{x} \in \partial \Omega$ and $E_{\Omega}^{\lambda} \boldsymbol{\Psi}(\mathbf{x})$ is the non-tangential limit of $E_{\Omega}^{\lambda} \boldsymbol{\Psi}$. The nontangential maximal function of $E_{\Omega}^{\lambda} \boldsymbol{\Psi}, \nabla E_{\Omega}^{\lambda} \boldsymbol{\Psi}, Q_{\Omega}^{\lambda} \boldsymbol{\Psi}$ with respect to Ω_{+}and Ω_{-}is in $L^{2}(\partial \Omega)$ (see [4], Lemma 2.1.4). Moreover, E_{Ω}^{λ} is a bounded linear operator from $L^{2}\left(\partial \Omega, R^{m}\right)$ to $W^{1,2}\left(\partial \Omega, R^{m}\right)$. (For $\lambda=0$ see [14], for $\lambda>0$ see for example [5].)

Denote

$$
K_{\Omega}^{\lambda}(\mathbf{y}, \mathbf{x})=-T_{\mathbf{x}}\left(E^{\lambda}(\mathbf{x}-\mathbf{y}), Q^{\lambda}(\mathbf{x}-\mathbf{y})\right) \mathbf{n}^{\Omega}(\mathbf{x})
$$

For $\boldsymbol{\Psi} \in L^{2}\left(\partial \Omega, R^{m}\right)$ define

$$
K_{\Omega, \lambda}^{\prime} \boldsymbol{\Psi}(\mathbf{x})=\lim _{\epsilon \searrow 0} \int_{\partial \Omega \backslash B(\mathbf{x} ; \epsilon)} K_{\Omega}^{\lambda}(\mathbf{y}, \mathbf{x}) \boldsymbol{\Psi}(\mathbf{y}) \mathrm{d} \mathcal{H}_{m-1}(\mathbf{y})
$$

where $B(\mathbf{x} ; \epsilon)=\{\mathbf{y} ;|\mathbf{x}-\mathbf{y}|<\epsilon\}$. Then $K_{\Omega, \lambda}^{\prime}$ is a bounded linear operator on $L^{2}\left(\partial \Omega, R^{m}\right)$. If $\boldsymbol{\Psi} \in L^{2}\left(\partial \Omega, R^{m}\right)$ then there exist the non-tangential limits $\left.\left[\nabla E_{\Omega}^{\lambda} \Psi(\mathbf{x})\right]_{ \pm},\left[Q_{\Omega}^{\lambda} \Psi\right)(\mathbf{x})\right]_{ \pm}$of $\nabla E_{\Omega}^{\lambda} \Psi, Q_{\Omega}^{\lambda} \boldsymbol{\Psi}$ with respect to $\Omega_{ \pm}$at almost all $\mathbf{x} \in \partial \Omega$, and

$$
\begin{equation*}
\left[T\left(E_{\Omega}^{\lambda} \boldsymbol{\Psi}, Q_{\Omega}^{\lambda} \boldsymbol{\Psi}\right)\right]_{+} \mathbf{n}^{\Omega}=\frac{1}{2} \boldsymbol{\Psi}-K_{\Omega, \lambda}^{\prime} \boldsymbol{\Psi} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\left[T\left(E_{\Omega}^{\lambda} \boldsymbol{\Psi}, Q_{\Omega}^{\lambda} \boldsymbol{\Psi}\right)\right]_{-} \mathbf{n}^{\Omega}=-\frac{1}{2} \boldsymbol{\Psi}-K_{\Omega, \lambda}^{\prime} \boldsymbol{\Psi} \tag{7}
\end{equation*}
$$

(For $\lambda=0$ see [14], for $\lambda>0$ see for example [5]. See also [13].)
Now we define a double layer potential. For $\Psi \in L^{2}\left(\partial \Omega, R^{m}\right)$ define in $R^{m} \backslash \partial \Omega$

$$
\begin{equation*}
\left(D_{\Omega}^{\lambda} \mathbf{\Psi}\right)(\mathbf{x})=\int_{\partial \Omega} K_{\Omega}^{\lambda}(\mathbf{x}, \mathbf{y}) \boldsymbol{\Psi}(\mathbf{y}) \mathrm{d} \mathcal{H}_{m-1}(\mathbf{y}) \tag{8}
\end{equation*}
$$

and the corresponding pressure by

$$
\begin{equation*}
\left(\Pi_{\Omega}^{\lambda} \mathbf{\Psi}\right)(\mathbf{x})=\int_{\partial \Omega} \Pi_{\Omega}^{\lambda}(\mathbf{x}, \mathbf{y}) \mathbf{\Psi}(\mathbf{y}) \mathrm{d} \mathcal{H}_{m-1}(\mathbf{y}) \tag{9}
\end{equation*}
$$

where
$\Pi_{\Omega}^{\lambda}(\mathbf{x}, \mathbf{y})=\frac{1}{\omega_{m}}\left\{-(\mathbf{y}-\mathbf{x}) \frac{2 m(\mathbf{y}-\mathbf{x}) \cdot \mathbf{n}^{\Omega}(\mathbf{y})}{|\mathbf{y}-\mathbf{x}|^{m+2}}+\frac{2 \mathbf{n}^{\Omega}(\mathbf{y})}{|\mathbf{y}-\mathbf{x}|^{m}}-\lambda \frac{|\mathbf{x}-\mathbf{y}|^{2-m}}{m-2} \mathbf{n}^{\Omega}(\mathbf{y})\right\}$.
Then $D_{\Omega}^{\lambda} \boldsymbol{\Psi} \in \mathcal{C}^{\infty}\left(R^{m} \backslash \partial \Omega, R^{m}\right), \Pi_{\Omega}^{\lambda} \boldsymbol{\Psi} \in \mathcal{C}^{\infty}\left(R^{m} \backslash \partial \Omega, R^{1}\right)$ and $\nabla \Pi_{\Omega}^{\lambda} \boldsymbol{\Psi}-$ $\Delta D_{\Omega}^{\lambda} \boldsymbol{\Psi}+\lambda D_{\Omega}^{\lambda} \boldsymbol{\Psi}=0, \nabla \cdot D_{\Omega}^{\lambda} \Psi=0$ in $R^{m} \backslash \partial \Omega$.

Define

$$
K_{\Omega, \lambda} \boldsymbol{\Psi}(\mathbf{x})=\lim _{\epsilon \searrow 0} \int_{\partial \Omega \backslash B(\mathbf{x} ; \epsilon)} K_{\Omega}^{\lambda}(\mathbf{x}, \mathbf{y}) \Psi(\mathbf{y}) \mathrm{d} \mathcal{H}_{m-1}(\mathbf{y}), \quad \mathbf{x} \in \partial \Omega
$$

Then $K_{\Omega, \lambda}$ is a bounded linear operator on $L^{2}\left(\partial \Omega ; R^{m}\right)$ (adjoint to $\left.K_{\Omega, \lambda}^{\prime}\right)$. There exists the nontangential limit $\left[D_{\Omega}^{\lambda} \boldsymbol{\Psi}\right]_{+}(\mathbf{x})$ of $D_{\Omega}^{\lambda} \boldsymbol{\Psi}$ with respect to Ω_{+}and the nontangential limit $\left[D_{\Omega}^{\lambda} \Psi\right]_{-}(\mathbf{x})$ of $D_{\Omega}^{\lambda} \Psi$ with respect to Ω_{-}for almost all $\mathbf{x} \in \partial \Omega$ and

$$
\begin{equation*}
\left[D_{\Omega}^{\lambda} \boldsymbol{\Psi}\right]_{+}(\mathbf{x})=\frac{1}{2} \boldsymbol{\Psi}(\mathbf{z})+K_{\Omega, \lambda} \boldsymbol{\Psi}(\mathbf{z}), \quad\left[D_{\Omega}^{\lambda} \boldsymbol{\Psi}\right]_{-}(\mathbf{x})=-\frac{1}{2} \mathbf{\Psi}(\mathbf{z})+K_{\Omega, \lambda} \boldsymbol{\Psi}(\mathbf{z}) \tag{10}
\end{equation*}
$$

If $\boldsymbol{\Psi} \in W^{1,2}\left(\partial \Omega, R^{m}\right)$ then $\left[\left|D_{\Omega}^{\lambda} \boldsymbol{\Psi}\right|\right]_{\Omega_{ \pm}}^{*}+\left[\left|\nabla D_{\Omega}^{\lambda} \boldsymbol{\Psi}\right|\right]_{\Omega_{ \pm}}^{*} \in L^{2}(\partial \Omega)$ and at almost all points of $\partial \Omega$ there exist the nontangential limits of $\nabla D_{\Omega}^{\lambda} \boldsymbol{\Psi}$ with respect to Ω_{+} and with respect to Ω_{-}. Moreover, $\left[T\left(D_{\Omega}^{\lambda} \boldsymbol{\Psi}, \Pi_{\Omega}^{\lambda} \boldsymbol{\Psi}\right)\right]_{+} \mathbf{n}^{\Omega}=\left[T\left(D_{\Omega}^{\lambda} \boldsymbol{\Psi}, \Pi_{\Omega}^{\lambda} \boldsymbol{\Psi}\right)\right]_{-} \mathbf{n}^{\Omega}$. (For $\lambda=0$ see [14], for $\lambda>0$ see for example [5].)

4 Behaviour at infinity

Proposition 4.1. Let $\lambda \geq 0, u_{1}, \ldots, u_{k}$ and p be tempered distributions in $R^{k}, k \geq 2, \mathbf{u}=\left(u_{1}, \ldots, u_{k}\right)$. If $-\Delta \mathbf{u}+\lambda \mathbf{u}+\nabla p=0, \nabla \cdot \mathbf{u}=0$ in the sense of distributions in R^{k}, then u_{1}, \ldots, u_{k} and p are polynomials.

Proof. Denote by $\mathcal{F} f$ the Fourier transformation of f. Since $-\Delta \mathbf{u}+\lambda \mathbf{u}+$ $\nabla p=0, \nabla \cdot \mathbf{u}=0$, the Fourier transformation gives

$$
\begin{equation*}
|\mathbf{x}|^{2} \mathcal{F} \mathbf{u}(\mathbf{x})+\lambda \mathcal{F} \mathbf{u}(\mathbf{x})+\mathbf{x} \mathcal{F} p(\mathbf{x})=0 \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{x} \cdot \mathcal{F} \mathbf{u}(\mathbf{x})=0 \tag{12}
\end{equation*}
$$

Using (11), (12)

$$
0=\mathbf{x} \cdot\left[\left(|\mathbf{x}|^{2}+\lambda\right) \mathcal{F} \mathbf{u}+\mathbf{x} \mathcal{F} p(\mathbf{x})\right]=|\mathbf{x}|^{2} \mathcal{F} p(\mathbf{x})
$$

Thus $\mathcal{F} p=0$ on $R^{k} \backslash\{0\}$. If $\mathbf{x} \in R^{k} \backslash\{0\}$ then

$$
0=|\mathbf{x}|^{2} \mathcal{F} \mathbf{u}(\mathbf{x})+\lambda \mathcal{F} \mathbf{u}(\mathbf{x})+\mathbf{x} \mathcal{F} p(\mathbf{x})=\left(|\mathbf{x}|^{2}+\lambda\right) \mathcal{F} \mathbf{u}
$$

Therefore $\mathcal{F} u_{j}=0$ in $R^{k} \backslash\{0\}$. According to [16], Chapter II, $\S 10$, there exist $n \in N_{0}$ and constants a_{α} such that

$$
\mathcal{F} u_{j}=\sum_{|\alpha| \leq n} a_{\alpha} \partial^{\alpha} \delta_{0} .
$$

Set

$$
P_{j}(x)=\sum_{|\alpha| \leq n} a_{\alpha}(-i x)^{\alpha} .
$$

Then

$$
\mathcal{F} P_{j}=\sum_{|\alpha| \leq n} a_{\alpha} \mathcal{F}\left[(-i x)^{\alpha} 1\right]=\sum_{|\alpha| \leq n} a_{\alpha} \partial^{\alpha} \delta_{0}=\mathcal{F} u_{j} .
$$

Since the Fourier transform is an isomorphism on the space of tempered distributions we infer that $u_{j}=P_{j}$. Similarly for p.

Proposition 4.2. Let \mathbf{u}, p be a bounded solution of the Brinkman system $-\Delta \mathbf{u}+\lambda \mathbf{u}+\nabla p=0, \nabla \cdot \mathbf{u}=0$ in $R^{m} \backslash F$, where F is a compact subset of $R^{m}, m>2, \lambda \geq 0$. Then there exist $p_{\infty} \in R^{1}, \mathbf{u}_{\infty} \in R^{m}$ such that $p(\mathbf{x}) \rightarrow p_{\infty}, \mathbf{u}(\mathbf{x}) \rightarrow \mathbf{u}_{\infty}$ as $|\mathbf{x}| \rightarrow \infty$. Moreover, $\left|p(\mathbf{x})-p_{\infty}\right|=O\left(|\mathbf{x}|^{1-m}\right)$, $\left|\mathbf{u}(\mathbf{x})-\mathbf{u}_{\infty}\right|=O\left(|\mathbf{x}|^{2-m}\right),|\nabla \mathbf{u}(\mathbf{x})|=O\left(|\mathbf{x}|^{1-m}\right)$ as $|\mathbf{x}| \rightarrow \infty$. If $\lambda>0$ then $\mathbf{u}_{\infty}=0$.

Proof. Fix $\varphi \in \mathcal{C}^{\infty}\left(R^{m}\right)$ such that $\varphi=0$ on a neighbourhood of F and $\varphi=1$ on $R^{m} \backslash B(0 ; r)$ for some $r>0$. Define $\tilde{\mathbf{u}}=\varphi \mathbf{u}, \tilde{p}=\varphi p$ on $R^{m} \backslash F$; $\tilde{\mathbf{u}}=0, \tilde{p}=$ on F. Denote $\left(f_{1}, \ldots, f_{m}\right)^{T}=-\Delta \tilde{\mathbf{u}}+\lambda \tilde{\mathbf{u}}+\nabla \tilde{p}, f_{m+1}=\nabla \cdot \tilde{\mathbf{u}}, \mathbf{f}=$ $\left(f_{1}, \ldots, f_{m+1}\right)^{T}$. Define the $(m+1) \times(m+1)$ matrix function \tilde{E}^{λ} by $\tilde{E}_{i j}^{\lambda}=E_{i j}^{\lambda}$, $\tilde{E}_{m+1, j}^{\lambda}=\tilde{E}_{j, m+1}^{\lambda}=Q_{j}^{\lambda}$ for $i, j \leq m, \tilde{E}_{m+1, m+1}(\mathbf{x})=\delta(x)+\lambda|\mathbf{x}|^{2-m} /[(m-$ 2) $\left.\omega_{m}\right]$. Denote $\left(v_{1}, \ldots, v_{m}, q\right)^{T}=\tilde{E}^{\lambda} * \mathbf{f}, \mathbf{v}=\left(v_{1}, \ldots, v_{m}\right)^{T}$, where $*$ means the convolution. Then $-\Delta \mathbf{v}+\lambda \mathbf{v}+\nabla q=\left(f_{1}, \ldots, f_{m}\right)^{T}, \nabla \cdot \mathbf{v}=f_{m+1}$ by [17], $\S 2.1$. According to a behaviour of \tilde{E}^{λ} at infinity we see that $|\mathbf{v}(\mathbf{x})|=O\left(|\mathbf{x}|^{2-m}\right)$, $|\nabla \mathbf{v}(\mathbf{x})|+|q(\mathbf{x})|=O\left(|\mathbf{x}|^{1-m}\right)$ as $|\mathbf{x}| \rightarrow \infty$. Since the functions $u_{j}-v_{j}, p-q$ are bounded, they are tempered distributions (see [2], Example 14.22). Since $-\Delta(\tilde{\mathbf{u}}-\mathbf{v})+\lambda(\tilde{\mathbf{u}}-\mathbf{v})+\nabla(\tilde{p}-q)=0, \nabla \cdot(\mathbf{u}-\mathbf{v})=0$ in R^{m}, Proposition 4.1 gives that $\tilde{u}_{j}-v_{j}, \tilde{p}-q$ are polynomials. Since $\tilde{u}_{j}-v_{j}, \tilde{p}-q$ are bounded there exist $p_{\infty} \in R^{1}, \mathbf{u}_{\infty} \in R^{m}$ such that $\tilde{p}-q=p_{\infty}, \tilde{\mathbf{u}}-\mathbf{v}=\mathbf{u}_{\infty}$. If $\lambda>0$ then $0=-\Delta(\tilde{\mathbf{u}}-\mathbf{v})+\lambda(\tilde{\mathbf{u}}-\mathbf{v})+\nabla(\tilde{p}-q)=\lambda \mathbf{u}_{\infty}$ and thus $\mathbf{u}_{\infty}=0$.

5 Solution of the transmission problem

Put $\tilde{b}_{ \pm}=b_{ \pm} / a_{ \pm}, \tilde{c}_{+}=c_{+} / a_{+}$. If $\tilde{\mathbf{u}}_{ \pm}=a_{ \pm} \mathbf{u}_{ \pm}, \tilde{p}_{ \pm}=a_{ \pm} p_{ \pm}$then $\mathbf{u}_{ \pm}, p_{ \pm}$is an L^{2}-solution of the transmission problem (1), (2) if and only if $\tilde{\mathbf{u}}_{ \pm}, \tilde{p}_{ \pm}$is an L^{2}-solution of the transmission problem

$$
\begin{align*}
& \quad-\Delta \tilde{\mathbf{u}}_{ \pm}+\lambda_{ \pm} \tilde{\mathbf{u}}_{ \pm}+\nabla \tilde{p}_{ \pm}=0, \quad \nabla \cdot \tilde{\mathbf{u}}_{ \pm}=0 \quad \text { in } \quad \Omega_{ \pm} \tag{13}\\
& \tilde{\mathbf{u}}_{+}-\tilde{\mathbf{u}}_{-}=\mathbf{g}, \quad \tilde{b}_{+} T\left(\tilde{\mathbf{u}}_{+}, \tilde{p}_{+}\right) \mathbf{n}-\tilde{b}_{-} T\left(\tilde{\mathbf{u}}_{-}, \tilde{p}_{-}\right) \mathbf{n}+\tilde{c}_{+} \tilde{\mathbf{u}}_{+}=\mathbf{f} \quad \text { on } \partial \Omega \tag{14}\\
& \text { Let } \mathbf{\Phi} \in W^{1,2}\left(\partial \Omega, R^{m}\right), \boldsymbol{\Psi} \in L^{2}\left(\partial \Omega, R^{m}\right) \text {. Put }
\end{align*}
$$

$$
\begin{gather*}
\tilde{\mathbf{u}}_{ \pm}=D_{\Omega}^{\lambda_{ \pm}} \boldsymbol{\Phi}+E_{\Omega}^{\lambda_{ \pm}} \boldsymbol{\Psi}, \quad \tilde{p}_{ \pm}=\Pi_{\Omega}^{\lambda_{ \pm}} \boldsymbol{\Phi}+Q_{\Omega}^{\lambda_{ \pm}} \boldsymbol{\Psi} \quad \text { in } \Omega_{ \pm} \tag{15}\\
\tau_{1}^{\lambda_{+}, \lambda_{-}}(\mathbf{\Phi}, \mathbf{\Psi})=\mathbf{\Phi}+K_{\Omega, \lambda_{+}} \boldsymbol{\Phi}-K_{\Omega, \lambda_{-}} \boldsymbol{\Phi}+E_{\Omega}^{\lambda_{+}} \boldsymbol{\Psi}-E_{\Omega}^{\lambda_{-}} \boldsymbol{\Psi} \\
\tau_{2}^{\lambda_{+}, \lambda_{-}, \tilde{b}_{+}, \tilde{b}_{-}, \tilde{c}_{+}}(\mathbf{\Phi}, \mathbf{\Psi})=\tilde{b}_{+}\left[\mathbf{\Psi}-K_{\Omega, \lambda_{+}}^{\prime}\right]-\tilde{b}_{-}\left[-\mathbf{\Psi}-K_{\Omega_{,}, \lambda_{-}}^{\prime}\right]+\tilde{c}_{+} E_{\Omega}^{\lambda_{+}} \boldsymbol{\Psi} \\
\\
+\tilde{b}_{+}\left[T\left(D_{\Omega}^{\lambda_{+}} \boldsymbol{\Phi}, \Pi_{\Omega}^{\lambda_{+}} \boldsymbol{\Phi}\right)\right]_{+} \mathbf{n}^{\Omega}-\tilde{b}_{-}\left[T\left(D_{\Omega}^{\lambda_{-}} \boldsymbol{\Phi}, \Pi_{\Omega}^{\lambda_{-}} \boldsymbol{\Phi}\right)\right]_{-} \mathbf{n}^{\Omega} .
\end{gather*}
$$

The operator $\tau^{\lambda_{+}, \lambda_{-}, \tilde{b}_{+}, \tilde{b}_{-}, \tilde{c}_{+}}=\left[\tau_{1}^{\lambda_{+}, \lambda_{-}}, \tau_{2}^{\lambda_{+}, \lambda_{-}, \tilde{b}_{+}, \tilde{b}_{-}, \tilde{c}_{+}}\right]$is a bounded linear operator on $W^{1,2}\left(\partial \Omega, R^{m}\right) \times L^{2}\left(\partial \Omega, R^{m}\right)$. The functions $\tilde{\mathbf{u}}_{ \pm}, \tilde{p}_{ \pm}$given by (15) are an L^{2}-solution of the transmission problem (13), (14) such $\tilde{\mathbf{u}}_{-}(\mathbf{x}) \rightarrow 0$, $\tilde{p}_{-}(\mathbf{x}) \rightarrow 0$ as $|\mathbf{x}| \rightarrow \infty$ if and only if $\tau^{\lambda_{+}, \lambda_{-}, \tilde{b}_{+}, \tilde{b}_{-}, c_{+}}(\mathbf{\Phi}, \mathbf{\Psi})=[\mathbf{g}, \mathbf{f}]$.
Lemma 5.1. Denote $\mathcal{R}_{m}=\left\{\mathbf{v}(\mathbf{x})=A \mathbf{x}+\mathbf{b} ; \mathbf{b} \in R^{m}, A=\left(a_{i j}\right)\right.$ an antisymmetric matrix, i.e. $\left.a_{i j}=-a_{j i}\right\}$ the space of rigid motions. Let $\mathbf{u} \in \mathcal{R}_{m}$, $M=\{\mathbf{x} ; \mathbf{u}(\mathbf{x})=0\}$. If $\mathcal{H}_{m-1}(M)>0$ then $\mathbf{u} \equiv 0$.

Proof. There exist a matrix $A=\left(a_{i j}\right)$ with $a_{i j}=-a_{j i}$ and $\mathbf{b} \in R^{m}$ such that $\mathbf{u}(\mathbf{x})=A \mathbf{x}+\mathbf{b}$. Suppose first $a_{i j} \neq 0$ for some indices i, j. Denote $L_{i}=\left\{\mathbf{x} ; a_{i 1} x_{1}+\ldots+a_{i m} x_{m}+b_{i}=0\right\}, L_{j}=\left\{\mathbf{x} ; a_{j 1} x_{1}+\ldots+a_{j m} x_{m}+b_{i}=0\right\}$. Since $a_{i i}=a_{j j}=0, a_{j i}=-a_{i j} \neq 0$ we have $\mathcal{H}_{m-1}\left(L_{i} \cap L_{j}\right)=0$. This contradicts to $M \subset L_{i} \cap L_{j}$. Hence $A=0$ and \mathbf{u} is constant. $M \neq \emptyset$ forces $\mathbf{u} \equiv 0$.

Proposition 5.2. Let $\mathbf{u}_{ \pm}, p_{ \pm}$be an L^{2}-solution for the transmission problem (1), (2). If $\mathbf{f}=0, \mathbf{g}=0$ and $\mathbf{u}_{-}(\mathbf{x}) \rightarrow 0, p_{-}(\mathbf{x}) \rightarrow 0$ as $|\mathbf{x}| \rightarrow \infty$ then $\mathbf{u}_{ \pm} \equiv 0$, $p_{ \pm} \equiv 0$.

Proof. $|p(\mathbf{x})|=O\left(|\mathbf{x}|^{1-m}\right),|\mathbf{u}(\mathbf{x})|=O\left(|\mathbf{x}|^{2-m}\right),|\nabla \mathbf{u}(\mathbf{x})|=O\left(|\mathbf{x}|^{1-m}\right)$ as $|\mathbf{x}| \rightarrow \infty$ (see Proposition 4.2). Using Green's formula

$$
0=\int_{\partial \Omega} \mathbf{u}_{+} \cdot\left[b_{+} T\left(\mathbf{u}_{+}, p_{+}\right) \mathbf{n}-b_{-} T\left(\mathbf{u}_{-}, p_{-}\right) \mathbf{n}+c_{+} \mathbf{u}_{+}\right] \mathrm{d} \mathcal{H}_{m-1}
$$

$$
\begin{gathered}
=b_{+} \int_{\partial \Omega_{-}} \mathbf{u}_{+} \cdot T\left(\mathbf{u}_{+}, p_{+}\right) \mathbf{n}^{\Omega_{+}} \mathrm{d} \mathcal{H}_{m-1}+\int_{\partial \Omega_{-}} c_{+}\left|\mathbf{u}_{+}\right|^{2} \mathrm{~d} \mathcal{H}_{m-1} \\
+\lim _{r \rightarrow \infty} b_{-} \frac{a_{-}}{a_{+}} \int_{\partial\left(\Omega_{-} \cap B(0 ; r)\right)} \mathbf{u}_{-} \cdot T\left(\mathbf{u}_{-}, p_{-}\right) \mathbf{n}^{\Omega_{-}}=b_{+} \int_{\Omega_{+}}\left[2\left|\hat{\nabla} \mathbf{u}_{+}\right|^{2}+\lambda_{+}\left|\mathbf{u}_{+}\right|^{2}\right] \\
+\int_{\partial \Omega_{-}} c_{+}\left|\mathbf{u}_{+}\right|^{2} \mathrm{~d} \mathcal{H}_{m-1}+\frac{b_{-} a_{-}}{a_{+}} \int_{\Omega_{+}}\left[2\left|\hat{\nabla} \mathbf{u}_{+}\right|^{2}+\lambda_{-}\left|\mathbf{u}_{+}\right|^{2}\right] \mathrm{d} \mathcal{H}_{m}
\end{gathered}
$$

Denote $u=u_{ \pm}$on $\Omega_{ \pm}$. Then $\hat{\nabla} \mathbf{u}=0$ in $R^{m} \backslash \partial \Omega$. Denote by $\omega_{0}, \omega_{1}, \ldots, \omega_{k}$ all components of $R^{m} \backslash \partial \Omega$, where ω_{0} is the unbounded component. According to [12], Lemma 3.1 there exist antisymmetric matrices A^{j} and vectors \mathbf{B}^{j} such that $\mathbf{u}(\mathbf{x})=A^{j} \mathbf{x}+\mathbf{B}^{j}$ in ω_{j}. Since $\mathbf{u}(\mathbf{x}) \rightarrow 0$ as $|\mathbf{x}| \rightarrow \infty$, we deduce that $\mathbf{u}=0$ in ω_{0}. If $\partial \omega_{0} \cap \partial \omega_{j} \neq \emptyset$ then the condition $a_{+} \mathbf{u}_{+}=a_{-} \mathbf{u}_{-}$gives that $A^{j} \mathbf{x}+\mathbf{B}^{j}=0$ on $\partial \omega_{0} \cap \partial \omega_{j}$. Lemma 5.1 gives that $A^{j} \mathbf{x}+\mathbf{B}^{j} \equiv 0$. We can continue by this way and prove that $\mathbf{u}=0$.
Proposition 5.3. The operator $\tau^{\lambda_{+}, \lambda_{-}, \tilde{b}_{+}, \tilde{b}_{-}, \tilde{c}_{+}}$is an isomorphism on the space $W^{1,2}\left(\partial \Omega, R^{m}\right) \times L^{2}\left(\partial \Omega, R^{m}\right)$.

Proof. The operator $\tau^{0,0, \tilde{b}_{+}, \tilde{b}_{-}, 0}$ is a Fredholm operator with index 0 on $W^{1,2}\left(\partial \Omega, R^{m}\right) \times L^{2}\left(\partial \Omega, R^{m}\right)$ by [14]. If $\lambda \geq 0$ then $K_{\Omega, \lambda}-K_{\Omega, 0}$ is compact on $W^{1,2}\left(\partial \Omega, R^{m}\right), K_{\Omega, \lambda}^{\prime}-K_{\Omega, 0}^{\prime}$ is compact on $L^{2}\left(\partial \Omega, R^{m}\right), E_{\Omega}^{\lambda}-E_{\Omega}^{0}$ is a compact operator from $L^{2}\left(\partial \Omega, R^{m}\right)$ to $W^{1,2}\left(\partial \Omega, R^{m}\right)$ (see [5], Theorem 3.4). Since E_{Ω}^{0} is a bounded operator from $L^{2}\left(\partial \Omega, R^{m}\right)$ to $W^{1,2}\left(\partial \Omega, R^{m}\right)$, it is a compact linear operator on $L^{2}\left(\partial \Omega, R^{m}\right)$. Thus $\tau^{\lambda_{+}, \lambda_{-}, \tilde{b}_{+}, \tilde{b}_{-}, \tilde{c}_{+}}-\tau^{0,0, \tilde{b}_{+}, \tilde{b}_{-}, 0}$ is a compact operator on $W^{1,2}\left(\partial \Omega, R^{m}\right) \times L^{2}\left(\partial \Omega, R^{m}\right)$. Hence $\tau^{\lambda_{+}, \lambda_{-}, \tilde{b}_{+}, \tilde{b}_{-}, c_{+}}$is a Fredholm operator with index 0 . Therefore it is enough to prove that $\tau^{\lambda_{+}, \lambda_{-}, \tilde{b}_{+}, \tilde{b}_{-}, \tilde{c}_{+}}$is injective.

Let $(\boldsymbol{\Phi}, \boldsymbol{\Psi}) \in W^{1,2}\left(\partial \Omega, R^{m}\right) \times L^{2}\left(\partial \Omega, R^{m}\right), \tau^{\lambda_{+}, \lambda_{-}, \tilde{b}_{+}, \tilde{b}_{-}, \tilde{c}_{+}}(\boldsymbol{\Phi}, \boldsymbol{\Psi})=0$. Let $\tilde{\mathbf{u}}_{ \pm}, \tilde{p}_{ \pm}$be given by (15). Then $\tilde{\mathbf{u}}_{ \pm}, \tilde{p}_{ \pm}$is an L^{2}-solution of the problem (13), (14) with $\mathbf{g}=0, \mathbf{f}=0$ such $\tilde{\mathbf{u}}_{-}(\mathbf{x}) \rightarrow 0, \tilde{p}_{-}(\mathbf{x}) \rightarrow 0$ as $|\mathbf{x}| \rightarrow \infty$. Proposition 5.2 gives that $\tilde{\mathbf{u}}_{ \pm}=0, \tilde{p}_{ \pm}=0$. Thus $\tilde{\mathbf{u}}_{ \pm}, \tilde{p}_{ \pm}$is an L^{2}-solution of the problem (13),

$$
\tilde{\mathbf{u}}_{+}-\tilde{\mathbf{u}}_{-}=0, \quad T\left(\tilde{\mathbf{u}}_{+}, \tilde{p}_{+}\right) \mathbf{n}-T\left(\tilde{\mathbf{u}}_{-}, \tilde{p}_{-}\right) \mathbf{n}=0 \quad \text { on } \partial \Omega .
$$

Denote $\tilde{\lambda}_{+}=\lambda_{-}, \tilde{\lambda}_{-}=\lambda_{+}$,

$$
\begin{aligned}
& \mathbf{v}_{+}=D_{\Omega}^{\lambda_{-}} \boldsymbol{\Phi}+E_{\Omega}^{\lambda_{-}} \boldsymbol{\Psi}, \quad q_{+}=\Pi_{\Omega}^{\lambda_{-}} \boldsymbol{\Phi}+Q_{\Omega}^{\lambda_{-}} \boldsymbol{\Psi}, \quad \text { in } \Omega_{+}, \\
& \mathbf{v}_{-}=-D_{\Omega}^{\lambda_{+}} \boldsymbol{\Phi}-E_{\Omega}^{\lambda_{+}} \boldsymbol{\Psi}, \quad q_{+}=-\Pi_{\Omega}^{\lambda_{+}} \boldsymbol{\Phi}-Q_{\Omega}^{\lambda_{+}} \boldsymbol{\Psi}, \quad \text { in } \Omega_{-} .
\end{aligned}
$$

Using boundary behaviour of potentials we obtain on $\partial \Omega$

$$
\mathbf{v}_{+}=\boldsymbol{\Phi}+\tilde{\mathbf{u}}_{-}=\boldsymbol{\Phi}
$$

$$
\begin{aligned}
\mathbf{v}_{-} & =-\left[-\boldsymbol{\Phi}+\tilde{\mathbf{u}}_{+}\right]=\boldsymbol{\Phi} \\
{\left[T\left(\mathbf{v}_{+}, q_{+}\right) \mathbf{n}^{\Omega}\right]_{+} } & =\mathbf{\Psi}+\left[T\left(\tilde{\mathbf{u}}_{-}, \tilde{p}_{-}\right) \mathbf{n}^{\Omega}\right]_{-}=\boldsymbol{\Psi} \\
{\left[T\left(\mathbf{v}_{-}, q_{-}\right) \mathbf{n}^{\Omega}\right]_{-} } & =-\left[-\mathbf{\Psi}+\left[T\left(\tilde{\mathbf{u}}_{+}, \tilde{p}_{+}\right) \mathbf{n}^{\Omega}\right]_{+}=\mathbf{\Psi} .\right.
\end{aligned}
$$

Therefore $\mathbf{v}_{ \pm}, q_{ \pm}$is a solution of the transmission problem

$$
\begin{gathered}
-\Delta \mathbf{v}_{ \pm}+\tilde{\lambda}_{ \pm} \mathbf{v}_{ \pm}+\nabla q_{ \pm}=0, \quad \nabla \cdot \mathbf{v}_{ \pm}=0 \quad \text { in } \quad \Omega_{ \pm} \\
\mathbf{v}_{+}-\mathbf{v}_{-}=0, \quad T\left(\mathbf{v}_{+}, q_{+}\right) \mathbf{n}-T\left(\mathbf{v}_{-}, q_{-}\right) \mathbf{n}=0 \quad \text { on } \partial \Omega \\
\mathbf{v}_{-}(\mathbf{x}) \rightarrow 0, \quad q_{-}(\mathbf{x}) \rightarrow 0 \quad \text { as }|\mathbf{x}| \rightarrow \infty
\end{gathered}
$$

Proposition 5.2 gives that $\mathbf{v}_{ \pm} \equiv 0, q_{ \pm} \equiv 0$. We have on $\partial \Omega$

$$
\begin{gathered}
\mathbf{\Phi}=\mathbf{v}_{+}=0 \\
\mathbf{\Psi}=\left[T\left(\mathbf{v}_{+}, q_{+}\right) \mathbf{n}^{\Omega}\right]_{+}=0 .
\end{gathered}
$$

Theorem 5.4. Let $\mathbf{g} \in W^{1,2}\left(\partial \Omega, R^{m}\right), \mathbf{f} \in L^{2}\left(\partial \Omega, R^{m}\right)$. Then there exists an L^{2}-solution of the transmission problem (1), (2). If $\mathbf{u}_{ \pm}, p_{ \pm}$is an L^{2}-solution of the problem then there exist $p_{\infty} \in R^{1}, \mathbf{u}_{\infty} \in R^{m}$ such that $\mathbf{u}_{-}(\mathbf{x}) \rightarrow \mathbf{u}_{\infty}$, $p_{-}(\mathbf{x}) \rightarrow p_{\infty}$ as $|\mathbf{x}| \rightarrow \infty$. If $\lambda_{-}>0$ then $\mathbf{u}_{\infty}=0$. Fix $p_{\infty} \in R^{1}, \mathbf{u}_{\infty} \in R^{m}$. If $\lambda_{-}>0$ suppose that $\mathbf{u}_{\infty}=0$. Then there exists a unique L^{2}-solution $\mathbf{u}_{ \pm}, p_{ \pm}$ of the transmission problem (1), (2) such that $\mathbf{u}_{-}(\mathbf{x}) \rightarrow \mathbf{u}_{\infty}, p_{-}(\mathbf{x}) \rightarrow p_{\infty}$ as $|x| \rightarrow \infty$.

Proof. If $\mathbf{u}_{ \pm}, p_{ \pm}$is an L^{2}-solution of the problem then there exist $p_{\infty} \in R^{1}$, $\mathbf{u}_{\infty} \in R^{m}$ such that $\mathbf{u}_{-}(\mathbf{x}) \rightarrow \mathbf{u}_{\infty}, p_{-}(\mathbf{x}) \rightarrow p_{\infty}$ as $|\mathbf{x}| \rightarrow \infty$. If $\lambda_{-}>0$ then $\mathbf{u}_{\infty}=0$. (See Proposition 4.2.)

Fix $p_{\infty} \in R^{1}, \mathbf{u}_{\infty} \in R^{m}$. If $\lambda_{-}>0$ suppose that $\mathbf{u}_{\infty}=0$. Put $\mathbf{u}_{-}=$ $\mathbf{v}_{-}+\mathbf{u}_{\infty}, \mathbf{u}_{+}=\mathbf{v}+, p_{-}=q_{-}+p_{\infty}, p_{+}=q_{+}$. Then $\mathbf{u}_{ \pm}, p_{ \pm}$is a solution of the problem (1), (2), $\mathbf{u}_{-}(\mathbf{x}) \rightarrow \mathbf{u}_{\infty}, p_{-}(\mathbf{x}) \rightarrow p_{\infty}$ if and only if $\mathbf{v}_{ \pm}, q_{ \pm}$is a solution of the transmission problem (1),
$a_{+} \mathbf{v}_{+}-a_{-} \mathbf{v}_{-}=\mathbf{g}+a_{-} \mathbf{u}_{\infty}, b_{+} T\left(\mathbf{v}_{+}, q_{+}\right) \mathbf{n}-b_{-} T\left(\mathbf{v}_{-}, q_{-}\right) \mathbf{n}+c_{+} \mathbf{v}_{+}=\mathbf{f}-b_{-} p_{\infty} \mathbf{n}$,
$\mathbf{v}_{-}(\mathbf{x}) \rightarrow 0, q_{-}(\mathbf{x}) \rightarrow 0$. According to Proposition 5.3 there exist $\boldsymbol{\Phi} \in W^{1,2}\left(\partial \Omega, R^{m}\right)$, $\boldsymbol{\Psi} \in L^{2}\left(\partial \Omega, R^{m}\right)$ such that

$$
\mathbf{v}_{ \pm}=a_{ \pm}^{-1}\left[D_{\Omega}^{\lambda_{ \pm}} \boldsymbol{\Phi}+E_{\Omega}^{\lambda_{ \pm}} \mathbf{\Psi}\right], \quad q_{ \pm}=a_{ \pm}^{-1}\left[\Pi_{\Omega}^{\lambda_{ \pm}} \boldsymbol{\Phi}+Q_{\Omega}^{\lambda_{ \pm}} \mathbf{\Psi}\right] \quad \text { in } \Omega_{ \pm}
$$

is a solution of the problem. The uniqueness of a solution follows from Proposition 5.2.

6 Robin-transmission problem

Let $G \subset R^{m}$ be a bounded domain with connected Lipschitz boundary, $\Omega=\Omega_{+}$ be a bounded open set with Lipschitz boundary such that $\bar{\Omega} \subset G$. Denote $\Omega_{-}=G \backslash \bar{\Omega}$, and by $\mathbf{n}_{ \pm}$the outward unit normal of $\Omega_{ \pm}$. Let $\lambda_{ \pm}, c_{ \pm}$be nonnegative constants and $a_{ \pm}, b_{ \pm}$be positive constants. We shall study the Robintransmission problem for the Brinkman system (1), (2) accompanied with the condition

$$
\begin{equation*}
T\left(\mathbf{u}_{-}, p_{-}\right) \mathbf{n}_{-}+c_{-} \mathbf{u}_{-}=\mathbf{h} \quad \text { on } \partial G . \tag{16}
\end{equation*}
$$

Let $\mathbf{g} \in W^{1,2}\left(\partial \Omega, R^{m}\right), \mathbf{f} \in L^{2}\left(\partial \Omega, R^{m}\right), \mathbf{h} \in L^{2}\left(\partial G, R^{m}\right)$. We say that $\mathbf{u}_{ \pm}$, $p_{ \pm}$defined on $\Omega_{ \pm}$is an L^{2}-solution of the Robin-transmission problem (1), (2), (16) if $\mathbf{u}_{ \pm}, p_{ \pm}$satisfy (1); $\mathbf{u}_{ \pm}^{*}, p_{ \pm}^{*},(\nabla \mathbf{u})_{ \pm}^{*}$ are from $L^{2}\left(\partial \Omega_{ \pm}, R^{1}\right)$; for almost all $\mathbf{x} \in \partial \Omega_{ \pm}$there exist the non-tangential limits of $\mathbf{u}_{ \pm}, \nabla \mathbf{u}_{ \pm}, p_{ \pm}$at \mathbf{x} and the conditions (2), (16) are fulfilled in the sense of the nontangential limit a.e. on $\partial \Omega_{-}$.

Put $\tilde{b}_{ \pm}=b_{ \pm} / a_{ \pm}, \tilde{c}_{+}=c_{+} / a_{ \pm}$. If $\tilde{\mathbf{u}}_{ \pm}=a_{ \pm} \mathbf{u}_{ \pm}, \tilde{p}_{ \pm}=a_{ \pm} p_{ \pm}$then $\mathbf{u}_{ \pm}, p_{ \pm}$is an L^{2}-solution of the Robin-transmission problem (1), (2), (16) if and only if $\tilde{\mathbf{u}}_{ \pm}, \tilde{p}_{ \pm}$is an L^{2}-solution of the Robin-transmission problem (13), (14),

$$
\begin{equation*}
T\left(\tilde{\mathbf{u}}_{-}, \tilde{p}_{-}\right) \mathbf{n}_{-}+c_{-} \tilde{\mathbf{u}}_{-}=a_{-} \mathbf{h} \quad \text { on } \partial G . \tag{17}
\end{equation*}
$$

Let $\boldsymbol{\Phi} \in W^{1,2}\left(\partial \Omega, R^{m}\right), \boldsymbol{\Psi} \in L^{2}\left(\partial \Omega, R^{m}\right), \boldsymbol{\Theta} \in L^{2}\left(\partial G, R^{m}\right)$. Let $\tilde{\mathbf{u}}_{+}, \tilde{p}_{+}$be given by (15),

$$
\begin{equation*}
\tilde{\mathbf{u}}_{-}=D_{\Omega}^{\lambda_{-}} \mathbf{\Phi}+E_{\Omega}^{\lambda_{-}} \boldsymbol{\Psi}+E_{G}^{\lambda_{-}} \boldsymbol{\Theta}, \quad \tilde{p}_{-}=\Pi_{\Omega}^{\lambda_{-}} \mathbf{\Phi}+Q_{\Omega}^{\lambda_{-}} \boldsymbol{\Psi}+Q_{G}^{\lambda_{-}} \boldsymbol{\Theta} \quad \text { in } \Omega_{-} \tag{18}
\end{equation*}
$$

Then $\tilde{\mathbf{u}}_{ \pm}, \tilde{p}_{ \pm}$is an L^{2}-solution of the Robin-transmission problem (13), (14), (17) if and only if

$$
R^{\lambda_{+}, \lambda_{-}, \tilde{b}_{+}, \tilde{b}_{-}, \tilde{c}_{+}, c_{-}}(\boldsymbol{\Phi}, \boldsymbol{\Psi}, \boldsymbol{\Theta})=\left[\mathbf{g}, \mathbf{f}, a_{-} \mathbf{h}\right],
$$

where

$$
\begin{array}{r}
R^{\lambda_{+}, \lambda_{-}, \tilde{b}_{+}, \tilde{b}_{-}, \tilde{c}_{+}, c_{-}}(\boldsymbol{\Phi}, \boldsymbol{\Psi}, \boldsymbol{\Theta})=\left[\tau_{1}^{\lambda_{+}, \lambda_{-}}(\boldsymbol{\Phi}, \boldsymbol{\Psi})-E_{G}^{\lambda_{-}} \boldsymbol{\Theta},\right. \\
\tau_{2}^{\lambda_{+}, \lambda_{-}, \tilde{b}_{+}, \tilde{b}_{-}, \tilde{c}_{+}}(\boldsymbol{\Phi}, \boldsymbol{\Psi})-\tilde{b}_{-} T\left(E_{G}^{\lambda_{-}} \boldsymbol{\Theta}, Q_{G}^{\lambda_{-}} \boldsymbol{\Theta}\right) \mathbf{n}_{+}, \\
\frac{1}{2} \boldsymbol{\Theta}-K_{G, \lambda_{-}}^{\prime} \boldsymbol{\Theta}+T\left(E_{\Omega}^{\lambda_{-}} \boldsymbol{\Psi}+D_{\Omega}^{\lambda_{-}} \boldsymbol{\Phi}, Q_{G}^{\lambda_{-}} \boldsymbol{\Psi}\right) \mathbf{n}_{-}+c_{-}\left(E_{G}^{\lambda_{-}} \boldsymbol{\Theta}+E_{\Omega}^{\lambda_{-}} \mathbf{\Psi}+D_{\Omega}^{\lambda_{-}} \mathbf{\Phi}\right] .
\end{array}
$$

Lemma 6.1. The operator $R^{\lambda_{+}, \lambda_{-}, \tilde{b}_{+}, \tilde{b}_{-}, \tilde{c}_{+}, c_{-}}$is a Fredholm operator with index 0 on $W^{1,2}\left(\partial \Omega, R^{m}\right) \times L^{2}\left(\partial \Omega, R^{m}\right) \times L^{2}\left(\partial G, R^{m}\right)$.

Proof. $R:(\boldsymbol{\Phi}, \mathbf{\Psi}, \boldsymbol{\Theta}) \mapsto\left[\tau_{1}^{\lambda_{+}, \lambda_{-}}(\mathbf{\Phi}, \mathbf{\Psi}), \tau_{2}^{\lambda_{+}, \lambda_{-}, \tilde{b}_{+}, \tilde{b}_{-}, \tilde{c}_{+}}(\mathbf{\Phi}, \boldsymbol{\Psi}), \frac{1}{2} \boldsymbol{\Theta}-K_{G, 0}^{\prime} \boldsymbol{\Theta}\right]$ is a Fredholm operator with index 0 on $W^{1,2}\left(\partial \Omega, R^{m}\right) \times L^{2}\left(\partial \Omega, R^{m}\right) \times L^{2}\left(\partial G, R^{m}\right)$ by [14] and Proposition 5.3. If $\lambda \geq 0$ then $K_{G, \lambda}^{\prime}-K_{G, 0}^{\prime}$ is compact on $L^{2}\left(\partial G, R^{m}\right)$,
$E_{G}^{\lambda}-E_{G}^{0}$ is a compact operator from $L^{2}\left(\partial G, R^{m}\right)$ to $W^{1,2}\left(\partial G, R^{m}\right)$ (see [5], Theorem 3.4). Since E_{G}^{0} is a bounded operator from $L^{2}\left(\partial G, R^{m}\right)$ to $W^{1,2}\left(\partial G, R^{m}\right)$, it is a compact linear operator on $L^{2}\left(\partial G, R^{m}\right)$. Thus $R^{\lambda_{+}, \lambda_{-}, \tilde{b}_{+}, \tilde{b}_{-}, \tilde{c}_{+}, c_{-}-} R$ is a compact operator. Hence $R^{\lambda_{+}, \lambda_{-}, \tilde{b}_{+}, \tilde{b}_{-}, \tilde{c}_{+}, c_{-}}$is a Fredholm operator with index 0 .
Lemma 6.2. Let $\tilde{\mathbf{u}}_{+}$, \tilde{p}_{+}be given by (15), and $\tilde{\mathbf{u}}_{-}, \tilde{p}_{-}$by (18). If $\tilde{\mathbf{u}}_{ \pm}=0$, $\tilde{p}_{ \pm}=0$ in $\Omega_{ \pm}$then $\boldsymbol{\Phi}=0, \boldsymbol{\Psi}=0, \boldsymbol{\Theta}=0$.

Proof. Define

$$
\mathbf{v}=D_{\Omega}^{\lambda-} \mathbf{\Phi}+E_{\Omega}^{\lambda-} \boldsymbol{\Psi}+E_{G}^{\lambda-} \boldsymbol{\Theta}, \quad q=\Pi_{\Omega}^{\lambda-} \mathbf{\Phi}+Q_{\Omega}^{\lambda-} \boldsymbol{\Psi}+Q_{G}^{\lambda} \boldsymbol{\Theta} \quad \text { in } \omega=R^{m} \backslash \bar{G}
$$

Continuity of a single layer potential gives that $\mathbf{v}=\mathbf{u}_{-}=0$ on ∂G. Since $\mathbf{v}(\mathbf{x})=O\left(|\mathbf{x}|^{2-m}\right),|\nabla \mathbf{v}(\mathbf{x})|+|q(\mathbf{x})|=O\left(|\mathbf{x}|^{1-m}\right)$ as $|\mathbf{x}| \rightarrow \infty$ then Green's formula gives

$$
0=\int_{\partial \omega} \mathbf{v} \cdot T(\mathbf{v}, q) \mathbf{n}^{\omega} \mathrm{d} \mathcal{H}_{m-1}=\int_{\omega}\left[|2 \hat{\nabla} \mathbf{v}|^{2}+\lambda_{-}|\mathbf{v}|^{2}\right] \mathrm{d} \mathcal{H}_{m}
$$

Since $\hat{\nabla} \mathbf{v}=0$ we have $\mathbf{v} \in \mathrm{R}_{m}$ by [12], Lemma 3.1. Behaviour of potentials at infinity gives that $\mathbf{v}(\mathbf{x}) \rightarrow 0$ as $|\mathbf{x}| \rightarrow \infty$. This forces that $\mathbf{v} \equiv 0$. Since $\nabla q=\Delta \mathbf{v}-\lambda_{-} \mathbf{v}=0$ we deduce that q is constant. Behaviour of potentials at infinity gives that $q \equiv 0$.

By virtue of (6) and (7)

$$
\boldsymbol{\Theta}=T\left(\tilde{\mathbf{u}}_{-}, \tilde{p}_{-}\right) \mathbf{n}_{-}-T(\mathbf{v}, q) \mathbf{n}_{-}=0
$$

Denote $\omega_{+}=\Omega_{+}, \omega_{-}=R^{m} \backslash \bar{\omega}_{+}$. If $\tilde{\mathbf{u}}_{ \pm}, \tilde{p}_{ \pm}$is given by (15) in $\omega_{ \pm}$then $\tilde{\mathbf{u}}_{ \pm}, \tilde{p}_{ \pm}$ is an L^{2}-solution of the transmission problem

$$
\begin{gathered}
-\Delta \tilde{\mathbf{u}}_{ \pm}+\lambda_{ \pm} \tilde{\mathbf{u}}_{ \pm}+\nabla \tilde{p}_{ \pm}=0, \quad \nabla \cdot \tilde{\mathbf{u}}_{ \pm}=0 \quad \text { in } \quad \omega_{ \pm}, \\
\tilde{\mathbf{u}}_{+}-\tilde{\mathbf{u}}_{-}=0, \quad \tilde{b}_{+} T\left(\tilde{\mathbf{u}}_{+}, \tilde{p}_{+}\right) \mathbf{n}_{+}-\tilde{b}_{-} T\left(\tilde{\mathbf{u}}_{-}, \tilde{p}_{-}\right) \mathbf{n}_{+}+\tilde{c}_{+} \tilde{\mathbf{u}}_{+}=0 \quad \text { on } \partial \omega_{+} .
\end{gathered}
$$

In particular, $\tau_{2}^{\lambda_{+}, \lambda_{-}, \tilde{b}_{+}, \tilde{b}_{-}, \tilde{c}_{+}}(\boldsymbol{\Phi}, \boldsymbol{\Psi})=0$. Proposition 5.3 gives that $\boldsymbol{\Phi}=0$, $\Psi=0$.

Proposition 6.3. Let $\mathbf{u}_{ \pm}, p_{ \pm}$be an L^{2}-solution of the Robin-transmission problem (1), (2), (16) with $\mathbf{g}=0, \mathbf{f}=0, \mathbf{h}=0$.

- If $\lambda_{+}+\lambda_{-}+c_{+}+c_{-}>0$ then $\mathbf{u}_{ \pm} \equiv 0, p_{ \pm} \equiv 0$.
- If $\lambda_{+}+\lambda_{-}+c_{+}+c_{-}=0$ then $p_{ \pm} \equiv 0$ and there exists a rigid motion $\mathbf{v} \in \mathcal{R}_{m}$ such that $\mathbf{u}_{ \pm}=\mathbf{v} / a_{ \pm}$.

Proof. Using Green's formula

$$
\begin{gathered}
0=b_{-}^{-1} \int_{\partial \Omega^{\prime}} \mathbf{u}_{-} \cdot\left[b_{+} T\left(\mathbf{u}_{+}, p_{+}\right) \mathbf{n}_{+}-b_{-} T\left(\mathbf{u}_{-}, p_{-}\right) \mathbf{n}_{+}+c_{+} \mathbf{u}_{+}\right] \mathrm{d} \mathcal{H}_{m-1} \\
+\int_{\partial G} \mathbf{u}_{-} \cdot\left[T\left(\mathbf{u}_{-}, p_{-}\right) \mathbf{n}_{-}+c_{-} \mathbf{u}_{-}\right] \mathrm{d} \mathcal{H}_{m-1}=\int_{\Omega_{-}}\left[2\left|\hat{\nabla} \mathbf{u}_{-}\right|^{2}+\lambda_{-}\left|\mathbf{u}_{-}\right|^{2}\right] \mathrm{d} \mathcal{H}_{m} \\
+\frac{a_{+} b_{+}}{a_{-} b_{-}} \int_{\Omega_{+}}\left[2\left|\hat{\nabla} \mathbf{u}_{+}\right|^{2}+\lambda_{+}\left|\mathbf{u}_{+}\right|^{2}\right] \mathrm{d} \mathcal{H}_{m}+\int_{\partial G} c_{-}\left|\mathbf{u}_{-}\right|^{2} \mathrm{~d} \mathcal{H}_{m-1}+\int_{\partial \Omega^{\prime}} \frac{c_{+} a_{+}\left|\mathbf{u}_{+}\right|^{2}}{a_{-}} \mathrm{d} \mathcal{H}_{m-1} .
\end{gathered}
$$

Thus $\hat{\nabla} \mathbf{u}_{ \pm}=0, \lambda_{ \pm} \mathbf{u}_{ \pm}=0$ in $\Omega_{ \pm}, c_{+} \mathbf{u}_{+}=0$ on $\partial \Omega, c_{-} \mathbf{u}_{-}=0$ on ∂G. Define $\mathbf{v}=a_{ \pm} \mathbf{u}_{ \pm}$on $\Omega_{ \pm}$. Denote by $\omega_{1}, \ldots, \omega_{k}$ all components of $G \backslash \partial \Omega$. According to [12], Lemma 3.1 there exist antisymmetric matrices A^{j} and vectors \mathbf{B}^{j} such that $\mathbf{v}(\mathbf{x})=A^{j} \mathbf{x}+\mathbf{B}^{j}$ in ω_{j}. If $\partial \omega_{j} \cap \partial \omega_{i} \neq \emptyset, \omega_{j} \subset \Omega_{+}, \omega_{i} \subset \Omega_{-}$ then $a_{+} \mathbf{u}_{+}-a_{-} \mathbf{u}_{-}=0$ gives $\left(A^{j} \mathbf{x}+\mathbf{B}^{j}\right)-\left(A^{i} \mathbf{x}+\mathbf{B}^{i}\right)=0$ on $\partial \omega_{j} \cap \partial \omega_{i}$. Lemma 5.1 gives that $\left(A^{j} \mathbf{x}+\mathbf{B}^{j}\right)-\left(A^{i} \mathbf{x}+\mathbf{B}^{i}\right)=0$ in R^{m}. Thus $\mathbf{v} \in \mathcal{R}_{m}$. If $\lambda_{+}+\lambda_{-}+c_{+}+c_{-}>0$ then Lemma 5.1 gives that $\mathbf{v} \equiv 0$.

Since $\nabla p_{ \pm}=\Delta \mathbf{u}_{ \pm}-\lambda_{ \pm} \mathbf{u}_{ \pm}=0$ there exist constant d_{1}, \ldots, d_{k} such that $p=d_{j}$ on ω_{j}, where $p=p_{ \pm}$on $\Omega_{ \pm}$. If $\partial \omega_{j} \cap \partial \omega_{i} \neq \emptyset, \omega_{j} \subset \Omega_{+}, \omega_{i} \subset \Omega_{-}$then $0=b_{+} T\left(\mathbf{u}_{+}, p_{+}\right) \mathbf{n}_{+}-b_{-} T\left(\mathbf{u}_{-}, p_{-}\right) \mathbf{n}_{+}+c_{+} \mathbf{u}_{+}=\left(b_{i} d_{i}-b_{+} d_{j}\right) \mathbf{n}_{+}$. Therefore there is a constant d such that $p_{ \pm}=d / b_{ \pm}$. On ∂G we have $0=T\left(\mathbf{u}_{-}, p_{-}\right) \mathbf{n}_{-}=$ $-d \mathbf{n}_{-} / b_{-}$. This gives $d=0$.

Theorem 6.4. Let $\lambda_{+}+\lambda_{-}+c_{+}+c_{-}>0$. Then $R^{\lambda_{+}, \lambda_{-}, \tilde{b}_{+}, \tilde{b}_{-}, \tilde{c}_{+}, c_{-}}$is an isomorphism on $W^{1,2}\left(\partial \Omega, R^{m}\right) \times L^{2}\left(\partial \Omega, R^{m}\right) \times L^{2}\left(\partial G, R^{m}\right)$. Let $\mathbf{g} \in W^{1,2}\left(\partial \Omega, R^{m}\right)$, $\mathbf{f} \in L^{2}\left(\partial \Omega, R^{m}\right), \mathbf{h} \in L^{2}\left(\partial G, R^{m}\right)$. Then there exists a unique L^{2}-solution $\mathbf{u}_{ \pm}, p_{ \pm}$of the Robin-transmission problem (1), (2), (16). Moreover, $\mathbf{u}_{ \pm} \in$ $H^{3 / 2}\left(\Omega_{ \pm}, R^{m}\right), p_{ \pm} \in H^{1 / 2}\left(\Omega_{ \pm}\right)$and

$$
\begin{gathered}
\left\|\mathbf{u}_{+}\right\|_{H^{3 / 2}\left(\Omega_{+}\right)}+\left\|\mathbf{u}_{-}\right\|_{H^{3 / 2}\left(\Omega_{-}\right)}+\left\|p_{+}\right\|_{H^{1 / 2}\left(\Omega_{+}\right)}+\left\|p_{-}\right\|_{H^{1 / 2}\left(\Omega_{1}\right)} \\
\leq C\left[\|\mathbf{g}\|_{W^{1,2}\left(\partial \Omega, R^{m}\right)}+\|\mathbf{f}\|_{L^{2}\left(\partial \Omega, R^{m}\right)}+\|\mathbf{h}\|_{L^{2}\left(\partial G, R^{m}\right)}\right]
\end{gathered}
$$

where C does not depend on \mathbf{g}, \mathbf{f} and \mathbf{h}.
Proof. $R^{\lambda_{+}, \lambda_{-}, \tilde{b}_{+}, \tilde{b}_{-}, \tilde{c}_{+}, c_{-}}$is a Fredholm operator with index 0 by Lemma 6.1. Let $R^{\lambda_{+}, \lambda_{-}, \tilde{b}_{+}, \tilde{b}_{-}, \tilde{c}_{+}, c_{-}}(\boldsymbol{\Phi}, \boldsymbol{\Psi}, \boldsymbol{\Theta})=0$. Let $\tilde{\mathbf{u}}_{+}, \tilde{p}_{+}$be given by (15), and $\tilde{\mathbf{u}}_{-}, \tilde{p}_{-}$ by (18). Then $\tilde{\mathbf{u}}_{ \pm}=0, \tilde{\mathbf{p}}_{ \pm}=0$ by Proposition 6.3. Lemma 6.2 gives $\boldsymbol{\Phi}=0$, $\boldsymbol{\Psi}=0, \boldsymbol{\Theta}=0$. Since $R^{\lambda_{+}, \lambda_{-}, \tilde{b}_{+}, \tilde{b}_{-}, \tilde{c}_{+}, c_{-}}$is a Fredholm operator with index 0 , we infer that $R^{\lambda_{+}, \lambda_{-}, \tilde{b}_{+}, \tilde{b}_{-}, \tilde{c}_{+}, c_{-}}$is an isomorphism.

Let $\mathbf{g} \in W^{1,2}\left(\partial \Omega, R^{m}\right), \mathbf{f} \in L^{2}\left(\partial \Omega, R^{m}\right), \mathbf{h} \in L^{2}\left(\partial G, R^{m}\right)$ be fixed. Put

$$
(\boldsymbol{\Phi}, \boldsymbol{\Psi}, \boldsymbol{\Theta})=\left(R^{\lambda_{+}, \lambda_{-}, \tilde{b}_{+}, \tilde{b}_{-}, \tilde{c}_{+}, c_{-}}\right)^{-1}\left[\mathbf{g}, \mathbf{f}, a_{-} \mathbf{h}\right] .
$$

Define $\tilde{\mathbf{u}}_{+}, \tilde{p}_{+}$by (15), and $\tilde{\mathbf{u}}_{-}, \tilde{p}_{-}$by (18). Then $\tilde{\mathbf{u}}_{ \pm}, \tilde{p}_{ \pm}$is an L^{2}-solution of the Robin-transmission problem (13), (14), (17). Denoting $\mathbf{u}_{ \pm}=\tilde{\mathbf{u}}_{ \pm} / a_{ \pm}, p_{ \pm}=$ $\tilde{p}_{ \pm} / a_{ \pm}$we obtain an L^{2} solution of the problem (1), (2), (16). The uniqueness follows from Proposition 6.3. The rest is a consequence of the fact that $E_{\Omega_{ \pm}}^{\lambda_{ \pm}}$: $L^{2}\left(\partial \Omega_{ \pm}, R^{m}\right) \rightarrow H^{3 / 2}\left(\Omega_{ \pm}, R^{m}\right), D_{\Omega_{ \pm}}^{\lambda_{ \pm}}: W^{1,2}\left(\partial \Omega_{ \pm}, R^{m}\right) \rightarrow H^{3 / 2}\left(\Omega_{ \pm}, R^{m}\right)$, $Q_{\Omega_{ \pm}}^{\lambda_{ \pm}}: L^{2}\left(\partial \Omega_{ \pm}, R^{m}\right) \rightarrow H^{1 / 2}\left(\Omega_{ \pm}, R^{m}\right), \Pi_{\Omega_{ \pm}}^{\lambda_{ \pm}}: W^{1,2}\left(\partial \Omega_{ \pm}, R^{m}\right) \rightarrow H^{1 / 2}\left(\Omega_{ \pm}, R^{m}\right)$ are bounded linear operators (see [5] and [14]).

Theorem 6.5. Let $\lambda_{+}=\lambda_{-}=c_{+}=c_{-}=0, \mathbf{g} \in W^{1,2}\left(\partial \Omega, R^{m}\right), \mathbf{f} \in$ $L^{2}\left(\partial \Omega, R^{m}\right), \mathbf{h} \in L^{2}\left(\partial G, R^{m}\right)$. Then there exists an L^{2}-solution $\mathbf{u}_{ \pm}, p_{ \pm}$of the Robin-transmission problem (1), (2), (16) if and only if

$$
\begin{equation*}
\int_{\partial \Omega} \mathbf{v} \cdot \mathbf{f} \mathrm{d} \mathcal{H}_{m-1}+\int_{\partial G} b_{-} \mathbf{v} \cdot \mathbf{h} \mathrm{d} \mathcal{H}_{m-1}=0 \quad \forall \mathbf{v} \in \mathcal{R}_{m} \tag{19}
\end{equation*}
$$

The general from of an L^{2}-solution of the problem (1), (2), (16) is

$$
\begin{equation*}
\mathbf{u}_{ \pm}+\mathbf{v} / a_{ \pm}, p \pm, \quad \mathbf{v} \in \mathcal{R}_{m} \tag{20}
\end{equation*}
$$

Proof. Let $\mathbf{u}_{ \pm}, p_{ \pm}$be an L^{2}-solution of the Robin-transmission problem (1), (2), (16), $\mathbf{v} \in \mathcal{R}_{m}$. Then

$$
\int_{\partial \Omega_{ \pm}} \mathbf{v} \cdot T\left(\mathbf{u}_{ \pm}, p_{ \pm}\right) \mathbf{n}^{\Omega_{ \pm}} \mathrm{d} \mathcal{H}_{m-1}=0
$$

(see [14]). Thus

$$
0=b_{+} \int_{\partial \Omega_{+}} \mathbf{v} \cdot T\left(\mathbf{u}_{+}, p_{+}\right) \mathbf{n}_{+}+b_{-} \int_{\partial \Omega_{-}} \mathbf{v} \cdot T\left(\mathbf{u}_{-}, p_{-}\right) \mathbf{n}_{-}=\int_{\partial \Omega} \mathbf{v} \cdot f+\int_{\partial G} b_{-} \mathbf{v} \cdot h .
$$

Denote by $X^{b_{-}}$the space of $[\mathbf{g}, \mathbf{f}, \mathbf{h}] \in X=W^{1,2}\left(\partial \Omega, R^{m}\right) \times L^{2}\left(\partial \Omega, R^{m}\right) \times$ $L^{2}\left(\partial G, R^{m}\right)$ satisfying (19). We have proved that $R^{0,0, \tilde{b}_{+}, \tilde{b}_{-}, 0,0}(X) \subset X^{\tilde{b}_{-}}$. Therefore codim $R^{0,0, \tilde{b}_{+}, \tilde{b}_{-}, 0,0}(X) \geq \operatorname{codim} X^{\tilde{b}_{-}}=\operatorname{dim} \mathcal{R}_{m}$.

Let $[\boldsymbol{\Phi}, \boldsymbol{\Psi}, \boldsymbol{\Theta}] \in \operatorname{Ker} R^{0,0, \tilde{b}_{+}, \tilde{b}_{-}, 0,0}$. Let $\tilde{\mathbf{u}}_{+}, \tilde{p}_{+}$be given by (15), and $\tilde{\mathbf{u}}_{-}$, \tilde{p}_{-}by (18). According to Proposition 6.3 there exists $\mathbf{v} \in \mathcal{R}_{m}$ such that $\tilde{\mathbf{u}}_{ \pm}=\mathbf{v}, \tilde{p}_{ \pm}=0$. If $\mathbf{v}=0$ then $\boldsymbol{\Phi}=0, \boldsymbol{\Psi}=0, \boldsymbol{\Theta}=0$ by Lemma 6.2. Thus $\operatorname{dim} \operatorname{Ker} R^{0,0, \tilde{b}_{+}, \tilde{b}_{-}, 0,0} \leq \operatorname{dim} \mathcal{R}_{m}$. Since $R^{0,0, \tilde{b}_{+}, \tilde{b}_{-}, 0,0}$ is a Fredholm operator with index 0 by Lemma 6.1, we deuce that $\operatorname{dim} \operatorname{Ker} R^{0,0, \tilde{b}_{+}, \tilde{b}_{-}, 0,0}=$ $\operatorname{codim} R^{0,0, \tilde{b}_{+}, \tilde{b}_{-}, 0,0}(X)=\operatorname{dim} \mathcal{R}_{m}$. Therefore $R^{0,0, \tilde{b}_{+}, \tilde{b}_{-}, 0,0}(X)=X^{\tilde{b}_{-}}$.

Let now $[\mathbf{g}, \mathbf{f}, \mathbf{h}] \in X$. We have proved that there exist $[\boldsymbol{\Phi}, \boldsymbol{\Psi}, \boldsymbol{\Theta}]$ such that $R^{0,0, \tilde{b}_{+}, \tilde{b}_{-}, 0,0}[\boldsymbol{\Phi}, \mathbf{\Psi}, \boldsymbol{\Theta}]=\left[\mathbf{g}, \mathbf{f}, a_{-} \mathbf{h}\right]$. Let $\tilde{\mathbf{u}}_{+}, \tilde{p}_{+}$be given by (15), and $\tilde{\mathbf{u}}_{-}, \tilde{p}_{-}$
by (18), $\mathbf{u}_{ \pm}=\tilde{\mathbf{u}}_{ \pm} / a_{ \pm}, p_{ \pm}=\tilde{p}_{ \pm} / a_{ \pm}$. Then $\mathbf{u}_{ \pm}, p_{ \pm}$is an L^{2}-solution of the Robin-transmission problem (1), (2), (16). Easy calculation yields that (20) gives another solution of the problem. Proposition 6.3 gives that each solution of the problem is of the form (20).

7 Regular Dirichlet-transmission problem

Let $G \subset R^{m}$ be a bounded domain with connected Lipschitz boundary, $\Omega=\Omega_{+}$ be a nonempty bounded open set with Lipschitz boundary such that $\bar{\Omega} \subset G$. Denote $\Omega_{-}=G \backslash \bar{\Omega}$, and by $\mathbf{n}_{ \pm}$the outward unit normal of $\Omega_{ \pm}$. Let $\lambda_{ \pm}, c_{+}$ be non-negative constants and $a_{ \pm}, b_{ \pm}$be positive constants. We shall study the regular Dirichlet-transmission problem for the Brinkman system (1), (2) accompanied with the condition

$$
\begin{equation*}
\mathbf{u}_{-}=\mathbf{h} \quad \text { on } \partial G \tag{21}
\end{equation*}
$$

Let $\mathbf{g} \in W^{1,2}\left(\partial \Omega, R^{m}\right), \mathbf{f} \in L^{2}\left(\partial \Omega, R^{m}\right), \mathbf{h} \in W^{1,2}\left(\partial G, R^{m}\right)$. We say that $\mathbf{u}_{ \pm}, p_{ \pm}$defined on $\Omega_{ \pm}$is an L^{2}-solution of the regular Dirichlet-transmission problem (1), (2), (21) if $\mathbf{u}_{ \pm}, p_{ \pm}$satisfy (1); $\mathbf{u}_{ \pm}^{*}, p_{ \pm}^{*},(\nabla \mathbf{u})_{ \pm}^{*}$ are from $L^{2}\left(\partial \Omega_{ \pm}, R^{1}\right)$; for almost all $\mathbf{x} \in \partial \Omega_{ \pm}$there exist the non-tangential limits of $\mathbf{u}_{ \pm}, \nabla \mathbf{u}_{ \pm}, p_{ \pm}$ at \mathbf{x} and the conditions (2), (21) are fulfilled in the sense of the nontangential limit a.e. on $\partial \Omega_{-}$.

Put $\tilde{b}_{ \pm}=b_{ \pm} / a_{ \pm}, \tilde{c}_{+}=c_{+} / a_{ \pm}$. If $\tilde{\mathbf{u}}_{ \pm}=a_{ \pm} \mathbf{u}_{ \pm}, \tilde{p}_{ \pm}=a_{ \pm} p_{ \pm}$then $\mathbf{u}_{ \pm}, p_{ \pm}$is an L^{2}-solution of the regular Dirichlet-transmission problem (1), (2), (21) if and only if $\tilde{\mathbf{u}}_{ \pm}, \tilde{p}_{ \pm}$is an L^{2}-solution of the regular Dirichlet-transmission problem (13), (14),

$$
\begin{equation*}
\tilde{\mathbf{u}}_{-}=a_{-} \mathbf{h} \quad \text { on } \partial G . \tag{22}
\end{equation*}
$$

Let $\boldsymbol{\Phi} \in W^{1,2}\left(\partial \Omega, R^{m}\right), \boldsymbol{\Psi} \in L^{2}\left(\partial \Omega, R^{m}\right), \boldsymbol{\Theta} \in L^{2}\left(\partial G, R^{m}\right)$. Let $\tilde{\mathbf{u}}_{+}, \tilde{p}_{+}$be given by (15), and $\tilde{\mathbf{u}}_{-}, \tilde{p}_{-}$be given by (18). Then $\tilde{\mathbf{u}}_{ \pm}, \tilde{p}_{ \pm}$is an L^{2}-solution of the regular Dirichlet-transmission problem (13), (14), (22) if and only if

$$
R_{D}^{\lambda_{+}, \lambda_{-}, \tilde{b}_{+}, \tilde{b}_{-}, \tilde{c}_{+}}(\mathbf{\Phi}, \boldsymbol{\Psi}, \boldsymbol{\Theta})=\left[\mathbf{g}, \mathbf{f}, a_{-} \mathbf{h}\right],
$$

where

$$
\begin{gathered}
R_{D}^{\lambda_{+}, \lambda_{-}, \tilde{b}_{+}, \tilde{b}_{-}, \tilde{c}_{+}}(\boldsymbol{\Phi}, \boldsymbol{\Psi}, \boldsymbol{\Theta})=\left[\tau_{1}^{\lambda_{+}, \lambda_{-}}(\boldsymbol{\Phi}, \boldsymbol{\Psi})-E_{G}^{\lambda_{-}} \boldsymbol{\Theta}, \tau_{2}^{\lambda_{+}, \lambda_{-}, \tilde{b}_{+}, \tilde{b}_{-}, \tilde{c}_{+}}(\boldsymbol{\Phi}, \boldsymbol{\Psi})\right. \\
\left.-\tilde{b}_{-} T\left(E_{G}^{\lambda_{-}} \boldsymbol{\Theta}, Q_{G}^{\lambda_{-}} \boldsymbol{\Theta}\right) \mathbf{n}_{+}, D_{\Omega}^{\lambda_{-}} \mathbf{\Phi}+E_{\Omega}^{\lambda_{-}} \boldsymbol{\Psi}+E_{G}^{\lambda_{-}} \boldsymbol{\Theta}\right]
\end{gathered}
$$

Proposition 7.1. Let $\mathbf{u}_{ \pm}, p_{ \pm}$be an L^{2}-solution of the regular Dirichlettransmission problem (1), (2), (21) with $\mathbf{g}=0, \mathbf{f}=0, \mathbf{h}=0$. Then there exists a constant c such that $\mathbf{u}_{ \pm}=0, p_{ \pm}=c / b_{ \pm}$.

Proof. Using Green's formula

$$
0=b_{-}^{-1} \int_{\partial \Omega} \mathbf{u}_{-} \cdot\left[b_{+} T\left(\mathbf{u}_{+}, p_{+}\right) \mathbf{n}_{+}-b_{-} T\left(\mathbf{u}_{-}, p_{-}\right) \mathbf{n}_{+}+c_{+} \mathbf{u}_{+}\right] \mathrm{d} \mathcal{H}_{m-1}
$$

$$
\begin{aligned}
& +\int_{\partial G} \mathbf{u}_{-} \cdot T\left(\mathbf{u}_{-}, p_{-}\right) \mathbf{n}_{-} \mathrm{d} \mathcal{H}_{m-1}=\int_{\Omega_{-}}\left[2\left|\hat{\nabla} \mathbf{u}_{-}\right|^{2}+\lambda_{-}\left|\mathbf{u}_{-}\right|^{2}\right] \mathrm{d} \mathcal{H}_{m} \\
& +\frac{a_{+} b_{+}}{a_{-} b_{-}} \int_{\Omega_{+}}\left[2\left|\hat{\nabla} \mathbf{u}_{+}\right|^{2}+\lambda_{+}\left|\mathbf{u}_{+}\right|^{2}\right] \mathrm{d} \mathcal{H}_{m}+\int_{\partial \Omega} \frac{c_{+} a_{+}\left|\mathbf{u}_{+}\right|^{2}}{a_{-}} \mathrm{d} \mathcal{H}_{m-1}
\end{aligned}
$$

Thus $\hat{\nabla} \mathbf{u}_{ \pm}=0$. According to [12], Lemma 3.1 there exist an antisymmetric matrix A and a vector \mathbf{B} such that $\mathbf{u}_{-}(\mathbf{x})=A \mathbf{x}+\mathbf{B}$. Since $\mathbf{u}_{-}=0$ on ∂G, Lemma 5.1 gives that $\mathbf{u}_{-}=0$. Since $\nabla p_{-}=\Delta \mathbf{u}_{-}-\lambda_{-} \mathbf{u}_{-}=0$ there exists a constant c such that $p_{-}=c / b_{-}$. Let ω be a component of Ω_{+}. According to [12], Lemma 3.1 there exist an antisymmetric matrix A and a vector \mathbf{B} such that $\mathbf{u}_{+}(\mathbf{x})=A \mathbf{x}+\mathbf{B}$ in ω. Since $\mathbf{u}_{+}=a_{-} \mathbf{u}_{-} / a_{+}=0$ on $\partial \omega$, Lemma 5.1 gives that $\mathbf{u}_{+}=0$ in ω. Since $\nabla p_{+}=\Delta \mathbf{u}_{+}-\lambda_{+} \mathbf{u}_{+}=0$ there exists a constant C such that $p_{+}=C$ in ω. We have $0=b_{+} T\left(\mathbf{u}_{+}, p_{+}\right) \mathbf{n}_{+}-b_{-} T\left(\mathbf{u}_{-}, p_{-}\right) \mathbf{n}_{+}+c_{+} \mathbf{u}_{+}=$ $-b_{+} C \mathbf{n}_{+}+b_{-}\left(c / b_{-}\right) \mathbf{n}_{+}$on $\partial \omega$. Hence $p_{+}=C=c / b_{+}$.
Theorem 7.2. Let $\mathbf{g} \in W^{1,2}\left(\partial \Omega, R^{m}\right), \mathbf{f} \in L^{2}\left(\partial \Omega, R^{m}\right), \mathbf{h} \in W^{1,2}\left(\partial G, R^{m}\right)$. There there exists an L^{2}-solution $\mathbf{u}_{ \pm}, p_{ \pm}$of the regular Dirichlet-transmission problem (1), (2), (21) if and only if

$$
\begin{equation*}
\int_{\partial \Omega} \mathbf{n}_{+} \cdot \mathbf{g} \mathrm{d} \mathcal{H}_{m-1}+a_{-} \int_{\partial G} \mathbf{n}_{-} \cdot \mathbf{h} \mathrm{d} \mathcal{H}_{m-1}=0 \tag{23}
\end{equation*}
$$

The general form of a solution of the problem is $\mathbf{u}_{ \pm}, p_{ \pm}+c / b_{ \pm}$, where c is a constant.

Proof. Suppose that $\mathbf{u}_{ \pm}, p_{ \pm}$be an L^{2}-solution $\mathbf{u}_{ \pm}, p_{ \pm}$of the regular Dirichlet-transmission problem (1), (2), (21). Then

$$
0=a_{+} \int_{\partial \Omega} \mathbf{n}_{+} \cdot \mathbf{u}_{+}+a_{-} \int_{\partial G} \mathbf{n}_{-} \cdot \mathbf{u}_{-}=\int_{\partial \Omega} \mathbf{n}_{+} \cdot \mathbf{g} \mathrm{d} \mathcal{H}_{m-1}+a_{-} \int_{\partial G} \mathbf{n}_{-} \cdot \mathbf{h} \mathrm{d} \mathcal{H}_{m-1}
$$

$R:(\boldsymbol{\Phi}, \boldsymbol{\Psi}, \boldsymbol{\Theta}) \mapsto\left[\tau_{1}^{\lambda_{+}, \lambda_{-}}(\boldsymbol{\Phi}, \boldsymbol{\Psi}), \tau_{2}^{\lambda_{+}, \lambda_{-}, \tilde{b}_{+}, \tilde{b}_{-}, \tilde{c}_{+}}(\boldsymbol{\Phi}, \boldsymbol{\Psi}), E_{G}^{0} \boldsymbol{\Theta}\right]$ is a Fredholm operator with index 0 from $X=W^{1,2}\left(\partial \Omega, R^{m}\right) \times L^{2}\left(\partial \Omega, R^{m}\right) \times L^{2}\left(\partial G, R^{m}\right)$ to the space $Y=W^{1,2}\left(\partial \Omega, R^{m}\right) \times L^{2}\left(\partial \Omega, R^{m}\right) \times W^{1,2}\left(\partial G, R^{m}\right)$ by [14] and Proposition 5.3. If $\lambda \geq 0$ then $E_{G}^{\lambda}-E_{G}^{0}$ is a compact operator from $L^{2}\left(\partial G, R^{m}\right)$ to $W^{1,2}\left(\partial G, R^{m}\right)$ (see [5], Theorem 3.4). Thus $R_{D}^{\lambda_{+}, \lambda_{-}, \tilde{b}_{+}, \tilde{b}_{-}, \tilde{c}_{+}}-R$ is a compact operator. Hence $R_{D}^{\lambda_{+}, \lambda_{-}, \tilde{b}_{+}, \tilde{b}_{-}, \tilde{c}_{+}}$is a Fredholm operator from X to Y with index 0 . Denote by $Z\left(a_{-}\right)$the set of all $[\mathbf{g}, \mathbf{f}, \mathbf{h}] \in Y$ satisfying (23). We have proved that $R_{D}^{\lambda_{+}, \lambda_{-}, \tilde{b}_{+}, \tilde{b}_{-}, \tilde{c}_{+}}(X) \subset Z(1)$. Thus codim $R_{D}^{\lambda_{+}, \lambda_{-}, \tilde{b}_{+}, \tilde{b}_{-}, \tilde{c}_{+}}(X) \geq 1$.

Let now $R_{D}^{\lambda_{+}, \lambda_{-}, \tilde{b}_{+}, \tilde{b}_{-}, \tilde{c}_{+}}(\boldsymbol{\Phi}, \boldsymbol{\Psi}, \boldsymbol{\Theta})=0$. Let $\tilde{\mathbf{u}}_{+}, \tilde{p}_{+}$be given by (15), and $\tilde{\mathbf{u}}_{-}, \tilde{p}_{-}$be given by (18). Then $\tilde{\mathbf{u}}_{ \pm}, \tilde{p}_{ \pm}$is an L^{2}-solution of the regular Dirichlettransmission problem (13), (14), (22) with $\mathbf{g}=0, \mathbf{f}=0, \mathbf{h}=0$. Proposition 7.1
gives that there exists a constant c such that $\mathbf{u}_{ \pm}=0, p_{ \pm}=c / \tilde{b}_{ \pm}$. If $c=0$ then $\boldsymbol{\Phi}=0, \boldsymbol{\Psi}=0, \boldsymbol{\Theta}=0$ by Lemma 6.2. Therefore $\operatorname{dim} \operatorname{Ker} R_{D}^{\lambda_{+}, \lambda_{-}, \tilde{b}_{+}, \tilde{b}_{-}, \tilde{c}_{+}} \leq$ 1. Hence $1 \leq \operatorname{codim} R_{D}^{\lambda_{+}, \lambda_{-}, \tilde{b}_{+}, \tilde{b}_{-}, \tilde{c}_{+}}(X)=\operatorname{dim} \operatorname{Ker} R_{D}^{\lambda_{+}, \lambda_{-}, \tilde{b}_{+}, \tilde{b}_{-}, \tilde{c}_{+}} \leq 1$. This forces $R_{D}^{\lambda_{+}, \lambda_{-}, \tilde{b}_{+}, \tilde{b}_{-}, \tilde{c}_{+}}(X)=Z(1)$.

Suppose now that (23) is fulfilled. We have proved that there exists $[\mathbf{\Phi}, \mathbf{\Psi}, \boldsymbol{\Theta}] \in$ X such that $R_{D}^{\lambda_{+}, \lambda_{-}, \tilde{b}_{+}, \tilde{b}_{-}, \tilde{c}_{+}}(\boldsymbol{\Phi}, \boldsymbol{\Psi}, \boldsymbol{\Theta})=\left[\mathbf{g}, \mathbf{f}, a_{-} \mathbf{h}\right]$. Let $\tilde{\mathbf{u}}_{+}, \tilde{p}_{+}$be given by (15), and $\tilde{\mathbf{u}}_{-}, \tilde{p}_{-}$be given by (18). Then $\tilde{\mathbf{u}}_{ \pm}, \tilde{p}_{ \pm}$is an L^{2}-solution of the regular Dirichlet-transmission problem (13), (14), (22). So $\mathbf{u}_{ \pm}=\tilde{\mathbf{u}}_{ \pm} / a_{ \pm}, p_{ \pm}=\tilde{p}_{ \pm} / a_{ \pm}$ is an L^{2}-solution of $(1),(2),(21)$. If c is a constant, then easy calculation gives that $\mathbf{u}_{ \pm}, p_{ \pm}+c / b_{ \pm}$is a solution of the problem, too. Proposition 7.1 gives that each solution of the problem has this form.

References

[1] T. K. Chang, D. H. Pahk, Spectral properties for layer potentials associated to the Stokes equation in Lipschitz domains. Manuscripta Math. 130 (2009), 359-373.
[2] J. J. Duistermaat, J. A. C. Kolk: Distributions. Theory and Applications. Birkhäuser, New York - Dordrecht -Heidelberg - London, 2010
[3] E. B. Fabes, C. E. Kenig, G. C. Verchota, The Dirichlet problem for the Stokes system on Lipschitz domains, Duke Math. J. 57 (1988), 769-793.
[4] C. E. Kenig, Recent progress on boundary value problems on Lipschitz domains. Pseudodifferential operators and Applications, Proc. Symp., Notre Dame/ Indiana 1984. Proc. Symp. Pure Math. 43 (1985), 175-205
[5] M. Kohr, M. Lanza de Cristoforis, W. L. Wendland: Nonlinear Neumanntransmission problems for Stokes and Brinkman equations on Euclidean Lipschitz domains. Potential Anal. DOI 10.1007/s11118-012-9310-0, to appear
[6] M. Kohr, C. Pintea, W. L. Wendland, Brinkman-type operators on Riemannian manifolds: Transmission problems in Lipschitz and C^{1} domains. Potential Anal. 32 (2010), 229-273.
[7] M. Kohr, C. Pintea, W. L. Wendland, Stokes-Brinkman transmission problems on Lipschitz and C^{1} domains in Riemannian manifolds. Commun. Pure Appl. Anal. 9 (2010), 493-537.
[8] Kohr, M., Pintea, C., Wendland, W. L.: Dirichlet-transmission problems for general Brinkman operators in Lipschitz and C^{1} domains in Riemannian manifolds. Discrete and continuous dynamical systems, ser. B, 15 (2011), 999-1018
[9] M. Kohr, G. P. Raja Sekhar, E. M. Ului, W. L. Wendland: Twodimensional Stokes-Brinkmann cell model - a boundary integral formulation. Applicable Analysis 91 (2012), 251-275
[10] P. Maremonti, R. Russo, G. Starita, On the Stokes equations: the boundary value problem. In Advances in Fluid Dynamics. Eds. P. Maremonti. 1999, Dipartimento di Matematica Seconda Università di Napoli; pp. 69-140.
[11] V. Maz'ya, M. Mitrea, T. Shaposhnikova, The inhomogeneous Dirichlet problem for the Stokes system in Lipschitz domains with unit normal close to $V M O^{*}$. Funct. Anal. Appl. 43 (2009), 217-235.
[12] D. Medková, Convergence of the Neumann series in BEM for the Neumann problem of the Stokes system. Acta Appl. Math. 116 (2011), 281-304.
[13] M. Mitrea, M. Taylor: Navier-Stokes equations on Lipschitz domains in Riemannian manifolds. Math. Ann. 321 (2011), 955-987
[14] M. Mitrea, M. Wright: Boundary value problems for the Stokes system in arbitrary Lipschitz domains. Astérisque 344, Paris 2012
[15] F. K. G. Odquist,Über die Randwertaufgaben in der Hydrodynamik zäher Flüssigkeiten, Math. Z. 32 (1930), 329-375.
[16] Shilov, G. E.: Mathematical Analysis. Second special course. Nauka. Moskva (1965) (Russian)
[17] W. Varnhorn, The Stokes equations, Akademie Verlag, Berlin, 1994.
Mathematical Institute,
Academy of Sciences of the Czech Republic,
Žitná 25,
11567 Praha 1,
Czech Republic medkova@math.cas.cz
Supported by GA ČR Grant P201/11/1304 and RVO: 67985840

