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Abstract. For a differentiable function f : I → R
k, where I is a real interval and k ∈ N,

a counterpart of the Lagrange mean-value theorem is presented. Necessary and sufficient
conditions for the existence of a mean M : I2 → I such that

f(x)− f(y) = (x − y)f ′(M(x, y)), x, y ∈ I,

are given.

Similar considerations for a theorem accompanying the Lagrange mean-value theorem
are presented.
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1. Introduction

Let I ⊂ R be an interval. Recall that a function M : I2 → R is said to be a mean

in I if, for all x, y ∈ I,

min(x, y) 6 M(x, y) 6 max(x, y).

A mean M in I is called strict if these inequalities are sharp whenever x 6= y, and

symmetric if M(x, y) = M(y, x) for all x, y ∈ I.

If M is a mean in I then, obviously, M(J2) = J for any subinterval J ⊂ I; in

particular M is reflexive, i.e.

M(x, x) = x, x ∈ I.
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Note also that if a function M : I2 → R is reflexive and (strictly) increasing with

respect to each variable, then it is a (strict) mean I. In the sequel such a mean is

called (strictly) increasing.

According to the Lagrange mean value theorem, if f : I → R is a differentiable

function, then there exists a strict mean M : I2 → I such that

f(x) − f(y) = f ′(M(x, y))(x − y), x, y ∈ I.

Moreover, if f ′ is one-to-one, then M = Mf is unique, continuous, symmetric,

strictly increasing, and

Mf (x, y) = (f ′)−1

(f(x) − f(y)

x − y

)

, x, y ∈ I, x 6= y.

This result can be extended to functions f : I → R
k as follows.

Theorem 1. Let k ∈ N. If f : I → R
k, f = (f1, . . . , fk) is differentiable in an

interval I, then there exists a vector of strict meansM = (M1, . . . , Mk) : I × I → Ik

such that

(1.1) f(x) − f(y) = (x − y)(f ′

1
(M1(x, y)), . . . , f ′

k(Mk(x, y))), x, y ∈ I.

Moreover, if f ′

1
, . . . , f ′

k are one-to-one, thenM = Mf is unique, continuous, symmet-

ric, the mean Mi = Mfi
is strictly increasing and

Mfi
(x, y) = (f ′

i)
−1

(fi(x) − fi(y)

x − y

)

, x, y ∈ I, x 6= y; i = 1, . . . , k.

P r o o f. It is enough to apply the Lagrange mean-value theorem to each of the

coordinate functions. �

This leads to a natural question when there is a unique mean M such that

M1 = . . . = Mk = M ; in particular, when formula 1.1 can be written in the form

f(x) − f(y) = (x − y)f ′(M(x, y)), x, y ∈ I?

The answer is given by the following
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Theorem 2. Let k ∈ N, k > 2, be fixed. Suppose that f : I → R
k, f = (f1, . . . , fk)

is differentiable in an interval I and such that f ′

1
, . . . , f ′

k are one-to-one. Then the

following conditions are equivalent:

(i) there is a unique mean M in I such that

f(x) − f(y) = (x − y)f ′(M(x, y)), x, y ∈ I;

(ii) there are ai, bi, ci ∈ R, ai 6= 0, for i = 1, . . . , k, and a function f : I → R such

that

fi(x) = aif(x) + bix + ci, x ∈ I.

P r o o f. Since f ′

1
, . . . , f ′

k are one-to-one, each of these derivatives is strictly

monotonic and continuous. To show this assume, to the contrary, that f ′

i is not

strictly monotonic. Then there are x, y, z ∈ I, x < y < z such that either

f ′

i(x) < f ′

i(y) and f ′

i(y) > f ′

i(z)

or

f ′

i(x) > f ′

i(y) and f ′

i(y) < f ′

i(z).

By the Darboux property of the derivative, in each of these two cases we would find

u ∈ [x, y] and v ∈ [y, z] such that f ′

i(u) = f ′

i(v). This is a contradiction, as f ′

i is one-

to-one. Now, the monotonicity of f ′

i and the Darboux property imply the continuity

of f ′

i .

In particular, we have shown that each of the functions fi is either strictly convex

or strictly concave in the interval I.

Assume that condition (i) is satisfied. Then, by Theorem 1, M = Mfi
for i =

1, . . . , k, whence

(f ′

i)
−1

(fi(x) − fi(y)

x − y

)

= (f ′

1
)−1

(f1(x) − f1(y)

x − y

)

, x, y ∈ I, x 6= y,

for all i = 2, . . . , k. Setting

f := f1, ϕi := f ′

i ◦ (f ′

1
)−1,

we hence get

fi(x) − fi(y)

x − y
= ϕi

(f(x) − f(y)

x − y

)

, x, y ∈ I, x 6= y; i ∈ {2, . . . , k}.
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Since f = f1 is strictly convex or strictly concave, it follows that (cf. [2], Theo-

rem 1) there exist ai, bi, ci ∈ R such that

fi(x) = aif(x) + bix + ci, x ∈ I; i = 2, . . . , k.

The strict convexity or strict concavity of fi implies that ai 6= 0 for i = 2, . . . , k,

which completes the proof of the implication (i) =⇒ (ii).

Since the converse implication is easy to verify, the proof is complete. �

R em a r k. At the beginning of the proof of Theorem 2 we have observed that all

the derivatives f ′

1
, . . . , f ′

k are continuous and strictly monotonic. Therefore, in the

proof of the implication (i) =⇒ (ii) one could apply the following

Lemma 1. Let f, g : I → R be differentiable and such that f ′ and g′ are contin-

uous and strictly monotonic. Then Mg = Mf if, and only if, there are a, b, c ∈ R,

a 6= 0, such that

h(x) = af(x) + bx + c, x ∈ I.

This lemma is a consequence of a result due to Berrone and Moro (cf. Corollary 7

in [1]).

2. The counterparts of Theorems 1 and 2

In [3] the following counterpart of the Lagrange mean-value theorem has been

proved. If a real function f defined on an interval I ⊂ R is differentiable, and f ′ is

one-to-one, then there exists a unique mean function M : f ′(I)× f ′(I) → f ′(I) such

that
f(x) − f(y)

x − y
= M(f ′(x), f ′(y)), x, y ∈ I, x 6= y.

Obviously, this result can also be extended to functions f : I → R
k. We have the

following

Theorem 3. Let k ∈ N. If f : I → R
k, f = (f1, . . . , fk) is differentiable in an

interval I and f ′

1
, . . . , f ′

k are one-to-one, then there exists a unique vector of means

M = (M1, . . . , Mk), Mi : f ′

i(I) × f ′

i(I) → f ′

i(I), i = 1, . . . , k, such that

f(x) − f(y) = (x − y)(M1(f
′

1
(x), f ′

1
(y)), . . . , Mk(f ′

k(x), f ′

k(y))), x, y ∈ I.

Moreover, M = Mf is continuous for each i = 1, . . . , k, the mean Mi = Mfi
is

symmetric, strictly increasing, and

Mi(u, v) =
fi((f

′

i)
−1(u)) − fi((f

′

i)
−1(v))

(f ′

i)
−1(u) − (f ′

i)
−1(v)

, u, v ∈ f ′

i(I), u 6= v.
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To answer the question when the means Mi, i = 1, . . . , k, are equal, we need

Lemma 2. Let I ⊂ R be an interval and let F, g, h : I → R. Suppose that h and,

for any y ∈ I, the function

(I \ {y}) ∋ x 7→
g(x) − g(y)

x − y

are one-to-one. If

(2.1)
F (x) − F (y)

h(x) − h(y)
=

g(x) − g(y)

x − y
, x, y ∈ I, x 6= y,

then there are a, b, c ∈ R, a 6= 0 such that

h(x) = ax + b, F (x) = ag(x) + c, x ∈ I.

P r o o f. Without any loss of generality we can assume that 0 ∈ I and that

g(0) = h(0) = 0. From 2.1 we have

F (x) − F (y) =
g(x) − g(y)

x − y
[h(x) − h(y)], x, y ∈ I, x 6= y.

Since F (x) − F (y) = [F (x) − F (z)] + [F (z) − F (y)], we get

g(x) − g(y)

x − y
[h(x) − h(y)] =

g(x) − g(z)

x − z
[h(x) − h(z)] +

g(z) − g(y)

z − y
[h(z) − h(y)]

for all x, y, z ∈ I, x 6= y 6= z 6= x, whence, after simple calculations,

g(x)K(x, y, z) = L(x, y, z), x, y, z ∈ I, x 6= y 6= z 6= x,

where

K(x, y, z) := h(x)(y − z) + h(z)(x − y) + [h(y)z − h(z)y]

and

L(x, y, z) := xh(x)[g(y) − g(z)] + h(x)[g(z)y − g(y)z] + x[g(z)h(z) − g(y)h(y)]

+
g(z) − g(y)

z − y
[h(z) − h(y)](x − y)(x − z) + [g(y)h(y)z − g(z)h(z)y].

Setting in this equality x = 0 we obtain

g(z) − g(y)

z − y
[h(z) − h(y)]yz + [g(y)h(y)z − g(z)h(z)y] = 0, y, z ∈ I, y 6= z,
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whence, after simple calculations,

(g(y)

y
−

g(z)

z

)(h(y)

y
−

h(z)

z

)

= 0, y, z ∈ I \ {0}, y 6= z.

This equality and the injectivity assumption of the function

I \ {0} ∋
g(x)

x
→ R

imply that there is a ∈ R such that h(x)/x = a for all x ∈ I \ {0}. As h(0) = 0,

we get h(x) = ax for all x ∈ I. Since the remaining results are obvious, the proof is

complete. �

Using the idea of the proof of this lemma we prove

R em a r k 1. Let I ⊂ R be an interval. Suppose that the functions F, g, h : I → R

are one-to-one. Then

(2.2)
F (x) − F (y)

x − y
= g(x) + h(y), x, y ∈ I, x 6= y,

if, and only if, there are a, b, c, d ∈ R such that

F (x) = ax2 + 2bx + d, g(x) = ax + b − c, h(x) = ax + b + c, x ∈ I.

P r o o f. Suppose that the functions F, g, h : I → R satisfy equation 2.2. Inter-

changing x and y in 2.2 we conclude that g(x) + h(y) = g(y) + h(x), i.e.

h(x) − g(x) = h(y) − g(y), x ∈ I,

whence, for some c ∈ R,

(2.3) h(x) = g(x) + 2c, x ∈ I.

Hence, setting

(2.4) G(x) := g(x) + c, x ∈ I,

we can write equation 2.2 in the form

F (x) − F (y)

x − y
= G(x) + G(y), x, y ∈ I, x 6= y,
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or, equivalently,

F (x) − F (y) = [G(x) + G(y)](x − y), x, y ∈ I, x 6= y.

Since F (x) − F (y) = [F (x) − F (z)] + [F (z) − F (y)], we get

[G(x) + G(y)](x − y) = [G(x) + G(z)](x − z) + [G(z) + G(y)](z − y)

for all x, y, z ∈ I, x 6= y 6= z 6= x. Taking here z := (1− t)x+ ty, after a simplification

we obtain

G((1 − t)x + ty) = tG(x) + (1 − t)G(y), x, y ∈ I, x 6= y, t ∈ (0, 1),

that is, G is an affine function. Consequently, there are a, b ∈ R, such that G(x) =

ax + b for all x ∈ I. From 2.4 and 2.3 we get

g(x) = ax + b − c, h(x) = ax + b + c, x ∈ I.

Substituting these functions into 2.2 we get

F (x) − F (y)

x − y
= a(x + y) + 2b, x, y ∈ I, x 6= y,

whence

F (x) − ax2 − 2bx = F (y) − ay2 − 2by, x, y ∈ I, x 6= y.

It follows that, for some d ∈ R,

F (x) = ax2 + 2bx + d, x ∈ I.

Since the converse implication is obvious, the proof is complete. �

Theorem 4. Let k ∈ N, k > 2, be fixed. Suppose that f : I → R
k, f = (f1, . . . , fk)

is differentiable in an interval I and f ′

1
, . . . , f ′

k are one-to-one. Then the following

conditions are equivalent:

(i) there is a unique mean M such that

f(x) − f(y) = (x − y)(M(f ′

1
(x), f ′

1
(y)), . . . , M(f ′

k(x), f ′

k(y))), x, y ∈ I;

(ii) there are c1, . . . , ck ∈ R, and a differentiable function g : I → R with one-to-one

derivative such that

fi(x) = g(x) + ci, x ∈ I, i = 1, . . . , k,
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and

M(u, v) =
g((g′)−1(u)) − g((g′)−1(v))

(g′)−1(u) − (g′)−1(v)
, u, v ∈ g′(I), u 6= v.

P r o o f. Assume (i). Then

fi(x) − fi(y)

x − y
= M(f ′

i(x), f ′

i(y)), x, y ∈ I, x 6= y, i = 1, . . . , k,

whence, for each i = 1, . . . , k,

M(u, v) =
fi((f

′

i)
−1(u)) − fi((f

′

i)
−1(v))

(f ′

i)
−1(u) − (f ′

i)
−1(v)

, u, v ∈ f ′

i(I), u 6= v.

Taking g := f1 we get, for each i = 1, . . . , k,

fi((f
′

i)
−1(u)) − fi((f

′

i)
−1(v))

(f ′

i)
−1(u) − (f ′

i)
−1(v)

=
g((g′)−1(u)) − g((g′)−1(v))

(g′)−1(u) − (g′)−1(v)
, u, v ∈ f ′

i(I), u 6= v.

Let us fix arbitrary i ∈ {2, 3, . . . , k} and put

hi := (f ′

i)
−1 ◦ g′, Fi := fi ◦ (f ′

i)
−1 ◦ g′.

Hence, taking arbitrary x, y ∈ I, x 6= y, and setting u := g′(x), v := g′(y) in the

above equality, we obtain

Fi(x) − Fi(y)

hi(x) − hi(y)
=

g(x) − g(y)

x − y
, x, y ∈ I, x 6= y.

By Lemma 2, there are ai, bi, ci ∈ R, ai 6= 0 such that

(2.5) hi(x) = aix + bi, Fi(x) = aig(x) + ci, x ∈ I.

By the definition of hi, we get

f ′

i(aix + bi) = g′(x), x ∈ I, i = 1, . . . , k.

Since the domains of all functions fi are the same, it follows that ai = 1, bi = 0,

and f ′

i = g′ for each i = 2, . . . , k. Now from the latter of formulas 2.5, we obtain

fi = g + ci for each i = 2, . . . , k, which completes the proof of the implication (i) =⇒

(ii). Since the converse implication is obvious, the proof is complete. �
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