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MAXIMAL INEQUALITIES AND SPACE-TIME REGULARITY
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Abstract. Space-time regularity of stochastic convolution integrals

J =
∫ ·

0
S(· − r)Z(r) dW (r)

driven by a cylindrical Wiener process W in an L2-space on a bounded domain is investi-
gated. The semigroup S is supposed to be given by the Green function of a 2m-th order
parabolic boundary value problem, and Z is a multiplication operator. Under fairly general
assumptions, J is proved to be Hölder continuous in time and space. The method yields
maximal inequalities for stochastic convolutions in the space of continuous functions as well.
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differential equations
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0. Introduction

Let us consider an abstract stochastic semilinear parabolic equation

(0.1) dX = AX dt+ f(t,X) dt+ σ(t,X) dW, X(0) = ζ

in a Hilbert space H , A : Dom(A) −→ H being an infinitesimal generator of an
analytic C0-semigroup S(t) on H and W an infinite-dimensional Wiener process in
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H . Investigating regularity (or even only sample paths continuity) of mild solutions

of (0.1), which are given by the variation of constants formula

(0.2) X(t) = S(t)ζ +
∫ t

0
S(t− s)f(s,X(s)) ds+

∫ t

0
S(t− s)σ(s,X(s)) dW (s),

one faces the fact that it is the third term on the right hand side of (0.2) that causes

the most serious problems. It turns out that a thorough understanding of properties
of the stochastic convolution

Ψ(t) =
∫ t

0
S(t− s)ψ(s) dW (s), t � 0

for an operator-valued process ψ is indispensable when dealing with the equation

(0.1). If the Wiener processW has a nuclear covariance operator then a general pro-
cedure (the so called factorization method), proposed by G. Da Prato, S. Kwapień

and J. Zabczyk, is available, see the paper [2] for the additive noise case, i.e. ψ = I
(the identity operator), and [4] or [6], Chapter 7.1, for the general case of an L(H)-

valued process ψ, where L(H) denotes the space of all bounded linear operators in
H . Using this method it is straightforward to show that, under weak restrictions on

ψ, the process Ψ has Hölder continuous sample paths in the real interpolation space
(H,Dom(A))α,2 for any α < 1

2 , see [11], [21]. In applications to parabolic problems,

H = L2(D) for a domain D ⊆ �
d , and A is given by a 2m-th order elliptic differ-

ential operator in D. Then (H,Dom(A))α,2 is a subspace of the Slobodeckĭı space
W 2mα,2(D) and the Sobolev embedding theorem yields that Ψ is Hölder continuous

in both the time and space variables provided 2m > d.
Unfortunately, the situation is much more complicated if W is a standard cylin-

drical Wiener process (that is, with the covariance operator I). Even in the simple
case H = L2(]0, 1[), ψ = I and A = ∆ (the second derivative operator) with homoge-

neous Dirichlet boundary data it can be shown that Ψ(t) ∈ W 2α,2(]0, 1[) if and only
if α < 1

4 (see [13], Example 3.1, cf. also [20] for a different proof), but W
2α,2(]0, 1[)

embeds into C ([0, 1]) only if α > 1
4 . On the other hand, Hölder continuity of the

random field Ψ was established for many particular choices of the operator A and/or

the process ψ, see e.g. [7], [26], [16], [3], [9], [10], [14], [1]. Except for the paper [3],
where a functional analytic proof (that seems to apply only in the additive noise

case) was proposed, all other proofs we know are based on the Kolmogorov test for
sample paths continuity. A new version of this argument was used also in [5] (cf. [6],

Chapter 5.5) and developed further in [18] to cover stochastic convolutions of the
form

(0.3) J(t) =
∫ t

0
S(t− s)Z(s) dW (s), t � 0
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in L2(]0, 1[), where A = ∆ and Z(s), s � 0, are now generally unbounded multi-
plication operators in L2(]0, 1[). Let us recall that multiplication operator valued
processes appear if the diffusion coefficient σ in (0.1) is a superposition operator,
which is the most common case.

In the present paper, we aim at establishing the space-time Hölder continuity of
the random field J defined by (0.3) if A is a general 2m-th order elliptic differen-

tial operator in a bounded domain O ⊆ �
d . We assume that 2m > d as otherwise

the operators S(t), t > 0, are not Hilbert-Schmidt and the process J need not be

well-defined in L2(O) (see Theorem 2.1 below for a precise statement). We show
that J(t, ·) ∈ W s,p(O) for certain s > 0 and p ∈ ]2,∞[ with p sufficiently large for
the embedding theorem to imply Hölder continuity (see Theorem 2.2). Moreover,
under stronger assumptions, the same method yields the differentiability of J(t, ·)
and makes it possible to describe the behaviour of J(t, ·) on the boundary ∂O (The-
orem 2.3). Finally, we establish Hölder continuity of J in time (Theorem 2.4); as a
consequence, a maximal inequality for stochastic convolutions in the space of con-

tinuous functions follows. This result seems to be new even in the case d = m = 1,
O = ]0, 1[, Z ≡ 1, where we obtain

E sup
0�t�T

∣∣∣∣∫ t

0
S(t− s) dW (s)

∣∣∣∣p
C ([0,1])

� const.T
p
4−2−ε

for any p > 8 and ε ∈ ]
0, p
4 − 2

[
.

Our results are closely related to those obtained by P.Kotelenez in [14]. He consid-
ered more general pseudo-differential operators in not necessarily bounded domains;

on the other hand, the results of [14] apply only to stochastic convolutions with an
L∞-valued process Z, and no maximal inequalities are established there. The case
of unbounded multiplication operators Z may be of some importance in investigat-
ing stochastic parabolic equations, cf. the paper [18] for some applications of this

kind. Furthermore, we believe our proofs to be more straightforward and lucid. In
particular, we avoid the use of the Kolmogorov test, but instead we rely directly on

the Sobolev embedding theorem, as was first proposed in [12] (cf. also the proof of
Theorem 3.4 in [6]).

The paper is organized as follows. In the first section we introduce some notation

and recall a few facts about Sobolev-Slobodeckĭı spaces, Green functions and infinite-
dimensional Itô integrals, whilst in Section 2 the main results are stated. In Section

3, some useful estimates of the Green functions are derived, and Section 4 provides
proofs of our theorems.
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1. Notation and preliminaries

In this section we will introduce some notation and quote some results that are

frequently used in what follows.

First, λN will stand for Lebesgue measure on �N . Let Q ⊆ �
N be an open

bounded set, let s = k + λ for some k ∈ � and λ ∈ ]0, 1[. By C s(Q) we denote

the space of all functions on Q having k-th order derivatives which are λ-Hölder
continuous on Q. The space C s(Q) is equipped with the norm

|u|C s(Q) ≡
∑
|ν|�k

sup
x∈Q

|Dνu(x)|+
∑
|ν|=k

sup
x,y∈Q
x �=y

|Dνu(x)−Dνu(y)|
|x− y|λ .

The Lq(Q)-spaces, 1 � q � ∞, are defined in the standard way, let us denote by
L(Lq(Q), Lp(Q)) the space of all bounded linear operators from Lq(Q) into Lp(Q).

The Hilbert-Schmidt norm of an operator Y ∈ L(L2(Q)) is denoted by ‖Y ‖(HS).
If s ∈ � and q ∈ [1,∞[ then W s,q(Q) stands for the standard Sobolev space. If

s = k + λ, k ∈ �, λ ∈ ]0, 1[ then by W s,q(Q) we denote the Sobolev-Slobodeckĭı
space (see e.g. [15], §8.3). Namely, W s,q(Q) is the space of all u ∈ W k,q(Q) such

that

|u|W s,q(Q) ≡
(
|u|q

W k,q(Q) +
∑
|ν|=k

∫
Q

∫
Q

|Dνu(x)−Dνu(y)|q
|x− y|N+λq

dxdy

)1/q

<∞.

For further references we recall the Sobolev embedding theorem (see e.g. [25], The-
orem 4.6.1).

Theorem 1.1. Let Q ⊆ �
N be a bounded domain with a Lipschitz boundary.

Let s ∈ ]0,∞[, q ∈ ]1,∞[ and λ ∈ [0,∞[. Then W s,q(Q) ↪→ C λ(Q) provided

s > λ+N/q.

Throughout the paper O ⊆ Rd will be a fixed bounded domain, and

A = A (x,D) =
∑

|ν|�2m
aν(x)Dν , x ∈ O,

a fixed 2m-th order elliptic differential operator. Let {Bj ; j = 1, . . . ,m} be a system
of boundary operators,

Bj = Bj(x,D) =
∑

|ν|�rj

bjν(x)D
ν , j = 1, . . . ,m, x ∈ ∂O.
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We assume:

(i) ∂O is of the class C 2m+Λ for a Λ > 0.

(ii) The coefficients {aν} are Hölder continuous functions on O.
(iii) A is uniformly elliptic on O; that is, there exists a δ > 0 such that

(−1)m
∑

|ν|=2m
aν(x)ξ

ν � −δ|ξ|2m for all x ∈ O and ξ ∈ �
d .

(iv) One has 0 � rj � 2m− 1 and {bjν} ⊆ C 2m−rj+η(∂O) for an η > 0.

(v) The system {Bj} fulfils uniformly the complementarity condition on ∂O (see
[22], §1, for the definition).

We will employ many times the following results (see [8], Theorem 1.1, cf. also [23],

Theorem 2): Under the above assumptions, there exists a Green function G for the
system {A , B1, . . . , Bm}. That is, G : ]0,∞[×O×O −→ � is a continuous function,

continuously differentiable with respect to the first variable, and has continuous
derivatives of orders less than or equal to 2m with respect to the second variable.

Further, G fulfils

(1.1)

(
∂

∂t
− A

)
G(·, ·, y) = 0 in ]0,∞[× O,

BjG(·, ·, y) = 0 on ]0,∞[× ∂O

for any y ∈ O, and

lim
t→0+

∫
O

G(t, x, y)f(y) dy = f(x), x ∈ O, f ∈ C (O).

Moreover, G satisfies heat kernel type estimates:

Theorem 1.2. For every T > 0 there exist constants C, c > 0 such that

|DνG(t, x, y)| � Ct−(d+|ν|)/(2m) exp

(
−c

∣∣∣∣ x− y

t1/(2m)

∣∣∣∣2m/(2m−1))

for all t ∈ ]0, T ], x, y ∈ O, and for any multi-index ν, |ν| � 2m.

Here and in the sequel, DνG refers to the partial derivatives of the function x �−→
G(t, x, y).
Let q ∈ ]1,∞[, define

Dom(Aq) ≡
{
u ∈ W 2m,q(O) ; Bju = 0 on ∂O for j = 1, . . . ,m

}
,

Aqu ≡ A u for u ∈ Dom(Aq).
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Then Aq is an infinitesimal generator of a C0-semigroup Sq on Lq(O) (see e.g. [24],

Theorem 3.8.2), and

(1.2) Sq(t)u(x) =
∫

O

G(t, x, y)u(y) dy, t ∈ ]0,∞[ , x ∈ O, u ∈ Lq(O).

The formula (1.2) defines a C0-semigroup S1 on L1(O) as well, note that Sq(t) =

Sp(t) on Lq(O) for all q � p, so we will omit the subscript with no danger of confusion.
Moreover, (1.2) together with Theorem 1.2 yield that the operators S(t), t > 0, map

the space L1(O) into L∞(O).

Let (Ω,F , (Ft)t�0,P ) be a filtered probability space. Let W (t) be a cylindrical
Wiener process on L2(O). That is, W (t) ∈ L(L2(O), L2(Ω)), E

(
W (t)(h)W (t)(g)

)
=

t〈h, g〉 for any t � 0, h, g ∈ L2(O), and (W (t)(h))t�0 is a real valued (Ft)-adapted

Wiener process with covariance |h|2L2(O). Let us fix an orthonormal basis {ek}∞k=1
in L2(O) and set Wk(t) = W (t)(ek). Then {Wk} is a sequence of independent
real valued (Ft)-adapted Wiener processes and formally W (t) =

∑
Wk(t)ek. This

series does not converge in L2(O) but converges almost surely in any Hilbert space

containing L2(O) with a Hilbert-Schmidt embedding.
If ξ : Ω × [0, T ] −→ L(L2(O)) is an (Ft)-adapted measurable stochastic process

satisfying

P

{∫ T

0
‖ξ(t)‖2(HS) dt < ∞

}
= 1

then the stochastic Itô integral∫ t

0
ξ(s) dW (s), t ∈ [0, T ],

is a well-defined L2(O)-valued process, and∫ t

0
ξ(s) dW (s) =

∞∑
k=1

∫ t

0
ξ(s)ek dWk(s) in L2(O),

where the series converges in probability. We refer the reader to the books [17], §15
and §16, and [6], Chapter 4.3, for a systematic exposition of stochastic integration

with respect to a cylindrical Wiener process.
From now on, we take a fixed T > 0. Let δ ∈ [1,∞[, r ∈ [1,∞] and q ∈ [1,∞]. By

Pδ,r,q we denote the space of all measurable (Ft)-adapted Lq(O)-valued stochastic
processes Z = (Z(t), 0 � t � T ) such that

|||Z|||δ,r,q ≡


[
E

(∫ T

0
|Z(s)|rLq(O) ds

)δ/r]1/δ

<∞ if r <∞,[
E ess sup
0�s�T

|Z(s)|δLq(O)

]1/δ

<∞ if r =∞.
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We say that Z ∈ P0,r,q if Z is a measurable (Ft)-adapted Lq(O)-valued stochastic

process fulfilling

P

{∫ T

0
|Z(s)|rLq(O) ds <∞

}
= 1.

Any function g ∈ Lq(O), q ∈ [2,∞], may be viewed as a multiplication operator

g : L2(O) −→ L2q/(q+2)(O), u �−→ gu.

Note that the Hölder inequality implies

(1.3) |g|L(L2(O),L2q/(q+2)(O)) � |g|Lq(O).

(Here we set 2∞/(∞+ 2) = 2.) Consequently, if Z ∈ P0,r,2 then

s �−→ S(t− s)Z(s), s ∈ [0, t],

is an L(L2(O))-valued process for each t ∈ [0, T ] due to (1.3) and (1.2).
Finally, throughout the paper we adopt the convention that, for any number q ∈

[2,∞], q stands for the dual index to q/2. That is, q = q/(q−2) and∞ = 1. Moreover,
we set q′ = 2q. Occasionally, we will denote µ ≡ 1/(2m), thus 2m/(2m − 1) =
1/(1− µ). Let k � 0 be an integer and let 2m > d+ 2k, we define

θ(k) =
2d

2m− d− 2k , β(q, k) =
d

m

(
1− 1

q′

)
+
k

m
, γ(q, k) =

2
1− β(q, k)

,

θ = θ(0), β(q) = β(q, 0), γ(q) = γ(q, 0).

Note that

β(q, k) =
d

2m

(
1 +
2
q

)
+
k

m
,

moreover, β(q, k) ∈ ]0, 1[ provided q > θ(k).
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2. Main results

In the first theorem, we present a sufficient condition for the stochastic convolution
integral to be an L2(O)-valued stochastic process.

Theorem 2.1. Assume that 2m > d and suppose that Z ∈ P0,r,2 for an

r ∈
]
4m
2m−d ,∞

]
. Then

∫ t

0
‖S(t− s)Z(s)‖2(HS) ds <∞ P -almost surely

for all t ∈ [0, T ]. Consequently, the stochastic convolution

JZ(t) =
∫ t

0
S(t− s)Z(s) dW (s), t ∈ [0, T ],

is a well-defined L2(O)-valued stochastic process. Moreover, there exists a constant
K = K(m, d, r, T ) <∞ such that

sup
0�t�T

E
∣∣JZ(t)

∣∣2
L2(O)

� K|||Z|||22,r,2

for any Z ∈ P2,r,2.

Therefore, under the assumptions of Theorem 2.1 we can define the random field

JZ(t, x) =

(∫ t

0
S(t− s)Z(s) dW (s)

)
(x), 0 � t � T, x ∈ O.

A priori, JZ(t, ·) is defined only as an element of L2(O), this means λd-almost every-
where. Our next theorem shows that, in fact, the space regularity of JZ is much

better. Prior to stating the result let us note that, obviously, r > 4m/(2m − d) if
q > θ and r > γ(q).

Theorem 2.2. Assume that 2m > d, q ∈ ]θ,∞], r ∈ ]γ(q),∞] and δ ∈ [2,∞[.
Set

b =
m(1− β(q)r)

r
∧ 1 =

(
m(r − 2)

r
− d

2
− d

q

)
∧ 1.

Then for each s ∈ ]0, b[ there exists a constant L = L(q, r, δ, s) <∞ such that

(2.1) sup
0�t�T

E|JZ(t, ·)|δW s,δ(O) � L|||Z|||δδ,r,q
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for every Z ∈ Pδ,r,q. Hence JZ(t, ·) ∈ W s,δ(O) P -almost surely, and if δ > d/b then

JZ(t, ·) ∈ C λ(O) P -almost surely for each λ ∈ [0, b− d/δ[.

As a simple consequence of the theorem we have

Corollary 2.1. (i) If 2m− d = 1 and Z ∈ ⋂
r,q>2

Pδ,r,q for a certain δ > 2d then

JZ(t, ·) ∈ C λ(O) for λ ∈ [0, 1/2− d/δ[ and t ∈ [0, T ].
(ii) If 2m− d > 1 and Z ∈ ⋂

r,q>2
Pδ,r,q for a certain δ > d then JZ(t, ·) ∈ C λ(O)

for λ ∈ [0, 1− d/δ[ and t ∈ [0, T ].
As usual in analogous situations, a local uniqueness argument makes it possible

to weaken the integrability assumptions upon the process Z.

Corollary 2.2. Assume that 2m > d, let q ∈ ]θ,∞], r ∈ ]γ(q),∞], and suppose
that Z ∈ P0,r,q. Then for any t ∈ [0, T ] and λ ∈ [0, b[ one has JZ(t, ·) ∈ C λ(O)
P -almost surely.

Varying the proof of Theorem 2.2 we can investigate—under strengthened

hypotheses—higher smoothness of the function JZ(t, ·), namely, we will prove the
following assertion.

Theorem 2.3. Assume that 2m > d+2k for an integer k � 0. Let q ∈ ]θ(k),∞],
r ∈ ]γ(q, k),∞] and δ ∈ [2,∞[. Set

b(k) =
m(1− β(q, k)r)

r
∧ 1 =

(
m(r − 2)

r
− d

2
− d

q
− k

)
∧ 1.

Then for each s ∈ ]0, b(k)[ there exists a constant L̂ = L̂(q, r, δ, s) <∞ such that

sup
0�t�T

E|DνJZ(t, ·)|δW s,δ(O) � L̂|||Z|||δδ,r,q

for all processes Z ∈ Pδ,r,q and any multi-index ν, |ν| � k. Hence JZ(t, ·) ∈
W k+s,δ(O) P -almost surely, and if δ > d/b(k) then JZ(t, ·) ∈ C k+λ(O) P -almost

surely for each λ ∈ [0, b(k)− d/δ[.

Note that Theorem 2.2 is a particular case of Theorem 2.3, but we have treated
the case k = 0 separately because of its special importance. As a consequence

of the preceding theorem we can show that the stochastic convolution satisfies (in
the classical sense) some of the boundary conditions that are fulfilled by the Green

function G. Recall that B1, . . . , Bm are boundary operators of orders r1, . . . , rm,
respectively, and BjG(·, ·, y) = 0 on ]0, T ]× ∂O for any y ∈ O.
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Corollary 2.3. Assume that 2m > d+2k for an integer k � 0. Let q ∈ ]θ(k),∞],
r ∈ ]γ(q, k),∞], δ ∈ ]b(k),∞[, and Z ∈ Pδ,r,q. Then

BjJ
Z(t, ·)∣∣∂O

= 0 P -almost surely

for any t ∈ ]0, T ] and j ∈ {1, . . . ,m} such that rj � k.

Our last theorem deals with the space-time regularity of JZ . It is worth noticing

that JZ is less regular in time than in the space variables.

Theorem 2.4. Assume that 2m > d, q ∈ ]θ,∞], r ∈ ]γ(q),∞] and δ ∈ [2,∞[.
Then for each s ∈ ]0, (1− β(q)r)/(2r)[ there exists a constantM =M(q, r, δ, s) <∞
such that

(2.2) E|JZ(·, ·)|δW s,δ(]0,T [×O) � M |||Z|||δδ,r,q

for every Z ∈ Pδ,r,q. Consequently, JZ(·, ·) ∈ W s,δ(]0, T [×O) P -almost surely.

Moreover, if

(2.3) δ >
2r(d+ 1)
1− β(q)r

then JZ(·, ·) ∈ C λ([0, T ]× O) P -almost surely for each λ satisfying

(2.4) 0 � λ <
1− β(q)r
2r

− d+ 1
δ

.

After simple calculations we obtain

Corollary 2.4. If 2m > d and Z ∈ ⋂
r,q>2

Pδ,r,q for a certain δ >
4m(d+1)
2m−d then

JZ(·, ·) ∈ C λ([0, T ]× O) for any λ satisfying

0 � λ <
1
2
− d

4m
− d+ 1

δ
.

The estimate (2.2) can be viewed as a maximal inequality for stochastic convolu-

tions. We state this result explicitly since maximal inequalities are very useful.

Corollary 2.5. Let the assumptions of Theorem 2.4 be satisfied and let (2.3)
hold. Then for any λ fulfilling (2.4) and any κ fulfilling

0 < κ < δ

(
1− β(q)r
2r

− d+ 1
δ

− λ

)
16



there exists a constant M̃ <∞ such that

E sup
0�t�T

∣∣∣∣∫ t

0
S(t− s)Z(s) dW (s)

∣∣∣∣δ
C λ(O)

� M̃ T κ|||Z|||δδ,r,q

whenever Z ∈ Pδ,r,q.

The proofs of the above theorems are postponed to the final section.

������. Tracing the proofs one can see easily that the particular form of the
operators A and {Bj} has never been used, only the fact that the semigroup S(t) is
given by a kernel G satisfying the estimates of Theorem 1.2 is relevant. So we can
treat the case of a (parabolic) system of operators with coefficients dependent on time

as well, as just such systems are investigated in the papers [8], [23] we have relied on.
We have contented ourselves, however, with the simplest case of a single operator

having time independent coefficients not to obscure the basic idea. Moreover, all
proofs virtually remain valid for a (cylindrical) Wiener process with an arbitrary

covariance operator; we have chosen the standard cylindrical Wiener process with
the covariance operator I as it is, in a sense, the worst possible case. On the other

hand, the adopted method does not take into account the possible regularizing effect
of nuclearity of the covariance operator.

3. Auxiliary estimates

Let k � 0 be a fixed integer, everywhere in this section we assume that 2m > d+2k

and q ∈ [2,∞]. Generic constants independent of x, t are denoted by Ci in each
proof independently. Recall that θ(k), β(q, k) and γ(q, k) are defined at the end of

Section 1.

Lemma 3.1. For all q ∈ ]θ(k),∞] and p ∈ [1, β(q, k)−1[ there exists a constant
L1 = L1(q, p) <∞ such that

∫ t

0
|DνG(s, x, ·)|2p

Lq′ (O)
ds � L1t

1−β(q,k)p

for all t ∈ [0, T ], x ∈ O, and any multi-index ν with |ν| � k.
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�����. Let q′ <∞ (that is, q > 2). By Theorem 1.2 we have
∫ t

0
|DνG(s, x, ·)|2p

Lq′ (O)
ds =

∫ t

0

(∫
O

|DνG(s, x, y)|q′
dy

)2p/q′

ds

� C1

∫ t

0
s−(d+|ν|)p/m

(∫
O

exp

(
−cq′

∣∣∣∣x− y

sµ

∣∣∣∣1/(1−µ)
)
dy

)2p/q′

ds

� C2

∫ t

0
s−(d+k)p/m

[∫
�d

exp

(
−cq′

∣∣∣ y
sµ

∣∣∣1/(1−µ)
)
dy

]2p/q′

ds

� C2

∫ t

0
s−(d+k)p/m+dp/(mq′)

[∫
�d

exp
(
−cq′|z|1/(1−µ)

)
dz

]2p/q′

ds

� C3

∫ t

0
s−β(q,k)p ds ≡ L1t

1−β(q,k)p.

The case q′ =∞ can be treated similarly. �

Corollary 3.1. Let q ∈ ]θ(k),∞] and r ∈ ]γ(q, k),∞]. Then we have∫ t

0

∣∣DνG(t− s, x, ·)g(s)∣∣2
L2(O)

ds � L1(q, r)1/rt1/r−β(q,k)|g|2Lr([0,T ];Lq(O))

for all t ∈ [0, T ], x ∈ O, g ∈ Lr([0, T ];Lq(O)), and any multi-index ν, |ν| � k.

�����. Note that r ∈ [1, β(q, k)−1[ if r > γ(q, k). Applying the Hölder inequal-

ity we obtain∫ t

0

∫
O

|DνG(t− s, x, y)g(s, y)|2 dy ds

�
∫ t

0
|g(s)|2Lq(O)|DνG(t− s, x, ·)|2

Lq′ (O) ds

� |g|2Lr([0,T ];Lq(O))|DνG(·, x, ·)|2
L2r([0,t];Lq′ (O)),

and Lemma 3.1 yields the desired conclusion. �

Lemma 3.2. Assume that q ∈ ]θ(k),∞], p ∈ [1, β(q, k)−1[ and α ∈ ]0, 2m(1 −
β(q, k)p) ∧ 2p[. Then there exists a constant L2 = L2(q, p, α) such that∫ t

0
|DνG(s, x1, ·)−DνG(s, x2, ·)|2pLq′ (O) ds � L2t

1−β(q,k)p−α/(2m)|x1 − x2|α

for all x1, x2 ∈ O, t ∈ [0, T ], and any multi-index ν, |ν| � k.
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�����. Note that k+1 � 2m, thus by Theorem 1.2 and the mean value theorem
we have

|DνG(s, x1, y)−DνG(s, x2, y)| =
∣∣∣∣∫ 1

0
DxD

νG(s, x1 + τ(x2 − x1), y)(x2 − x1) dτ

∣∣∣∣
� C1|x2 − x1|

∫ 1

0
s−(d+|ν|+1)µ exp

(
−c

∣∣∣∣x1 + τ(x2 − x1)− y

sµ

∣∣∣∣1/(1−µ))
dτ

� C2s
−(d+k+1)µ|x2 − x1|,

where Dx stands for the Fréchet derivative with respect to the variable x. Take an
α ∈ ]0, 2m(1− β(q, k)p) ∧ 2p[ and set � = α/(2p). Then � ∈ ]0, 1[ and

|DνG(s, x2, y)−DνG(s, x1, y)|
= |DνG(s, x2, y)−DνG(s, x1, y)|� |DνG(s, x2, y)−DνG(s, x1, y)|1−�

� C�
2 |x2 − x1|�s−(d+k+1)�µ

{|DνG(s, x2, y)|1−� + |DνG(s, x1, y)|1−�
}

� C3|x2 − x1|�s−(d+k+�)µ
{
exp

(
c(�− 1)

∣∣∣∣x2 − y

sµ

∣∣∣∣1/(1−µ) )
+

+ exp
(
c(�− 1)

∣∣∣∣x1 − y

sµ

∣∣∣∣1/(1−µ) )}
.

Assuming for simplicity that q > 2 we obtain∫ t

0
|DνG(s, x2, ·)−DνG(s, x1, ·)|2pLq′ (O) ds

� C4|x2 − x1|2p�

∫ t

0
s−(d+k+�)p/m

[∫
�d

exp

(
cq′(�− 1)

∣∣∣ y
sµ

∣∣∣1/(1−µ)
)
dy

]2p/q′

ds

� C5|x2 − x1|α
∫ t

0
s−β(q,k)p−�p/m ds,

and it remains to observe that β(q, k)p+ α/(2m) < 1 due to the choice of α. �

Corollary 3.2. Let q ∈ ]θ(k),∞], r ∈ ]γ(q, k),∞], and α ∈ ]0, 2m(1−β(q, k)r)∧
2r[. Then we have∫ t

0

∣∣[DνG(t− s, x1, ·)−DνG(t− s, x2, ·)]g(s)
∣∣2
L2(O)

ds

� L2(q, r, α)1/rt1/r−β(q,k)−α/(2mr) |x1 − x2|α/r|g|2Lr([0,T ];Lq(O))

for all x1, x2 ∈ O, t ∈ [0, T ], g ∈ Lr([0, T ];Lq(O)), and any multi-index ν with
|ν| � k.
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Lemma 3.3. Let q ∈ ]θ,∞] and p ∈ [1, β(q)−1[. Then there exists a constant
L3 = L3(q, p) <∞ such that

∫ h

0
|G(s, x, ·)|2p

Lq′ (O)
ds � L3h

1−β(q)p

for all x ∈ O and h ∈ [0, T ].
�����. From Theorem 1.2 we obtain easily∫ h

0
|G(s, x, ·)|2p

Lq′ (O) ds � C1

∫ h

0
s−β(q)p ds,

and the desired estimate follows. �

Corollary 3.3. Let q ∈ ]θ,∞], r ∈ ]γ(q),∞]. Then one has
∫ t+h

t

∣∣G(t+ h− s, x, ·)g(s)∣∣2
L2(O)

ds � L3(q, r)1/r |g|2Lr([0,T ];Lq(O))h
(1−β(q)r)/r

for all x ∈ O, t ∈ [0, T [, h ∈ [0, T − t] and for any g ∈ Lr([0, T ];Lq(O)).

Lemma 3.4. For arbitrary q ∈ ]θ,∞], p ∈ [
1, β(q)−1

[
and α ∈ ]0, 1− β(q)p[

there exists a constant L4 = L4(q, p, α) <∞ such that∫ t

0
|G(s+ h, x, ·)−G(s, x, ·)|2p

Lq′ (O) ds � L4t
1−α−β(q)p hα

for all x ∈ O, t ∈ [0, T [ and h ∈ [0, T − t[.

�����. From (1.1) and Theorem 1.2 we have∣∣∣ ∂
∂v
G(v, x, y)

∣∣∣ = |AG(v, x, y)|

� C1v
−1−dµ exp

(
−c

∣∣∣∣x− y

vµ

∣∣∣∣1/(1−µ)
)

for all x, y ∈ O, v ∈ [0, T ]. Hence

|G(s+ h, x, y)−G(s, x, y)| =
∣∣∣∣∫ h

0

∂

∂r
G(s+ r, x, y) dr

∣∣∣∣
� C2

∫ h

0
(s+ r)−1−dµ dr � C2hs

−1−dµ.
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Take an α ∈ ]0, 1− β(q)p[ and set � = α/(2p). Then

|G(s+ h, x, y)−G(s, x, y)|
� C�

2h
�s−�(1+dµ)

{|G(s, x, y)|1−� + |G(s+ h, x, y)|1−�
}

� C3h
�s−�−dµ exp

(
c(�− 1)

∣∣∣∣x− y

sµ

∣∣∣∣1/(1−µ)
)

+ C3h�s−�(1+dµ)(s+ h)−(1−�)dµ exp

(
c(�− 1)

∣∣∣∣ x− y

(s+ h)µ

∣∣∣∣1/(1−µ)
)

≡ I1(s, x, y) + I2(s, x, y).

First,∫ t

0
|I1(s, x, ·)|2pLq′ (O)

ds

� C2p3 h
2p�

∫ t

0
s−2p�−2pdµ

∣∣∣∣∣exp
(
c(�− 1)

∣∣∣∣x− ·
sµ

∣∣∣∣1/(1−µ)
)∣∣∣∣∣
2p

Lq′ (O)

ds

� C4h
α

∫ t

0
s−α−β(q)p ds

and the last integral is convergent by the choice of α. Further,∫ t

0
|I2(s, x, ·)|2pLq′ (O)

ds � C5h
α

∫ t

0
s−2p�(1+µd)(s+ h)2p�µd−2pµd+2pµd/q′

ds

= C5hα

∫ t

0
s−α(1+dµ)(s+ h)−β(q)p+αdµ ds ≡ I3.

Note that αµd− β(q)p = µd{α− (1 + 2/q)p} < 0, thus we have

s−α(1+dµ)(s+ h)−β(q)p+αdµ � s−α(1+dµ)s−β(q)p+αdµ = s−α−β(q)p.

Hence

I3 � C5h
α

∫ t

0
s−α−β(q)p ds

and, since α+ β(q)p < 1, the integral is finite, which completes the proof. �

Corollary 3.4. Let q ∈ ]θ,∞], r ∈ ]γ(q),∞] and α ∈ ]0, 1− β(q)r[. Then we
have∫ t

0

∣∣(G(t+ h− s, x, ·)−G(t− s, x, ·))g(s)∣∣2
L2(O)

ds

� L4(q, r, α)1/rt(1−α)/r−β(q) |g|2Lr([0,T ];Lq(O))h
α/r
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for all t ∈ [0, T [, h ∈ [0, T − t], x ∈ O and for any g ∈ Lr([0, T ];Lq(O)).

4. Proofs

����� �� 	
����� 2.1. For every u ∈ L2(O) one has

[S(t− s)Z(s)u](·) =
∫

O

G(t− s, ·, y)Z(s, y)u(y) dy.

Hence (see e.g. [19], Theorem VI.23)

‖S(t− s)Z(s)‖2(HS) = |G(t− s, ·, ·)Z(s, ·)|2L2(O×O).

This yields∫ t

0
‖S(t− s)Z(s)‖2(HS) ds =

∫ t

0

∫
O

(∫
O

∣∣G(t− s, x, y)
∣∣2 dx)|Z(s, y)|2 dy ds

� C

∫ t

0

∫
O

(∫
O

(t− s)−d/m exp

(
−2c

∣∣∣∣ x− y

(t− s)µ

∣∣∣∣1/(1−µ))
dx

)
|Z(s, y)|2 dy ds

� C1

∫ t

0
(t− s)−d/(2m)|Z(s, ·)|2L2(O) ds

� C1

(∫ T

0
|Z(s, ·)|rL2(O) ds

)2/r(∫ T

0
s−dr/(2m) ds

)1/r

and it remains to note that dr/(2m) < 1 provided r > 4m/(2m− d). If Z ∈ P2,r,2

then

E|JZ(t)|2L2(O) = E

∫ t

0
‖S(t− s)Z(s)‖2(HS) ds � C2E

∣∣Z|2Lr([0,T ];L2(O))

by the preceding estimate. �

The proofs of Theorems 2.2 and 2.3 are based on the possibility to switch between

the Hilbert space approach to stochastic evolution equations and the random fields
setting, namely on the following lemma.

Lemma 4.1. Let B(t) be an (Ft)-adapted one-dimensional Wiener process on
Ω. Let ϕ : [0, T ]× Ω −→ L2(O) be an (Ft)-adapted measurable stochastic process
satisfying

(4.1) E

∫ T

0
|ϕ(s)|2L2(O) ds <∞,
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and such that for λd-almost every x ∈ O, (ϕ(s, ω)(x), 0 � s � T ) is a well-defined

real valued (Ft)-adapted measurable stochastic process. Define

Kt : Ω × O −→ �, (ω, x) �−→
∫ t

0
ϕ(s)(x) dB(s), 0 � t � T.

Then

(4.2)
∫ t

0
ϕ(s) dB(s) = Kt in L2(Ω × O)

for every t ∈ [0, T ].
�����. Fix t ∈ [0, T ]. First, note that the definition of Kt is correct, since (4.1)

implies

λd

{
x ∈ O ; E

∫ t

0
|ϕ(s)(x)|2 ds =∞

}
= 0.

Hence Kt(·, x) is well-defined for λd-almost every x ∈ O, and Kt ∈ L2(Ω × O). The
assertion (4.2) is obvious if ϕ is a step function. The general case may be proved by

a standard approximation argument. �

Let Z satisfy the assumptions of Theorem 2.2. By the definition of the stochastic
integral we have

JZ(t, ·) =
∞∑

k=1

∫ t

0
S(t− s)Z(s)ek dWk(s) in L2(Ω;L2(O)).

Hence there exists a subsequence {ln} such that for λd-almost every x ∈ O,

JZ(t, x) = lim
n→∞

ln∑
k=1

(∫ t

0
S(t− s)Z(s)ek dWk(s)

)
(x) P -almost surely.

Further, we claim that the series

∞∑
k=1

∫ t

0
[S(t− s)Z(s)ek](x) dWk(s)

converges in L2(Ω) for λd-almost every x ∈ O. Indeed,

∞∑
k=1

E

∫ t

0

∣∣〈G(t− s, x, ·)Z(s, ·), ek(·)
〉∣∣2 ds = E

∫ t

0
|G(t− s, x, ·)Z(s, ·)|2L2(O) ds <∞
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by Corollary 3.1, so the independence of {Wk} yields

E

∣∣∣∣∣
l∑

k=n

∫ t

0
[S(t− s)Z(s)ek](x) dWk(s)

∣∣∣∣∣
2

=
l∑

k=n

E

∫ t

0
|[S(t− s)Z(s)ek](x)|2 ds

=
l∑

k=n

E

∫ t

0

∣∣∣∣∫
O

G(t− s, x, y)Z(s, y)ek(y) dy

∣∣∣∣2 ds
=

l∑
k=n

E

∫ t

0

∣∣〈G(t− s, x, ·)Z(s, ·), ek(·)
〉∣∣2 ds −−−−→

l,n→∞
0.

Consequently, by Lemma 4.1 we obtain

Lemma 4.2. Let 2m > d, q ∈ ]θ,∞], r ∈ ]γ(q),∞] and Z ∈ P2,r,q. Then for

each t ∈ [0, T ] there exists a measurable set N (t) ⊆ O such that λd(N (t)) = 0 and

P
{
JZ(t, x) =

∞∑
k=1

∫ t

0
[S(t− s)Z(s)ek](x) dWk(s)

}
= 1

for every x ∈ O \ N (t).

Lemma 4.3. Suppose that 2m > d, let q ∈ ]θ,∞], r ∈ ]γ(q),∞], and α ∈
]0, 2m(1− β(q)r) ∧ 2r[. Then there exists a constant L5 = L5(q, r, δ, α) < ∞ such

that

E|JZ(t, x1)− JZ(t, x2)|δ � L5T
δ(1/r−β(q)−α/(2mr))/2 |||Z|||δδ,r,q |x1 − x2|αδ/(2r)

for any Z ∈ Pδ,r,q and for all t ∈ [0, T ], x1, x2 ∈ O \ N (t).

�����. Proceeding as in the proof of Lemma 4.2, using the Burkholder-Gundy
inequality and Corollary 3.2 we obtain

E|JZ(t, x1)− JZ(t, x2)|δ

= E

∣∣∣∣ ∞∑
k=1

∫ t

0

{
[S(t− s)Z(s)ek](x1)− [S(t− s)Z(s)ek](x2)

}
dWk(s)

∣∣∣∣δ
� C1E

(∫ t

0

∞∑
k=1

∣∣[S(t− s)Z(s)ek](x1)− [S(t− s)Z(s)ek](x2)
∣∣2 ds)δ/2

= C1E

(∫ t

0

∣∣[G(t− s, x1, ·)−G(t− s, x2, ·)]Z(s, ·)
∣∣2
L2(O)

ds

)δ/2

� C1E
(
L2(q, r, α)

1/rt1/r−β(q)−α/(2mr) |Z|2Lr([0,T ];Lq(O))|x1 − x2|α/r
)δ/2

� L5T
δ(1/r−β(q)−α/(2mr))/2 |||Z|||δδ,r,q|x1 − x2|αδ/(2r),

and Lemma 4.3 follows. �
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����� �� 	
����� 2.2. First, using the above procedure and Corollary 3.1

we get

E|JZ(t, ·)|δLδ(O) =
∫

O

E|JZ(t, x)|δ dx

� C1

∫
O

E

(∫ t

0
|G(t− s, x, ·)Z(s, ·)|2L2(O) ds

)δ/2

dx

� C2|||Z|||δδ,r,q.

Now, let s ∈ ]0, b[, where b is defined in Theorem 2.2. Then one can choose an
α ∈ ]2rs, 2m(1− β(q)r) ∧ 2r[. Lemma 4.3 and the Fubini theorem yield

E

∫
O

∫
O

|JZ(t, x) − JZ(t, y)|δ
|x− y|d+sδ

dxdy

� C3|||Z|||δδ,r,q
∫

O

∫
O

|x− y|−d+δ(−s+α/(2r)) dxdy.

Since δ(−s+α/(2r)) > 0 the double integral is finite, therefore there exists a constant
L <∞ such that

E|JZ(t, ·)|δW s,δ(O) � L|||Z|||δδ,r,q,
which proves (2.1). Now note that if δ > d/b and λ ∈ [0, b−d/δ[ then one can choose
an s ∈ ]d/δ + λ, b[. Consequently, W s,δ(O) ↪→ C λ(O) by Theorem 1.1. �

����� �� �������� 2.2. Fix λ ∈ [0, b[ and find δ ∈ [2,∞[ such that
λ+ d/δ < b. Define stopping times τN , N ∈ �, by

τN (ω) = inf
{
t ∈ [0, T ] ;

∫ t

0
|Z(s, ·, ω)|rLq(O) ds � N

}
,

with the convention inf ∅ = T . Setting

ZN (s, ·, ω) = χ{τN (ω)>s}Z(s, ·, ω), N ∈ �,

we can easily see that ZN ∈ Pδ,r,q, thus JZN (t, ·) ∈ C λ(O) P -almost surely for any
fixed t ∈ [0, T ] due to Theorem 2.2. Moreover, let ΩN = {ω ; τN (ω) = T }, then for
any t ∈ [0, T ] one has

JZN (t, ·) = JZ(t, ·) P -almost surely on ΩN

according to a well known property of stochastic integrals. Obviously,

P
(
Ω \

⋃
N�1

ΩN

)
= 0

by the choice of the process Z, and Corollary 2.2 follows. �
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����� �� 	
����� 2.3. As usual, we denote by D(O) the space of all

C∞-functions with compact supports in O, and by D ′(O) its dual space (i.e., the
Schwartz distributions on O). As was already mentioned, the proof proceeds along
the lines of the proof of Theorem 2.2, so we will discuss only the differences.

Fix t ∈ ]0, T ], a multi-index ν with |ν| � k, and a process Z ∈ Pδ,r,q. Let us
define operators ms ∈ L(L2(O)) by

msf =
∫

O

DνG(s, ·, y)f(y) dy, f ∈ L2(O).

Then

E

∫ t

0
‖mt−sZ(s)‖2(HS) ds <∞

by the same argument as in the proof of Theorem 2.1, so we can set

M(t, ·) =
∫ t

0
mt−sZ(s) dW (s).

Repeating the proof of Lemma 4.2 we find a set E ⊆ O such that λd(E ) = 0 and

P
{
M(t, x) =

∞∑
k=1

∫ t

0
[mt−sZ(s)ek](x) dWk(s)

}
= 1

for any x ∈ O \ E . We aim at proving

(4.3) P
{
DνJZ(t, ·) =M(t, ·) in D ′(O)

}
= 1.

To avoid clumsy notation, we verify (4.3), with no essential loss of generality, only in
the case ν = (1, 0, . . . , 0). Let ϕ ∈ D(O) be arbitrary but fixed, set e = (1, 0, . . . , 0) ∈
�

d and find h0 > 0 such that

supp(ϕ) ⊆
⋂

|h|�h0

(
O + he

)
.

First, note that

(4.4) lim
h→0

∫
O

JZ(t, x)
ϕ(x + he)− ϕ(x)

h
dx =

∫
O

JZ(t, x)Dνϕ(x) dx in L2(Ω)

by the dominated convergence theorem. Moreover, for h ∈ [−h0, h0] one has∫
O

JZ(t, x)
ϕ(x + he)− ϕ(x)

h
dx

=
1
h

{∫
O+he

JZ(t, x− he)ϕ(x) dx−
∫

O

JZ(t, x)ϕ(x) dx

}
=

∫
O

JZ(t, x− he)− JZ(t, x)
h

ϕ(x) dx.
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Further, we proceed as in the proofs of Lemma 4.3 to obtain the following estimates:

E

∣∣∣∣∫
O

{
JZ(t, x− he)− JZ(t, x)

h
+M(t, x)

}
ϕ(x) dx

∣∣∣∣2
� |ϕ|2L2(O)

∫
O

E

∣∣∣∣ JZ(t, x− he)− JZ(t, x)
h

+M(t, x)

∣∣∣∣2 dx
� |ϕ|2L2(O)

∫
O

E

∣∣∣∣ ∞∑
k=1

∫ t

0

∫
O

{
G(t− s, x− he, y)−G(t− s, x, y)

h

+DνG(t− s, x, y)

}
Z(s, y)ek(y) dy dWk(s)

∣∣∣∣2 dx
� |ϕ|2L2(O)

∫
O

E

∫ t

0

∣∣∣∣{ G(t− s, x− he, ·)−G(t− s, x, ·)
h

+DνG(t− s, x, ·)
}
Z(s, ·)

∣∣∣∣2
L2(O)

ds dx

� |ϕ|2L2(O)|||Z|||22,r,q
∫

O

∫ t

0

∣∣∣∣ G(t− s, x− he, ·)−G(t− s, x, ·)
h

+DνG(t− s, x, ·)
∣∣∣∣2r
Lq′ (O)

ds dx.

Obviously,

lim
h→0

{
G(s, x − he, y)−G(s, x, y)

h
+DνG(s, x, y)

}
= 0

for any x, y ∈ O, s ∈ ]0, T ] and by the mean value theorem we have∣∣∣∣ G(s, x − he, y)−G(s, x, y)
h

+DνG(s, x, y)

∣∣∣∣
� Cs−(d+1)/(2m)

{
exp

(
−c

∣∣∣∣x− h�e− y

sµ

∣∣∣∣1/(1−µ))
+ exp

(
−c

∣∣∣∣x− y

sµ

∣∣∣∣1/(1−µ))}
for a � ∈ ]0, 1[. So applying the dominated convergence theorem twice we obtain

lim
h→0

∫
O

∫ t

0

∣∣∣∣ G(s, x− he, ·)−G(s, x, ·)
h

+DνG(s, x, ·)
∣∣∣∣2r
Lq′ (O)

ds dx = 0.

This yields

(4.5) lim
h→0

∫
O

JZ(t, x)
ϕ(x+ he)− ϕ(x)

h
dx = −

∫
O

M(t, x)ϕ(x) dx in L2(Ω).
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Comparing (4.4) and (4.5) and taking into account that ϕ was arbitrary we see that

(4.6) P

{∫
O

JZ(t, x)Dνϕ(x) dx = −
∫

O

M(t, x)ϕ(x) dx

}
= 1

holds for any ϕ ∈ D(O). The space D(O) is separable and first countable, hence

P

{∫
O

JZ(t, x)Dνψ(x) dx = −
∫

O

M(t, x)ψ(x) dx for all ψ ∈ D(O)

}
= 1,

which is equivalent to our claim (4.3).
Finally, the required estimate

E
∣∣M(t, ·)∣∣δ

W s,δ(O)
� L̂ |||Z|||δδ,r,q

can be derived by exactly the same procedure as the related estimate of JZ in the
proof of Theorem 2.2. �

����� �� �������� 2.3. Fix t ∈ ]0, T ], j ∈ {1, . . . ,m} with rj � k and

Z ∈ Pδ,r,q; take h ∈ ∂O arbitrary. We may assume that the coefficients bjν of the
operator Bj are defined on the whole O and bjν ∈ C 2m−rj+η(O). We know that

there exists a measurable set E ⊆ O such that λd(E ) = 0 and

P
{
BjJ

Z(t, x) =
∞∑

l=1

∫ t

0

(∫
O

BjG(t− s, x, v)Z(s, v)el(v) dv

)
dWl(s)

}
= 1

for any x ∈ O \ E . Let us find yl ∈ O \ E satisfying yl −→ h as l → ∞; we aim at
proving that

(4.7) lim
l→∞

E|BjJ
Z(t, yl)|δ = 0.

Since yl /∈ E we obtain

E|BjJ
Z(t, yl)|δ � C1E

(∫ t

0

∣∣BjG(t− s, yl, ·)Z(s, ·)
∣∣2
L2(O)

ds

)δ/2

� C1|||Z|||δδ,r,q
(∫ t

0
|BjG(s, yl, ·)|2rLq′ (O) ds

)δ/(2r)

.

By the properties of the Green function,

lim
l→∞

BjG(s, yl, z) = 0
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for any s ∈ ]0, T ] and z ∈ O. Furthermore, as has been already established,

sup
l∈�

∣∣BjG(s, yl, ·)
∣∣2r
Lq′ (O) � C2s

−β(q,k)r,

hence

lim
l→∞

∫ t

0

∣∣BjG(s, yl, ·)
∣∣2r
Lq′ (O) ds = 0

by the dominated convergence theorem, and (4.7) holds true. At the same time

BjJ
Z(t, ·) ∈ C (O) P -almost surely, so (4.7) yields that BjJ

Z(t, h) = 0 almost
surely. Therefore, Corollary 2.3 follows by continuity of BjJ

Z(t, ·) on ∂O. �

To prove Theorem 2.4 we need the following lemma.

Lemma 4.4. Assume that 2m > d, q ∈ ]θ,∞], r ∈ ]γ(q),∞], and δ ∈ [2,∞[.
Then for any α ∈ ]0, 1− β(q)r[ there exists a constant L6 = L6(q, r, δ, α) < ∞ such
that

(4.8) E|JZ(t1, x)− JZ(t2, x)|δ � L6T
δ(1/r−β(q)−α/r)/2 |||Z|||δδ,r,q|t1 − t2|αδ/(2r)

holds for all Z ∈ Pδ,r,q, t1, t2 ∈ [0, T ] and any x ∈ O \ (N (t1) ∪ N (t2)).

�����. For definiteness, assume that t1 < t2. If x /∈ N (t1) ∪ N (t2) then

by Lemma 4.2, the Burkholder-Gundy inequality, and by Corollaries 3.3 and 3.4 we
have

E|JZ(t2, x) − JZ(t1, x)|δ

= E

∣∣∣∣∣
∞∑

k=1

{∫ t2

0
[S(t2 − s)Z(s)ek](x) dWk(s)−

∫ t1

0
[S(t1 − s)Z(s)ek](x) dWk(s)

}∣∣∣∣∣
δ

� C1E

∣∣∣∣∣
∞∑

k=1

∫ t2

t1

[S(t2 − s)Z(s)ek](x) dWk(s)

∣∣∣∣∣
δ

+ C1E

∣∣∣∣∣
∞∑

k=1

∫ t1

0

{
[S(t2 − s)Z(s)ek](x) − [S(t1 − s)Z(s)ek](x)

}
dWk(s)

∣∣∣∣∣
δ

� C2E

(∫ t2

t1

|G(t2 − s, x, ·)Z(s, ·)|2L2(O) ds
)δ/2

+ C2E

(∫ t1

0

∣∣[G(t2 − s, x, ·)−G(t1 − s, x, ·)]Z(s, ·)∣∣2
L2(O)

ds

)δ/2

� C3|||Z|||δδ,r,q
{
(t2 − t1)(1−β(q)r)δ/(2r) + T δ(1−β(q)r−α)/(2r)(t2 − t1)αδ/(2r)

}
,

which proves (4.8). �
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Set

N = {((t1, x1), (t2, x2)) ∈ (
[0, T ]× O

)2
; x1, x2 /∈ N (t1) ∪ N (t2)}.

Obviously, λ2d+2(N ) = 0. Combining Lemmas 4.3 and 4.4 we obtain

Corollary 4.1. Under the assumptions of Theorem 2.4, for any α ∈ ]0, 1− β(q)r [

there exists a constant L7 = L7(q, r, δ, α) <∞ such that

E|JZ(t1, x1)− JZ(t2, x2)|δ � L7T
δ(1/r−β(q)−α/r)/2 |||Z|||δδ,r,q

∣∣(t1, x1)− (t2, x2)∣∣αδ/(2r)

for any Z ∈ Pδ,r,q and all
(
(t1, x1), (t2, x2)

) ∈ (
[0, T ]× O

)2 \ N .

����� �� 	
����� 2.4 ��� �������� 2.5. We can complete the proof

of Theorem 2.4 proceeding in the same way as in the proof of Theorem 2.2. We
repeat the main steps as now we are interested in the dependence of constants on T .

First,

E
∣∣JZ(·, ·)∣∣δ

Lδ(]0,T [×O)
� C1

∫
O

∫ T

0
E

(∫ t

0

∣∣G(t− s, x, ·)Z(s, ·)∣∣2
L2(O)

ds

)δ/2

dt dx

� C2|||Z|||δδ,r,q
∫ T

0
tδ(1−β(q)r)/(2r) dt

� C3T
δ(1−β(q)r)/(2r) |||Z|||δδ,r,q.

Further, for any α ∈ ]2rs, 1− β(q)r [ we have

E

∫
]0,T [×O

∫
]0,T [×O

|JZ(t, y)− JZ(τ, x)|δ
|(t, y)− (τ, x)|d+1+sδ

dτ dxdt dy

� C4T
δ(1−α−β(q)r)/(2r)|||Z|||δδ,r,q

by Corollary 4.1. Hence for any � fulfilling

(4.9) 0 � � < δ

(
1
2r

− β(q)
2

− s

)
there is a constant C5 (dependent on �) such that the estimate

E
∣∣JZ(·, ·)∣∣δ

W s,δ(]0,T [×O)
� C5T

� |||Z|||δδ,r,q

holds.
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To prove Corollary 2.5, assume that (2.3) is fulfilled and take s > λ + (d + 1)/δ,

then

E sup
0�t�T

∣∣JZ(t, ·)∣∣δ
C λ(O)

� E
∣∣JZ(·, ·)∣∣δ

C λ([0,T ]×O)
� C6E

∣∣JZ(·, ·)∣∣δ
W s,δ(]0,T [×O)

� C5C6T
�|||Z|||δδ,r,q

for any � satisfying (4.9). Since we can take s arbitrarily close to λ + (d + 1)/δ the
proof is completed. �
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