137 (2012) MATHEMATICA BOHEMICA No. 4, 415-423

MEAN-VALUE THEOREM FOR VECTOR-VALUED FUNCTIONS
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Abstract. For a differentiable function f: I — IRk7 where [ is a real interval and k € N,
a counterpart of the Lagrange mean-value theorem is presented. Necessary and sufficient
conditions for the existence of a mean M: I? — I such that

f(z) — f(y) = (z —y)f (M(z,y)), z,y€l,

are given.
Similar considerations for a theorem accompanying the Lagrange mean-value theorem
are presented.
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1. INTRODUCTION

Let I C R be an interval. Recall that a function M: I? — R is said to be a mean
in [ if, for all z,y € I,

min(z,y) < M(z,y) < max(z,y).

A mean M in I is called strict if these inequalities are sharp whenever x # y, and
symmetric if M(x,y) = M(y,x) for all z,y € I.

If M is a mean in I then, obviously, M(J?) = J for any subinterval J C I; in
particular M is reflexive, i.e.

M(z,z) =z, ze€l.
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Note also that if a function M: I? — R is reflexive and (strictly) increasing with
respect to each variable, then it is a (strict) mean I. In the sequel such a mean is
called (strictly) increasing.

According to the Lagrange mean value theorem, if f: I — R is a differentiable
function, then there exists a strict mean M: I* — I such that

f@) = fly) = f(M(z,9))(z —y), zyel

Moreover, if f' is one-to-one, then M = My is unique, continuous, symmetric,
strictly increasing, and

f(x) = fy)

My(z,y) = (f’)’l( p—y

)7 vyel, x#y.
This result can be extended to functions f: I — R* as follows.

Theorem 1. Let k € N. Iff: I — R* f = (f1,..., fx) is differentiable in an
interval I, then there exists a vector of strict means M = (M, ..., My): I xI — I*
such that

(1.1)  f(z) —f@y) = (z —y)(fi(Mi(z,9)), ..., [i(Mi(2,9)), =z yel

Moreover, if f{,..., f}. are one-to-one, then M = M is unique, continuous, symmet-
ric, the mean M; = My, is strictly increasing and

filx) = fi(y)

Mfi(l'ay):(fi/)_l<fi( P ) vyel o4y, i=1,... k.

Proof. It is enough to apply the Lagrange mean-value theorem to each of the
coordinate functions. O

This leads to a natural question when there is a unique mean M such that
My =...= M = M; in particular, when formula 1.1 can be written in the form

£(z) — £(y) = (x — )f (M(2,y)), @y € I?

The answer is given by the following
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Theorem 2. Letk € N, k > 2, be fixed. Suppose thatf: I — R¥ £=(fi,..., fr)
is differentiable in an interval I and such that fi,..., f; are one-to-one. Then the
following conditions are equivalent:

(i) there is a unique mean M in I such that

f(z) —f(y) = (@ —f' (M(z,y)), zy€el;

(ii) there are a;,b;,c; € R, a; # 0, fori =1,...,k, and a function f: I — R such
that
fl({E) :aif(x)—i-bix—i—ci, el

Proof. Since f,..., fi are one-to-one, each of these derivatives is strictly
monotonic and continuous. To show this assume, to the contrary, that f/ is not
strictly monotonic. Then there are z,y,z € I, x < y < z such that either

filx) < fiy) and  fi(y) > fi(2)

filx) > fi(y) and  fi(y) < fi(2).

By the Darboux property of the derivative, in each of these two cases we would find
u € [z,y] and v € [y, 2] such that f/(u) = f{(v). This is a contradiction, as f/ is one-

(2
to-one. Now, the monotonicity of f; and the Darboux property imply the continuity

of f.

In particular, we have shown that each of the functions f; is either strictly convex
or strictly concave in the interval I.

Assume that condition (i) is satisfied. Then, by Theorem 1, M = My, for i =
1,...,k, whence

, my€l, x#y,

(B =10 _ gy (A0 = hiw)y

r—=y
for all i = 2,..., k. Setting
f:: f17 Pi = filo(f{)_17
we hence get

filz) — fily) _ %(f(x) - f(y)

), x,yel, x#y; i€{2,...,k}.
r—=y r—y
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Since f = f1 is strictly convex or strictly concave, it follows that (cf. [2], Theo-
rem 1) there exist a;,b;,¢; € R such that

filx) =a;f(x)+bix+c, zel; i=2,... k.

The strict convexity or strict concavity of f; implies that a; # 0 for i = 2,...,k,
which completes the proof of the implication (i) = (ii).
Since the converse implication is easy to verify, the proof is complete. O

Remark. At the beginning of the proof of Theorem 2 we have observed that all
the derivatives f{,..., f; are continuous and strictly monotonic. Therefore, in the
proof of the implication (i) = (ii) one could apply the following

Lemma 1. Let f,g: I — R be differentiable and such that f’' and ¢’ are contin-
uous and strictly monotonic. Then My, = My if, and only if, there are a,b,c € R,
a # 0, such that

h(z) =af(x) +bxr+¢, x€l.

This lemma is a consequence of a result due to Berrone and Moro (cf. Corollary 7
in [1]).

2. THE COUNTERPARTS OF THEOREMS 1 AND 2

In [3] the following counterpart of the Lagrange mean-value theorem has been
proved. If a real function f defined on an interval I C R is differentiable, and [ is
one-to-one, then there exists a unique mean function M: f'(I)x f'(I) — f'(I) such

that
f(@) — f(y)

r—y
Obviously, this result can also be extended to functions f: I — R*. We have the

=M(f'(x), f'(y), =xyel, z#y.

following

Theorem 3. Let k € N. If f: I — R* £ = (fi,..., fx) is differentiable in an
interval I and f1,..., f], are one-to-one, then there exists a unique vector of means
M = (My,...,My), M;: fi(I)x fi(I) — f/(I),i=1,...,k, such that

f(z) = £(y) = (z =) M (fi(2), iW)), - - Mi(fr(2), fr(v)), xy €L

Moreover, M = My is continuous for each i@ = 1,...,k, the mean M; = Mjy, is
symmetric, strictly increasing, and

M;(u,v) = Fil(fH Y w) = £ ()~ (w)

RO R
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To answer the question when the means M;, i = 1,...,k, are equal, we need

Lemma 2. Let I C R be an interval and let F,g,h: I — R. Suppose that h and,
for any y € I, the function

1\ (oh > L0 =20)
are one-to-one. If
(2.1) ZEZ — iély)) = g(xx) — z(y), v,yel, x#y,

then there are a,b,c € R, a # 0 such that

h(z) =azx+0b, F(z)=ag(z)+c, zecl.

Proof. Without any loss of generality we can assume that 0 € I and that
g(0) = h(0) = 0. From 2.1 we have

Fa) = Fly) = 2202500 - i), wy et o2y,

Since F(z) - F(y) = [F(x) — F(2)] + [F() — F(y)], we get

=90 p12) — niy)] = L= o) — o))+ L= 20 ) — )

for all x,y,z € I, © # y # z # x, whence, after simple calculations,

g(@)K(x,y,2) = L(x,y,2), x,y,z2€Il, x#y#z+#ux,

where
K(2,y,2) = h(z)(y — 2) + h(z)(z — y) + [h(y)z — h(2)y]

and

L(z,y,2) == xh(z)[g(y) — g(2)] + h(=)[9(2)y — 9(y)z] + z[g(2)h(2) — g(y)h(y)]
) )

Setting in this equality x = 0 we obtain

— Wlyz + [9Wh(y)z —g(2)h(2)y] =0, y,z€l, y #z,
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whence, after simple calculations,

(g(y) 3 9(2)>(h(y) _ h(z)) =0, y,z€l\{0}, y#=

) z Y z

This equality and the injectivity assumption of the function
noys 22 g
x

imply that there is a € R such that h(xz)/z = a for all x € T\ {0}. As h(0) = 0,
we get h(x) = ax for all z € I. Since the remaining results are obvious, the proof is
complete. O

Using the idea of the proof of this lemma we prove

Remark 1. Let I C R be an interval. Suppose that the functions F,g,h: I — R
are one-to-one. Then

F(z) - F(y)

(2.2) o

=g(@)+h(y), zyel, z#y,
if, and only if, there are a,b, ¢,d € R such that
F(z) =az® +2bx+d, g(z)=axr+b—c, h(x)=ar+b+c, z€cl.

Proof. Suppose that the functions F,g,h: I — R satisfy equation 2.2. Inter-
changing z and y in 2.2 we conclude that g(x) + h(y) = g(y) + h(z), ie.

whence, for some ¢ € R,

(2.3) h(z) =g(x) +2¢, zel.
Hence, setting

(2.4) G(x):=g(x)+ec, zel,

we can write equation 2.2 in the form

Fx) - F(y)

pra—y =G()+Gy), zyel, z#y,
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or, equivalently,
Fz) - F(y) =[Gx) + Gz —y), zyel, z#y.

Since F(z) — F(y) = [F(z) — F(2)] + [F(2) — F(y)], we get

[G(z) + G)l(z —y) = [G(z) + G(2)](z = 2) + [G(2) + G(y)I(z — y)

forall x,y,z € I, x # y # z # x. Taking here z := (1 —t)x + ty, after a simplification

we obtain

G(1—t)x +ty) =tG(z)+ (1 —-t)G(y), =xyel, z+#y, te(0,1),

that is, G is an affine function. Consequently, there are a,b € R, such that G(x) =

ax + b for all z € I. From 2.4 and 2.3 we get
g(x)=ar+b—c, h(x)=ax+b+c, ze€l.

Substituting these functions into 2.2 we get

F(z) - F(y)

pra—y =a(z+y)+2b, z,yel, x#y,

whence
F(z) — ax® — 2bx = F(y) —ay® — 2by, xz,y€l, x#vy.

It follows that, for some d € R,

F(z) =ax® +2br+d, zel.

Since the converse implication is obvious, the proof is complete. ([
Theorem 4. Letk € N, k > 2, be fixed. Suppose thatf: I — R¥, £= (fi,..., fx)
is differentiable in an interval I and fi,..., f|. are one-to-one. Then the following
conditions are equivalent:
(i) there is a unique mean M such that
f(z) —£(y) = (= — (M (fi(x), 1), M(fi(2), [ (¥), @y €L
(ii) there arecy,...,c, € R, and a differentiable function g: I — R with one-to-one

derivative such that

fz(x):g(x)—’_czv xe]vi:]-v"wkv
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and

Proof. Assume (i). Then

fi(z) — fi(y) = M(

x_y fi/(x)’fll(y))7 x’yel)x#y)izl)"'7k7

whence, for each i = 1,...k,

AU W) — BT ()
Muv) = =0 = () 1w

Taking g := f1 we get, foreachi=1,...,k,

fil(F)~Hw) = LD ) g(lg) M (w) — g((g") "' (v)
(f)~Hw) = (F))~(v) (¢)~Hw) = (¢") " (w)

Let us fix arbitrary ¢ € {2,3,...,k} and put

u,v € fi(I), u#v.

Hence, taking arbitrary x,y € I, x # y, and setting u := ¢’(z), v := ¢'(y) in the
above equality, we obtain
Fi(z) - Fily) _ g9(=) —9(y)

= ) fU,yEL $7éy
hi(z) — hi(y) -y

By Lemma 2, there are a;, b;,c; € R, a; # 0 such that
(2.5) hi(x) =ax+b;, Fi(z)=aig(x)+c, ze€l.
By the definition of h;, we get

fllax+b)=g'(x), ze€l, i=1,... k.

Since the domains of all functions f; are the same, it follows that a; = 1, b; = 0,
and f/ = ¢’ for each i = 2,...,k. Now from the latter of formulas 2.5, we obtain
fi=g+c;foreach i = 2,...,k, which completes the proof of the implication (i) =
(ii). Since the converse implication is obvious, the proof is complete. O
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