ON EXISTENCE OF KNESER SOLUTIONS OF A CERTAIN CLASS OF n-TH ORDER NONLINEAR DIFFERENTIAL EQUATIONS

Oleg Palumbíny, Trnava

(Received August 7, 1996)

Abstract

The paper deals with existence of Kneser solutions of n-th order nonlinear differential equations with quasi-derivatives.

Keywords: nonlinear differential equation, quasi-derivative, monotone solution, Kneser solution

MSC 2000: 34C10, 34D05

1. Introduction

The aim of our paper is to give some conditions for existence of Kneser solutions of the differential equation
(L)

$$
L(y) \equiv 0,
$$

where

$$
\begin{aligned}
L(y) & \equiv L_{n} y+\sum_{k=1}^{n-1} P_{k}(t) L_{k} y+P_{0}(t) f(y), \\
L_{0} y(t) & =y(t), \\
L_{1} y(t) & =p_{1}(t)\left(L_{0} y(t)\right)^{\prime}=p_{1}(t) \frac{\mathrm{d} y(t)}{\mathrm{d} t}, \\
L_{k} y(t) & =p_{k}(t)\left(L_{k-1} y(t)\right)^{\prime} \quad \text { for } \quad k=2,3, \ldots, n-1, \\
L_{n} y(t) & =\left(L_{n-1} y(t)\right)^{\prime},
\end{aligned}
$$

n is an arbitrary positive integer, $n \geqslant 2, P_{k}(t), k=0,1, \ldots, n-1, p_{i}(t), i=$ $1,2, \ldots, n-1$ are real-valued continuous functions on the interval $I_{a}=[a, \infty),-\infty<$ $a<\infty ; f(t)$ is a real-valued function continuous on $E_{1}=(-\infty, \infty)$.

If $n=1$, then $L(y) \equiv L_{1} y+P_{0}(t) f(y)=y^{\prime}+P_{0}(t) f(y), P_{0}(t)$ and $f(t)$ are real-valued continuous functions on I_{a} and on E_{1}, respectively.

It is assumed throughout that
(A) $P_{k}(t) \leqslant 0, p_{i}(t)>0$ for all $t \in I_{a}, k=0,1, \ldots, n-1, i=1,2 \ldots, n-1 ; f(0) \neq 0$, $f(t) \geqslant 0$ for all $t \in E_{1} ; P_{0}(t)$ is not identically zero in any subinterval of $I_{a} ; n$ is an arbitrary positive integer, $n \geqslant 2$. If $n=1$, then $P_{0}(t) \leqslant 0$ and $f(t) \geqslant 0$ for all $t \in I_{a}$ and E_{1}, respectively.
The problems of existence of monotone or Kneser solutions for third order ordinary differential equations with quasi-derivatives were studied in several papers ([5], [7], [8], [10]). The equation (L), where $p_{i}(t) \equiv 1, i=1,2,3 \quad(n=4)$ was studied, for example, in ([6], [9], [12]). Equations of the fourth order with quasi-derivatives were also studied, for instance, in ([1], [3], [13]).

Existence of monotone solutions for n-th order equations with quasi-derivatives was studied in [4].

In our paper, Theorem 1 and Theorem 2 give sufficient conditions for existence of a Kneser solution of (L) on $[a, \infty)$ for n an even number or for an odd one, respectively.

Now we explain the concept of a Kneser solution, and other useful ones:
Definition 1. A nontrivial solution $y(t)$ of a differential equation of the n-th order is called a Kneser solution on $I_{a}=[a, \infty)$ iff $\left(y(t)>0,(-1)^{k} L_{k} y(t) \geqslant 0\right)$ or $\left(y(t)<0,(-1)^{k} L_{k} y(t) \leqslant 0\right)$ for all $t \in I_{a}, k=1,2, \ldots, n-1$.

Definition 2. Let J be an arbitrary type of an interval with endpoints t_{1}, t_{2}, where $-\infty \leqslant t_{1}<t_{2} \leqslant \infty$. The interval J is called the maximum interval of existence of $u: J \rightarrow E_{1}^{n}$, where $u(t)$ is a solution of the differential system $u^{\prime}=F(t, u)$ iff $u(t)$ can be continued neither to the right nor to the left of J.

Definition 3. Let $y^{\prime}=U(t, y)$ be a scalar differential equation. Then $y_{0}(t)$ is called the maximum solution of the Cauchy problem

$$
\begin{equation*}
y^{\prime}=U(t, y), y\left(t_{0}\right)=y_{0} \tag{*}
\end{equation*}
$$

iff $y_{0}(t)$ is a solution of $(*)$ on the maximum interval of existence and if $y(t)$ is another solution of $(*)$, then $y(t) \leqslant y_{0}(t)$ for all t belonging to the common interval of existence of $y(t)$ and $y_{0}(t)$.

We give some preliminary results.

Lemma 1. Let $A(t, s)$ be a nonpositive and continuous function for $a \leqslant t \leqslant$ $s \leqslant t_{0}$. If $g(t), \psi(t)$ are continuous functions in the interval $\left[a, t_{0}\right]$ and

$$
\psi(t) \geqslant g(t)+\int_{t_{0}}^{t} A(t, s) \psi(s) \mathrm{d} s \quad \text { for } t \in\left[a, t_{0}\right]
$$

then every solution $y(t)$ of the integral equation

$$
y(t)=g(t)+\int_{t_{0}}^{t} A(t, s) y(s) \mathrm{d} s
$$

satisfies the inequality $y(t) \leqslant \psi(t)$ in $\left[a, t_{0}\right]$.
Proof. See [6], page 331.
Lemma 2. (Wintner) Let $U(t, u)$ be a continuous function on a domain $t_{0} \leqslant$ $t \leqslant t_{0}+\alpha, \alpha>0, u \geqslant 0$, let $u(t)$ be a maximum solution of the Cauchy problem $u^{\prime}=U(t, u), u\left(t_{0}\right)=u_{0} \geqslant 0\left(u^{\prime}=U(t, u)\right.$ is a scalar differential equation) existing on $\left[t_{0}, t_{0}+\alpha\right]$; for example, let $U(t, u)=\psi(u)$, where $\psi(u)$ is a continuous and positive function for $u \geqslant 0$ such that

$$
\int^{\infty} \frac{\mathrm{d} u}{\psi(u)}=\infty
$$

Let us assume $f(t, y)$ to be continuous on $t_{0} \leqslant t \leqslant t_{0}+\alpha, y \in E_{1}^{n}, y$ arbitrary, and to satisfy the condition

$$
|f(t, y)| \leqslant U(t,|y|)
$$

Then the maximum interval of existence of a solution of the Cauchy problem

$$
y^{\prime}=f(t, y), \quad y\left(t_{0}\right)=y_{0}
$$

where $\left|y_{0}\right| \leqslant u_{0}$, is $\left[t_{0}, t_{0}+\alpha\right]$.
Proof. See [2], Theorem III.5.1.

Lemma 3. Let (A) hold, and let there exist real nonnegative constants a_{1}, a_{2} such that $f(t) \leqslant a_{1}|t|+a_{2}$ for all $t \in E_{1}$. Let initial values $L_{k} y(a)=b_{k}$ be given for $k=0,1, \ldots, n-1$. Then there exists a solution $y(t)$ of (L) on $[a, \infty)$, which fulfils these initial conditions.

Proof. See [4], Lemma 3.

2. Results

Lemma 4. Let us assume $g(t, z)$ to be continuous on $t_{0}-\alpha \leqslant t \leqslant t_{0}$, α a positive constant, $z \in E_{1}^{n}, z$ is arbitrary and satisfies a condition

$$
|g(t, z)| \leqslant \psi(|z|)
$$

where $\psi(t)$ is a continuous and positive function for $t \geqslant 0$ such that

$$
\int^{\infty} \frac{\mathrm{d} t}{\psi(t)}=\infty
$$

Then the maximum interval of existence of a solution of the Cauchy problem

$$
z^{\prime}=g(t, z), z\left(t_{0}\right)=z_{0}
$$

is $\left[t_{0}-\alpha, t_{0}\right]$.
Proof. Let us consider the Cauchy problem
(u)

$$
u^{\prime}=\psi(u), u\left(-t_{0}\right)=u_{0}=\left|z_{0}\right|
$$

According to the assumptions, the problem (u) admits a single solution $u_{0}(t)$ on $\left[-t_{0}, \infty\right)$, where

$$
u_{0}(t)=R_{-1}\left(t+t_{0}\right)
$$

and $R:\left[u_{0}, \infty\right) \rightarrow[0, \infty), R(u)=\int_{u_{0}}^{u} \frac{1}{\psi(t)} \mathrm{d} t, R_{-1}(R(u))=u, u \in\left[u_{0}, \infty\right)$. Let us consider the Cauchy problems
(U) $\quad u^{\prime}=U(t, u)=\psi(u), u\left(-t_{0}\right)=u_{0}=\left|z_{0}\right|,(t, u) \in\left[-t_{0},-t_{0}+\alpha\right] \times[0, \infty)$,
(y) $y^{\prime}(t)=g(-t,-y), y\left(-t_{0}\right)=-z_{0},(t, y) \in\left[-t_{0},-t_{0}+\alpha\right] \times E_{1}^{n}$,
(z) $z^{\prime}(t)=g(t, z), z\left(t_{0}\right)=z_{0}, \quad(t, z) \in\left[t_{0}-\alpha, t_{0}\right] \times E_{1}^{n}$.

Then $u_{0}(t)=R_{-1}\left(t+t_{0}\right)$ is the maximum solution of (U) on the maximum interval of existence $\left[-t_{0},-t_{0}+\alpha\right]$. According to Lemma 2 there exists a solution $y_{0}(t)$ of (y) on $\left[-t_{0},-t_{0}+\alpha\right]$. Then the Cauchy problem (z) admits the solution $z_{0}(t)=-y_{0}(-t)$ on $\left[t_{0}-\alpha, t_{0}\right]$ because of

$$
z_{0}^{\prime}(t)=y_{0}^{\prime}(-t)=g\left(t,-y_{0}(-t)\right)=g\left(t, z_{0}(t)\right)
$$

on $\left[t_{0}-\alpha, t_{0}\right]$. So the maximum interval of existence of (z) is $\left[t_{0}-\alpha, t_{0}\right]$.

Lemma 5. Let (A) hold, and let there exist nonnegative real constants a_{1}, a_{2} such that $f(t) \leqslant a_{1}|t|+a_{2}$ for all $t \in E_{1}$. Let initial values $L_{k} y\left(t_{0}\right)=b_{k}$ be given for $k=0,1, \ldots, n-1, t_{0}>a$. Then there exists a solution $y(t)$ of (L) on $[a, \infty)$, which fulfils these initial conditions.

Proof. According to Lemma 3 there exists a solution of (L) on $\left[t_{0}, \infty\right)$ such that the initial conditions hold. To prove our lemma we need to prove existence of a solution $y(t)$ of (L) on $\left[a, t_{0}\right]$ satisfying the given initial conditions. Consider now the following system (S), which corresponds to the equation (L) :

$$
\begin{align*}
& u_{k}^{\prime}(t)=\frac{u_{k+1}(t)}{p_{k}(t)}, \quad k=1,2, \ldots, n-1 \\
& u_{n}^{\prime}(t)=-\sum_{k=1}^{n-1} P_{k}(t) u_{k+1}(t)-P_{0}(t) f\left(u_{1}(t)\right) \tag{S}
\end{align*}
$$

where $u_{k}(t)=L_{k-1} y(t), k=1,2, \ldots, n, f_{k}=u_{k+1} / p_{k}, k=1, \ldots, n-1, f_{n}=$ $-\sum P_{k} u_{k+1}-P_{0} f\left(u_{1}\right), F=\left(f_{1}, f_{2}, \ldots, f_{n}\right), u=\left(u_{1}, u_{2}, \ldots, u_{n}\right), u^{\prime}=\left(u_{1}^{\prime}, u_{2}^{\prime}, \ldots\right.$, $\left.u_{n}^{\prime}\right),|u|=\sum_{k=1}^{n}\left|u_{k}\right|,|F|=\sum_{k=1}^{n}\left|f_{k}\right|,(t, u) \in\left[a, t_{0}\right] \times E_{1}^{n}$. Then

$$
\begin{aligned}
|F(t, u)| & =\sum_{k=1}^{n-1}\left|\frac{u_{k+1}}{p_{k}}\right|+\left|-\sum_{k=1}^{n-1} P_{k} u_{k+1}-P_{0} f\left(u_{1}\right)\right| \\
& \leqslant \sum_{k=1}^{n-1}\left(-P_{k}+\frac{1}{p_{k}}\right)\left|u_{k+1}\right|-P_{0}\left(a_{1}\left|u_{1}\right|+a_{2}\right) \leqslant K_{1}|u|+K_{2}=\psi(|u|)
\end{aligned}
$$

where K_{1}, K_{2} are appropriate positive real constants. It is obvious that

$$
\int^{\infty} \frac{\mathrm{d} s}{\psi(s)}=\infty
$$

for $s \in E_{1}, s>0$. Lemma 4 yields existence of a solution of (S) on $\left[a, t_{0}\right]$. This fact implies existence of a solution $y(t)$ of the equation (L) on $\left[a, t_{0}\right]$ which satisfies the given initial conditions. The lemma is proved.

Lemma 6. Let (A) hold, and let $y(t)$ be a solution of (L) on $\left[t_{1}, \infty\right)$, where $t_{1} \geqslant a$. Let (B) hold, where $\left(s_{0}=s\right)$

$$
\begin{equation*}
\sum_{k=1}^{n-1}(-1)^{k-1} M_{k}(t, s) \leqslant 0, \quad N_{n}(t) \leqslant 0, \quad n \geqslant 2 \tag{B}
\end{equation*}
$$

and

$$
\begin{aligned}
M_{k}(t, s)= & \int_{t}^{s} \frac{\mathrm{~d} s_{1}}{p_{n-2}\left(s_{1}\right)} \int_{t}^{s_{1}} \frac{\mathrm{~d} s_{2}}{p_{n-3}\left(s_{2}\right)} \cdots \int_{t}^{s_{k-2}} \frac{-P_{n-k}\left(s_{k-1}\right)}{p_{n-1}(s)} \mathrm{d} s_{k-1}, \\
M_{1}(t, s)= & -P_{n-1}(s), \quad N_{n}(t)=\int_{t_{2}}^{t} \sum_{k=1}^{n-1}\left(-P_{n-k}(s) G_{k}(s)\right) \mathrm{d} s, \\
G_{k}(s)= & L_{n-k} y\left(t_{2}\right)+(-1)^{1} L_{n-k+1} y\left(t_{2}\right) \int_{s}^{t_{2}} \frac{\mathrm{~d} s_{1}}{p_{n-k+1}\left(s_{1}\right)}+(-1)^{2} L_{n-k+2} y\left(t_{2}\right) \\
& \times \int_{s}^{t_{2}} \frac{\mathrm{~d} s_{1}}{p_{n-k+1}\left(s_{1}\right)} \int_{s_{1}}^{t_{2}} \frac{\mathrm{~d} s_{2}}{p_{n-k+2}\left(s_{2}\right)}+\ldots+(-1)^{k-2} L_{n-2} y\left(t_{2}\right) \\
& \times \int_{s}^{t_{2}} \frac{\mathrm{~d} s_{1}}{p_{n-k+1}\left(s_{1}\right)} \int_{s_{1}}^{t_{2}} \frac{\mathrm{~d} s_{2}}{p_{n-k+2}\left(s_{2}\right)} \cdots \int_{s_{k-3}}^{t_{2}} \frac{\mathrm{~d} s_{k-2}}{p_{n-2}\left(s_{k-2}\right)}
\end{aligned}
$$

for $k=2,3, \ldots, n-1, G_{1}(s)=0$.
a) Let n be an even number and $t_{2} \in\left(t_{1}, \infty\right)$ such that $(-1)^{k} L_{k} y\left(t_{2}\right) \geqslant 0$ for $k=0,1, \ldots, n-1$. Then $(-1)^{k} L_{k} y(t) \geqslant 0$ for $t \in\left[t_{1}, t_{2}\right], k=0,1, \ldots, n-1$.
b) Let n be an odd number and $t_{2} \in\left(t_{1}, \infty\right)$ such that $(-1)^{k} L_{k} y\left(t_{2}\right) \leqslant 0$ for $k=0,1, \ldots, n-1$. Then $(-1)^{k} L_{k} y(t) \leqslant 0$ for $t \in\left[t_{1}, t_{2}\right], k=0,1, \ldots, n-1$.

Proof. Let $n \geqslant 2$. Integration of the identity $L_{n} y=\left(L_{n-1} y\right)^{\prime}$ over $\left[t_{2}, t\right]$, where $t_{1} \leqslant t \leqslant t_{2}$ (n can be an even number as well as an odd one) yields

$$
\begin{aligned}
& L_{n-1} y(t) \\
& \qquad=L_{n-1} y\left(t_{2}\right)-\int_{t_{2}}^{t} \sum_{k=1}^{n-1} P_{k}(s) L_{k} y(s) \mathrm{d} s-\int_{t_{2}}^{t} P_{0}(s) f(y(s)) \mathrm{d} s \\
& \quad=L_{n-1} y\left(t_{2}\right)+\int_{t_{2}}^{t}\left(-P_{0}(s) f(y(s))\right) \mathrm{d} s+\int_{t_{2}}^{t} \sum_{k=1}^{n-1}\left(-P_{n-k}(s) L_{n-k} y(s)\right) \mathrm{d} s .
\end{aligned}
$$

Let us denote the expression $L_{n-1} y\left(t_{2}\right)+\int_{t_{2}}^{t}\left(-P_{0}(s) f(y(s))\right) \mathrm{d} s$ by $K_{n}(t)$. It is obvious that $K_{n}(t) \leqslant 0$ for all $t \in\left[t_{1}, t_{2}\right]$. We have

$$
L_{n-1} y(t)=K_{n}(t)+\int_{t_{2}}^{t} \sum_{k=1}^{n-1}\left(-P_{n-k}(s) L_{n-k} y(s)\right) \mathrm{d} s
$$

It can be proved that

$$
\begin{aligned}
& L_{n-k} y(s) \\
& =L_{n-k} y\left(t_{2}\right)+L_{n-k+1} y\left(t_{2}\right) \int_{t_{2}}^{s} \frac{\mathrm{~d} s_{1}}{p_{n-k+1}\left(s_{1}\right)} \\
& \quad+L_{n-k+2} y\left(t_{2}\right) \int_{t_{2}}^{s} \frac{\mathrm{~d} s_{1}}{p_{n-k+1}\left(s_{1}\right)} \int_{t_{2}}^{s_{1}} \frac{\mathrm{~d} s_{2}}{p_{n-k+2}\left(s_{2}\right)}+\ldots \\
& \quad+L_{n-2} y\left(t_{2}\right) \int_{t_{2}}^{s} \frac{\mathrm{~d} s_{1}}{p_{n-k+1}\left(s_{1}\right)} \int_{t_{2}}^{s_{1}} \frac{\mathrm{~d} s_{2}}{p_{n-k+2}\left(s_{2}\right)} \ldots \int_{t_{2}}^{s_{k-3}} \frac{\mathrm{~d} s_{k-2}}{p_{n-2}\left(s_{k-2}\right)} \\
& \quad+\int_{t_{2}}^{s} \frac{\mathrm{~d} s_{1}}{p_{n-k+1}\left(s_{1}\right)} \int_{t_{2}}^{s_{1}} \frac{\mathrm{~d} s_{2}}{p_{n-k+2}\left(s_{2}\right)} \int_{t_{2}}^{s_{2}} \frac{\mathrm{~d} s_{3}}{p_{n-k+3}\left(s_{3}\right)} \ldots \int_{t_{2}}^{s_{k-2}} \frac{L_{n-1} y\left(s_{k-1}\right) \mathrm{d} s_{k-1}}{p_{n-1}\left(s_{k-1}\right)}
\end{aligned}
$$

for $k=2,3, \ldots, n-1$. By interchanging the upper and the lower bounds in the previous integrals, we have

$$
\begin{aligned}
& L_{n-k} y(s) \\
&= L_{n-k} y\left(t_{2}\right)+(-1)^{1} L_{n-k+1} y\left(t_{2}\right) \int_{s}^{t_{2}} \frac{\mathrm{~d} s_{1}}{p_{n-k+1}\left(s_{1}\right)} \\
&+(-1)^{2} L_{n-k+2} y\left(t_{2}\right) \int_{s}^{t_{2}} \frac{\mathrm{~d} s_{1}}{p_{n-k+1}\left(s_{1}\right)} \int_{s_{1}}^{t_{2}} \frac{\mathrm{~d} s_{2}}{p_{n-k+2}\left(s_{2}\right)}+\ldots \\
&+(-1)^{k-2} L_{n-2} y\left(t_{2}\right) \int_{s}^{t_{2}} \frac{\mathrm{~d} s_{1}}{p_{n-k+1}\left(s_{1}\right)} \int_{s_{1}}^{t_{2}} \frac{\mathrm{~d} s_{2}}{p_{n-k+2}\left(s_{2}\right)} \ldots \int_{s_{k-3}}^{t_{2}} \frac{\mathrm{~d} s_{k-2}}{p_{n-2}\left(s_{k-2}\right)} \\
&+(-1)^{k-1} \int_{s}^{t_{2}} \frac{\mathrm{~d} s_{1}}{p_{n-k+1}\left(s_{1}\right)} \int_{s_{1}}^{t_{2}} \frac{\mathrm{~d} s_{2}}{p_{n-k+2}\left(s_{2}\right)} \ldots \int_{s_{k-2}}^{t_{2}} \frac{L_{n-1} y\left(s_{k-1}\right) \mathrm{d} s_{k-1}}{p_{n-1}\left(s_{k-1}\right)} .
\end{aligned}
$$

Denoting the last ($k-1$)-dimensional integral by $I_{k}(s)$, the previous sum by $G_{k}(s)$, $I_{1}(s)=L_{n-1} y(s), G_{1}(s)=0$ for $k=1,2, \ldots, n-1\left(s_{0}=s\right)$ we obtain

$$
L_{n-k} y(s)=G_{k}(s)+(-1)^{k-1} I_{k}(s)
$$

Hence

$$
\begin{aligned}
& L_{n-1} y(t) \\
& =K_{n}(t)+\int_{t_{2}}^{t} \sum_{k=1}^{n-1}\left(-P_{n-k}(s)\left[G_{k}(s)+(-1)^{k-1} I_{k}(s)\right]\right) \mathrm{d} s \\
& =K_{n}(t)+\int_{t_{2}}^{t} \sum_{k=1}^{n-1}\left(-P_{n-k}(s) G_{k}(s)\right) \mathrm{d} s+\int_{t_{2}}^{t} \sum_{k=1}^{n-1}\left(-P_{n-k}(s)(-1)^{k-1} I_{k}(s)\right) \mathrm{d} s
\end{aligned}
$$

Denoting $K_{n}(t)+\int_{t_{2}}^{t} \sum_{k=1}^{n-1}\left(-P_{n-k}(s) G_{k}(s)\right) \mathrm{d} s$ by $g_{n}(t)$ and denoting $\int_{t_{2}}^{t}\left(-P_{n-k}(s) \times\right.$ $\left.(-1)^{k-1} I_{k}(s)\right) \mathrm{d} s$ by $(-1)^{k-1} J_{k}(t)$ we have

$$
L_{n-1} y(t)=g_{n}(t)+\sum_{k=1}^{n-1}(-1)^{k-1} J_{k}(t)
$$

where $J_{k}(t)$ is the k-dimensional integral

$$
\begin{aligned}
J_{k}(t)=- & \int_{t}^{t_{2}}\left(-P_{n-k}(s)\right) \mathrm{d} s \int_{s}^{t_{2}} \frac{\mathrm{~d} s_{1}}{p_{n-k+1}\left(s_{1}\right)} \int_{s_{1}}^{t_{2}} \frac{\mathrm{~d} s_{2}}{p_{n-k+2}\left(s_{2}\right)} \cdots \\
& \ldots \int_{s_{k-2}}^{t_{2}} \frac{L_{n-1} y\left(s_{k-1}\right) \mathrm{d} s_{k-1}}{p_{n-1}\left(s_{k-1}\right)}
\end{aligned}
$$

for $k=2,3, \ldots, n-1$ and $J_{1}(t)=-\int_{t}^{t_{2}}\left(-P_{n-1}(s) L_{n-1} y(s)\right) \mathrm{d} s$.
By changing the notation of the variables we have

$$
\begin{aligned}
J_{k}(t)=- & \int_{t}^{t_{2}}\left(-P_{n-k}\left(s_{k-1}\right)\right) \mathrm{d} s_{k-1} \int_{s_{k-1}}^{t_{2}} \frac{\mathrm{~d} s_{k-2}}{p_{n-k+1}\left(s_{k-2}\right)} \int_{s_{k-2}}^{t_{2}} \frac{\mathrm{~d} s_{k-3}}{p_{n-k+2}\left(s_{k-3}\right)} \ldots \\
& \cdots \int_{s_{1}}^{t_{2}} \frac{L_{n-1} y(s) \mathrm{d} s}{p_{n-1}(s)}
\end{aligned}
$$

$J_{k}(t)$ is a k-dimensional integral on a k-dimensional domain. This domain can be described as an elementary domain in the following way:

$$
\begin{aligned}
& t \leqslant s_{k-1} \leqslant t_{2} \\
& s_{k-1} \leqslant s_{k-2} \leqslant t_{2} \\
& s_{k-2} \leqslant s_{k-3} \leqslant t_{2} \\
& \vdots \\
& s_{2} \leqslant s_{1} \leqslant t_{2} \\
& s_{1} \leqslant s \leqslant t_{2},
\end{aligned}
$$

as well as like

$$
\begin{aligned}
& t \leqslant s \leqslant t_{2} \\
& t \leqslant s_{1} \leqslant s \\
& t \leqslant s_{2} \leqslant s_{1} \\
& \vdots \\
& t \leqslant s_{k-2} \leqslant s_{k-3} \\
& t \leqslant s_{k-1} \leqslant s_{k-2}
\end{aligned}
$$

for $k=2,3, \ldots, n-1$. Hence

$$
\begin{aligned}
& J_{k}(t) \\
& =-\int_{t}^{t_{2}} L_{n-1} y(s) \mathrm{d} s \int_{t}^{s} \frac{\mathrm{~d} s_{1}}{p_{n-2}\left(s_{1}\right)} \int_{t}^{s_{1}} \frac{\mathrm{~d} s_{2}}{p_{n-3}\left(s_{2}\right)} \ldots \int_{t}^{s_{k-2}} \frac{-P_{n-k}\left(s_{k-1}\right)}{p_{n-1}(s)} \mathrm{d} s_{k-1}
\end{aligned}
$$

The last integral can be rewritten into the form

$$
J_{k}(t)=-\int_{t}^{t_{2}} M_{k}(t, s) L_{n-1} y(s) \mathrm{d} s=\int_{t_{2}}^{t} M_{k}(t, s) L_{n-1} y(s) \mathrm{d} s
$$

where

$$
M_{k}(t, s)=\int_{t}^{s} \frac{\mathrm{~d} s_{1}}{p_{n-2}\left(s_{1}\right)} \int_{t}^{s_{1}} \frac{\mathrm{~d} s_{2}}{p_{n-3}\left(s_{2}\right)} \ldots \int_{t}^{s_{k-2}} \frac{-P_{n-k}\left(s_{k-1}\right)}{p_{n-1}(s)} \mathrm{d} s_{k-1}
$$

for $k=2,3, \ldots, n-1, M_{1}(t, s)=-P_{n-1}(s)$. Hence

$$
\begin{aligned}
& L_{n-1} y(t) \\
& =g_{n}(t)+\sum_{k=1}^{n-1}(-1)^{k-1} J_{k}(t)=g_{n}(t)+\sum_{k=1}^{n-1}(-1)^{k-1} \int_{t_{2}}^{t} M_{k}(t, s) L_{n-1} y(s) \mathrm{d} s \\
& =g_{n}(t)+\int_{t_{2}}^{t}\left[\sum_{k=1}^{n-1}(-1)^{k-1} M_{k}(t, s)\right] L_{n-1} y(s) \mathrm{d} s=g_{n}(t)+\int_{t_{2}}^{t} A_{n}(t, s) L_{n-1} y(s) \mathrm{d} s,
\end{aligned}
$$

where $A_{n}(t, s)=\sum_{k=1}^{n-1}(-1)^{k-1} M_{k}(t, s)$. We note that $s \leqslant t_{2}, s_{i} \leqslant t_{2}, t \leqslant s$, $t \leqslant s_{i}$ for $i=1,2, \ldots, n-3$. According to the assumptions of the lemma, we have $g_{n}(t)=K_{n}(t)+N_{n}(t)$ and $g_{n}(t) \leqslant 0, A_{n}(t, s) \leqslant 0$. According to Lemma 1 we have $L_{n-1} y(t) \leqslant 0$ for all $t \in\left[t_{1}, t_{2}\right]$. By virtue of

$$
L_{n-2} y(t)=L_{n-2} y\left(t_{2}\right)+\int_{t_{2}}^{t} \frac{L_{n-1} y(s)}{p_{n-1}(s)} \mathrm{d} s \geqslant L_{n-2} y\left(t_{2}\right) \geqslant 0
$$

we have $L_{n-2} y(t) \geqslant 0$ on $\left[t_{1}, t_{2}\right]$. By using of a similar procedure (n can be an even number or an odd one), we get for $n \geqslant 2$:
a) $(-1)^{k} L_{k} y(t) \geqslant 0$ on $\left[t_{1}, t_{2}\right]$ for $k=0,1, \ldots, n-1$, for n an even number,
b) $(-1)^{k} L_{k} y(t) \leqslant 0$ on $\left[t_{1}, t_{2}\right]$ for $k=0,1, \ldots, n-1$, for n an odd number.

If $n=1$, then the assertion of the lemma is obvious.

Lemma 7. Consider a solution $y(t)$ of (L) on $\left[t_{1}, \infty\right), t_{1} \geqslant a$ such that (A) holds, let n be an even number and $t_{2} \in\left(t_{1}, \infty\right)$ such that $(-1)^{k} L_{k} y\left(t_{2}\right) \geqslant 0$ for $k=0,1, \ldots, n-1$. Let $P_{k}(t) \equiv 0$ on $\left[t_{1}, t_{2}\right]$ for all odd integers $k \in[1, n]$. Then (B) holds.

Proof. We have $G_{k}(s) \geqslant 0$ for all even numbers $k \in[1, n]$, and $G_{k}(s) \leqslant 0$ for all odd ones. If k is an odd number, then $n-k$ is an odd number too, and $P_{n-k}(t) \equiv 0$ on $\left[t_{1}, t_{2}\right]$. Therefore $N_{n}(t)=\int_{t_{2}}^{t} \sum_{k=1}^{n-1}\left(-P_{n-k}(s) G_{k}(s)\right) \mathrm{d} s \leqslant 0$. Similarly, $M_{k}(t, s)=0$ for all odd $k \leqslant n$. So $A_{n}(t, s)=\sum_{k=1}^{n-1}(-1)^{k-1} M_{k}(t, s) \leqslant 0$ because $M_{k}(t, s) \geqslant 0$ for all $k=1,2, \ldots, n-1$.

Lemma 8. Consider a solution $y(t)$ of (L) on $\left[t_{1}, \infty\right), t_{1} \geqslant a$ such that (A) holds, let $n>1$ be an odd number and $t_{2} \in\left(t_{1}, \infty\right)$ such that $(-1)^{k} L_{k} y\left(t_{2}\right) \leqslant 0$ for $k=0,1, \ldots, n-1$. Let $P_{k}(t) \equiv 0$ on $\left[t_{1}, t_{2}\right]$ for all even integers $k \in[1, n]$. Then (B) holds.

Proof. The proof is similar to the proof of the previous lemma, so it is omitted.

Lemma 9. Let $\left\{y_{m}(t)\right\}_{m=n_{0}}^{\infty}$ be a sequence of solutions of (L) on $\left[t_{0}, \infty\right)$, where $a<t_{0}<n_{0}$, n is an even number, and $L_{k} y_{m}(m)=(-1)^{k}$ for all $m \geqslant n_{0}, k=$ $0,1, \ldots, n-1$. Let (A) hold, and let $P_{k}(t) \equiv 0$ on $[a, \infty)$ for all odd integer numbers $k \in[1, n]$. Let $-\infty<\int_{t_{0}}^{\infty} P_{0}(s) \mathrm{d} s=P<0, \int_{t_{0}}^{\infty} P_{k}(s) \mathrm{d} s \geqslant-\frac{1}{2}$ for $k=1,2, \ldots, n-1$, let P_{k} be nondecreasing functions for $k=0,1, \ldots, n-1, \int_{t_{0}}^{\infty} 1 / p_{r}(s) \mathrm{d} s \leqslant \frac{1}{2}$ for $r=1,2, \ldots, n-1$, and let K be a real positive constant such that $0 \leqslant f(t) \leqslant K$ for $t \in(-\infty, \infty)$. Then there exists a subsequence of $\left\{y_{m}(t)\right\}_{m=n_{0}}^{\infty}$ which converges to $\varphi_{0}(t)$. This function $\varphi_{0}(t)$ is a solution of (L) on $\left[t_{0}, \infty\right)$, and $(-1)^{k} L_{k} \varphi_{0}(t) \geqslant 0$ on $\left[t_{0}, \infty\right)$ for $k=0,1, \ldots, n-1$.

Proof. Because $L_{n} y_{m}(t) \geqslant 0$ on $\left[t_{0}, m\right]$ for $m=n_{0}, n_{0}+1, \ldots$ (this follows from Lemma 7 and Lemma 6, part a)), we have that $L_{n-1} y_{m}(t)$ is nondecreasing and negative on $\left[t_{0}, n_{0}\right]$ for $m>n_{0}$. If we prove that $L_{n-1} y_{m}\left(t_{0}\right)$ is bounded from below, it means $L_{n-1} y_{m}(t)$ is uniformly bounded on $\left[t_{0}, n_{0}\right]$. Using the expression (C) several times, where
(C) $\quad L_{k} y_{m}(s)=L_{k} y_{m}(m)+\int_{m}^{s}\left(L_{k+1} \frac{y_{m}(s)}{p_{k+1}(s)}\right) \mathrm{d} s$ for $k=0,1, \ldots, n-2$,
we obtain for $n>3,2 \leqslant k<n-1\left(s_{0}=s\right)$:
(D)

$$
\begin{aligned}
L_{k} y_{m}(s)= & L_{k} y_{m}(m)+L_{k+1} y_{m}(m) \int_{m}^{s} \frac{\mathrm{~d} s_{1}}{p_{k+1}\left(s_{1}\right)} \\
& +L_{k+2} y_{m}(m) \int_{m}^{s} \frac{\mathrm{~d} s_{1}}{p_{k+1}\left(s_{1}\right)} \int_{m}^{s_{1}} \frac{\mathrm{~d} s_{2}}{p_{k+2}\left(s_{2}\right)}+\ldots
\end{aligned}
$$

$$
\begin{aligned}
& +L_{n-2} y_{m}(m) \int_{m}^{s} \frac{\mathrm{~d} s_{1}}{p_{k+1}\left(s_{1}\right)} \int_{m}^{s_{1}} \frac{\mathrm{~d} s_{2}}{p_{k+2}\left(s_{2}\right)} \cdots \int_{m}^{s_{n-k-3}} \frac{\mathrm{~d} s_{n-k-2}}{p_{n-2}\left(s_{n-k-2}\right)} \\
& +\int_{m}^{s} \frac{\mathrm{~d} s_{1}}{p_{k+1}\left(s_{1}\right)} \int_{m}^{s_{1}} \frac{\mathrm{~d} s_{2}}{p_{k+2}\left(s_{2}\right)} \cdots \int_{m}^{s_{n-k-2}} \frac{L_{n-1} y_{m}\left(s_{n-k-1}\right)}{p_{n-1}\left(s_{n-k-1}\right)} \mathrm{d} s_{n-k-1}
\end{aligned}
$$

Integration of (L) over $\left[t_{0}, m\right]$ yields

$$
\begin{aligned}
& L_{n-1} y_{m}\left(t_{0}\right) \\
& =L_{n-1} y_{m}(m)+\int_{t_{0}}^{m} P_{0}(s) f\left(y_{m}(s)\right) \mathrm{d} s+\sum_{k=1}^{\frac{n}{2}-1} \int_{t_{0}}^{m} P_{2 k}(s) L_{2 k} y_{m}(s) \mathrm{d} s \\
& =L_{n-1} y_{m}(m)+\int_{t_{0}}^{m} P_{0}(s) f\left(y_{m}(s)\right) \mathrm{d} s+\sum_{k=1}^{\frac{n}{2}-1} \int_{t_{0}}^{m} P_{2 k}(s)\left[B_{2 k}(s)+C_{2 k}(s)\right] \mathrm{d} s,
\end{aligned}
$$

where $C_{k}(s)$ is the last integral in (D) and $B_{k}(s)$ is the rest of the right-hand side of (D). Let us denote the expression $L_{n-1} y_{m}(m)+\int_{t_{0}}^{m} P_{0}(s) f\left(y_{m}(s)\right) \mathrm{d} s$ by F_{m}. Then

$$
\begin{aligned}
& L_{n-1} y_{m}\left(t_{0}\right) \\
& =F_{m}+\sum_{k=1}^{\frac{n}{2}-1} \int_{t_{0}}^{m} P_{2 k}(s) B_{2 k}(s) \mathrm{d} s+\sum_{k=1}^{\frac{n}{2}-1} \int_{t_{0}}^{m} P_{2 k}(s) C_{2 k}(s) \mathrm{d} s \\
& \geqslant \\
& F_{m}+\sum_{k=1}^{\frac{n}{2}-1} \int_{t_{0}}^{m} P_{2 k}(s) B_{2 k}(s) \mathrm{d} s+L_{n-1} y_{m}\left(t_{0}\right) \\
& \\
& \quad \times \sum_{k=1}^{\frac{n}{2}-1} \int_{t_{0}}^{m} P_{2 k}(s)\left[\int_{m}^{s} \frac{\mathrm{~d} s_{1}}{p_{2 k+1}\left(s_{1}\right)} \int_{m}^{s_{1}} \frac{\mathrm{~d} s_{2}}{p_{2 k+2}\left(s_{2}\right)} \ldots \int_{m}^{s_{n-2 k-2}} \frac{\mathrm{~d} s_{n-2 k-1}}{p_{n-1}\left(s_{n-2 k-1}\right)}\right] \mathrm{d} s \\
& \quad \sum_{k=1}^{\frac{n}{2}-1} \int_{t_{0}}^{m} P_{2 k}(s) B_{2 k}(s) \mathrm{d} s+L_{n-1} y_{m}\left(t_{0}\right) \\
& \quad \times \sum_{k=1}^{\frac{n}{2}-1} \int_{t_{0}}^{\infty}\left[-P_{2 k}(s)\left[\int_{t_{0}}^{\infty} \frac{\mathrm{d} s_{1}}{p_{2 k+1}\left(s_{1}\right)} \int_{t_{0}}^{\infty} \frac{\mathrm{d} s_{2}}{p_{2 k+2}\left(s_{2}\right)} \ldots \int_{t_{0}}^{\infty} \frac{\mathrm{d} s_{n-2 k-1}}{p_{n-1}\left(s_{n-2 k-1}\right)}\right]\right] \mathrm{d} s .
\end{aligned}
$$

(We have used the fact that the last integral has the dimension $n-2 k$, which is an even number, and $t_{0} \leqslant s_{i} \leqslant m<\infty$ for $\left.i=1,2, \ldots, n-2 k-2, t_{0} \leqslant s \leqslant m<\infty\right)$. An easy arrangement yields

$$
\begin{aligned}
L_{n-1} y_{m}\left(t_{0}\right)[1 & +\sum_{k=1}^{\frac{n}{2}-1} \int_{t_{0}}^{\infty} P_{2 k}(s) \mathrm{d} s \int_{t_{0}}^{\infty} \frac{\mathrm{d} s_{1}}{p_{2 k+1}\left(s_{1}\right)} \int_{t_{0}}^{\infty} \frac{\mathrm{d} s_{2}}{p_{2 k+2}\left(s_{2}\right)} \ldots \\
& \left.\ldots \int_{t_{0}}^{\infty} \frac{\mathrm{d} s_{n-2 k-1}}{p_{n-1}\left(s_{n-2 k-1}\right)}\right] \geqslant F_{m}+\sum_{k=1}^{\frac{n}{2}-1} \int_{t_{0}}^{m} P_{2 k}(s) B_{2 k}(s) \mathrm{d} s
\end{aligned}
$$

According to the assumptions, the expression in the parentheses above is a positive number because of $\sum_{k=1}^{\frac{n}{2}-1} \int_{t_{0}}^{\infty}\left[-P_{2 k}(s)\right] \mathrm{d} s \ldots \int_{t_{0}}^{\infty} \frac{\mathrm{d} s_{n-2 k-1}}{p_{n-1}\left(s_{n-2 k-1}\right)} \leqslant \sum_{k=1}^{\frac{n}{2}-1}\left(\frac{1}{2}\right)^{n-2 k}<1$. Therefore

$$
L_{n-1} y_{m}\left(t_{0}\right) \geqslant \frac{F_{m}+\sum_{k=1}^{\frac{n}{2}-1} \int_{k_{0}}^{m} P_{2 k}(s) B_{2 k}(s) \mathrm{d} s}{1+\sum_{k=1}^{\frac{n}{2}-1} \int_{t_{0}}^{\infty} P_{2 k}(s) \mathrm{d} s \int_{t_{0}}^{\infty} \frac{\mathrm{d} s_{1}}{p_{2 k+1}\left(s_{1}\right)} \cdots \int_{t_{0}}^{\infty} \frac{\mathrm{d} s_{n-2 k-1}}{p_{n-1}\left(s_{n-2 k-1}\right)}} .
$$

We have

$$
\begin{aligned}
F_{m}= & L_{n-1} y_{m}(m)+\int_{t_{0}}^{m} P_{0}(s) f\left(y_{m}(s)\right) \mathrm{d} s \geqslant-1+\int_{t_{0}}^{\infty} P_{0}(s) f\left(y_{m}(s)\right) \mathrm{d} s \\
\geqslant & -1+K \int_{t_{0}}^{\infty} P_{0}(s) \mathrm{d} s=-1+K P \\
B_{2 k}(s)= & L_{2 k} y_{m}(m)+L_{2 k+1} y_{m}(m) \int_{m}^{s} \frac{\mathrm{~d} s_{1}}{p_{2 k+1}\left(s_{1}\right)}+\ldots+L_{n-2} y_{m}(m) \int_{m}^{s} \frac{\mathrm{~d} s_{1}}{p_{2 k+1}\left(s_{1}\right)} \ldots \\
& \ldots \int_{m}^{s_{n-2 k-3}} \frac{\mathrm{~d} s_{n-2 k-2}}{p_{n-2}\left(s_{n-2 k-2}\right)}=1+1 \int_{s}^{m} \frac{\mathrm{~d} s_{1}}{p_{2 k+1}\left(s_{1}\right)}+\ldots+1 \int_{s}^{m} \frac{\mathrm{~d} s_{1}}{p_{2 k+1}\left(s_{1}\right)} \ldots \\
& \ldots \int_{s_{n-2 k-3}}^{m} \frac{\mathrm{~d} s_{n-2 k-2}}{p_{n-2 k-2}\left(s_{n-2 k-2}\right)} \leqslant 1+(n-2 k-2) \frac{1}{2} \leqslant n
\end{aligned}
$$

because of $s \leqslant m, s_{i} \leqslant m$ for $i=1,2, \ldots, n-2 k-3$. So we have

$$
\begin{aligned}
\sum_{k=1}^{\frac{n}{2}-1} \int_{t_{0}}^{m} P_{2 k}(s) B_{2 k}(s) \mathrm{d} s & \geqslant n \sum_{k=1}^{\frac{n}{2}-1} \int_{t_{0}}^{m} P_{2 k}(s) \mathrm{d} s \\
& \geqslant n \sum_{k=1}^{\frac{n}{2}-1} \int_{t_{0}}^{\infty} P_{2 k}(s) \mathrm{d} s \geqslant-n\left(\frac{n}{2}-1\right) \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
L_{n-1} y_{m}\left(t_{0}\right) & \geqslant \frac{-1+K P-\frac{n}{2}\left(\frac{n}{2}-1\right)}{1+\sum_{k=1}^{\frac{n}{2}-1} \int_{t_{0}}^{\infty} P_{2 k}(s) \mathrm{d} s \int_{t_{0}}^{\infty} \frac{\mathrm{d} s_{1}}{p_{2 k+1}\left(s_{1}\right)} \cdots \int_{t_{0}}^{\infty} \frac{\mathrm{d} s_{n-2 k-1}}{p_{n-1}\left(s_{n-2 k-1}\right)}} \\
& =S_{n-1} \in(-\infty, 0)
\end{aligned}
$$

for $n>3$. If $n=2$, then $L_{n-1} y_{m}\left(t_{0}\right)=F_{m} \geqslant-1+K P \in(-\infty, 0)$. It implies that $\left\{L_{n-1} y_{m}\left(t_{0}\right)\right\}_{m=n_{0}}^{\infty}$ is bounded from below for any fixed even number $n \geqslant 2$. So we have

$$
\begin{aligned}
0 \leqslant L_{n-2} y_{m}\left(t_{0}\right) & =L_{n-2} y_{m}(m)+\int_{t_{0}}^{m} \frac{-L_{n-1} y_{m}(s)}{p_{n-1}(s)} \mathrm{d} s \leqslant 1-L_{n-1} y_{m}\left(t_{0}\right) \int_{t_{0}}^{\infty} \frac{\mathrm{d} s}{p_{n-1}(s)} \\
& \leqslant 1-S_{n-1} \int_{t_{0}}^{\infty} \frac{\mathrm{d} s}{p_{n-1}(s)}=S_{n-2} \in(0, \infty), \\
0 \geqslant L_{n-3} y_{m}\left(t_{0}\right) & =L_{n-3} y_{m}(m)+\int_{t_{0}}^{m} \frac{-L_{n-2} y_{m}(s)}{p_{n-2}(s)} \mathrm{d} s \geqslant-1-L_{n-2} y_{m}\left(t_{0}\right) \int_{t_{0}}^{\infty} \frac{\mathrm{d} s}{p_{n-2}(s)} \\
& \geqslant-1-S_{n-2} \int_{t_{0}}^{\infty} \frac{\mathrm{d} s}{p_{n-2}(s)}=S_{n-3} \in(-\infty, 0) .
\end{aligned}
$$

Similarly, it can be proved that $\left\{L_{k} y_{m}\left(t_{0}\right)\right\}_{m=n_{0}}^{\infty}$ is bounded for $k=0,1, \ldots, n-1$. However,

$$
\begin{aligned}
0 & \leqslant L_{n} y_{m}(t)=-\sum_{k=1}^{\frac{n}{2}-1} P_{2 k}(t) L_{2 k} y_{m}(t)-P_{0}(t) f\left(y_{m}(t)\right) \\
& \leqslant-\sum_{k=1}^{\frac{n}{2}-1} P_{2 k}\left(t_{0}\right) L_{2 k} y_{m}\left(t_{0}\right)-P_{0}\left(t_{0}\right) K \\
& \leqslant-\sum_{k=1}^{\frac{n}{2}-1} P_{2 k}\left(t_{0}\right) S_{2 k}-P_{0}\left(t_{0}\right) K=S_{n} \in(0, \infty),
\end{aligned}
$$

and this implies that $\left\{L_{n} y_{m}(t)\right\}_{m=n_{0}}^{\infty}$ is uniformly bounded on $\left[t_{0}, n_{0}\right]$ for $m \geqslant n_{0}$ and so $L_{n-1} y_{m}(t)$ are uniformly equicontinuous on $\left[t_{0}, n_{0}\right]$ for $m \geqslant n_{0}$. According to Arzelà-Ascoli theorem, there exists a subsequence $\left\{L_{n-1} y_{k_{m}}\right\}_{m=n_{0}}^{\infty}$ of $\left\{L_{n-1} y_{m}\right\}_{m=n_{0}}^{\infty}$ such that $\left\{L_{n-1} y_{k_{m}}\right\}_{m=n_{0}}^{\infty}$ converges uniformly on $\left[t_{0}, n_{0}\right]$ to, for example, a function $\varphi_{n-1}(t)$.

To ensure uniform convergence of $\left\{L_{n-2} y_{k_{m}}\right\}_{m=n_{0}}^{\infty}$ on $\left[t_{0}, n_{0}\right]$ to, for instance, a function $\varphi_{n-2}(t)$, it suffices to show convergence of $\left\{L_{n-2} y_{k_{m}}\right\}_{m=n_{0}}^{\infty}$ at an inner point of $\left[t_{0}, n_{0}\right]$. This follows from the fact that $L_{n-2} y_{k_{m}}\left(t_{0}+\varepsilon\right) \leqslant L_{n-2} y_{k_{m}}\left(t_{0}\right) \leqslant S_{n-2}$ for $\varepsilon>0, \varepsilon<n_{0}-t_{0}$. Then there exists a convergent subsequence $\left\{L_{n-2} y_{k_{l_{m}}}\left(t_{0}+\right.\right.$ $\varepsilon)\}_{m=n_{0}}^{\infty}$ of $\left\{L_{n-2} y_{k_{m}}\left(t_{0}+\varepsilon\right)\right\}_{m=n_{0}}^{\infty}$ and therefore $\left\{L_{n-2} y_{k_{l_{m}}}\right\}_{m=n_{0}}^{\infty}$ converges uniformly to $\varphi_{n-2}(t)$ on $\left[t_{0}, n_{0}\right]$. It is obvious that $L_{n-1} y_{k_{l_{m}}} \rightrightarrows \varphi_{n-1}$ on $\left[t_{0}, n_{0}\right]$, too. In a similar way we can prove uniform convergence of a subsequence $\left\{y_{r_{m}}\right\}_{m=n_{0}}^{\infty}$ of $\left\{y_{m}\right\}_{m=n_{0}}^{\infty}$ such that $L_{k} y_{r_{m}}(t) \rightrightarrows \varphi_{k}(t)$ on $\left[t_{0}, n_{0}\right]$ for $k=0,1, \ldots, n$. Due to the fact that uniform convergence makes changing of the order of limit processes possible (a quasi-derivative is a certain kind of limit), we have

$$
\begin{aligned}
0 & =\lim _{m \rightarrow \infty} L\left(y_{r_{m}}(t)\right) \\
& =\lim _{m \rightarrow \infty} L_{n} y_{r_{m}}(t)+\sum_{k=1}^{\frac{n}{2}-1} P_{2 k}(t) \lim _{m \rightarrow \infty} L_{2 k} y_{r_{m}}(t)+P_{0}(t) f\left(\lim _{m \rightarrow \infty} y_{r_{m}}(t)\right) \\
& =\varphi_{n}(t)+\sum_{k=1}^{\frac{n}{2}-1} P_{2 k}(t) \varphi_{2 k}(t)+P_{0}(t) f\left(\varphi_{0}(t)\right)
\end{aligned}
$$

for all $t \in\left[t_{0}, n_{0}\right]$.
But $\varphi_{k}(t)=\lim _{m \rightarrow \infty} L_{k} y_{r_{m}}(t)=L_{k}\left(\lim _{m \rightarrow \infty} y_{r_{m}}(t)\right)=L_{k}\left(\lim _{m \rightarrow \infty} L_{0} y_{r_{m}}(t)\right)=L_{k} \varphi_{0}(t)$, so $\varphi_{0}(t)$ fulfils (L) on $\left[t_{0}, n_{0}\right]$. It is important that we are able to continue $\varphi_{0}(t)$ on $\left[t_{0}, n_{0}+1\right]$ in such a way that $\varphi_{0}(t)$ be a solution of (L) on $\left[t_{0}, n_{0}+1\right]$. Indeed, it suffices to repeat the whole previous part of the proof with the sequence $y_{r_{m}}$ for $m \geqslant n_{0}+1$ instead of y_{m} for $m \geqslant n_{0}$. Now it is obvious that $\varphi_{0}(t)$ can be continued on $\left[t_{0}, n_{0}+v\right]$ $(v$ is an arbitrary integer greater than 1$)$ and therefore $\varphi_{0}(t)$ fulfils (L) on $\left[t_{0}, \infty\right)$. Now let us take an arbitrary point $t_{1} \in\left[t_{0}, \infty\right)$. Then there exists $m_{0} \in\{1,2, \ldots\}$, $t_{1}<m_{0}$ and a subsequence $\left\{y_{s_{m}}\right\}_{m=n_{0}}^{\infty}$ of $\left\{y_{m}\right\}_{m=n_{0}}^{\infty}$ such that $L_{k} y_{s_{m}} \rightrightarrows L_{k} \varphi_{0}(t)$ on $\left[t_{0}, m_{0}\right]$. But $(-1)^{k} L_{k} y_{s_{m}}(t) \geqslant 0$ on $\left[t_{0}, m_{0}\right]$. Therefore $(-1)^{k} L_{k} \varphi_{0}\left(t_{1}\right) \geqslant 0$. It implies that $(-1)^{k} L_{k} \varphi_{0}(t) \geqslant 0$ for all $t \geqslant t_{0}, k=0,1, \ldots, n-1$.

Lemma 10. Let $\left\{y_{m}(t)\right\}_{m=n_{0}}^{\infty}$ be a sequence of solutions of (L) on $\left[t_{0}, \infty\right)$, where $a<t_{0}<n_{0}, n$ is an odd number, and $L_{k} y_{m}(m)=(-1)^{k-1}$ for all $m \geqslant n_{0}$, $k=0,1, \ldots, n-1$. Let (A) hold, and let $P_{k}(t) \equiv 0$ on $[a, \infty)$ for all even integers $k \in[1, n]$. Let $-\infty<\int_{t_{0}}^{\infty} P_{0}(s) \mathrm{d} s=P<0, \int_{t_{0}}^{\infty} P_{k}(s) \mathrm{d} s \geqslant-\frac{1}{2}$ for $k=1,2, \ldots, n-1$, let P_{k} be nondecreasing functions for $k=0,1, \ldots, n-1, \int_{t_{0}}^{\infty} 1 / p_{r}(s) \mathrm{d} s \leqslant \frac{1}{2}$ for $r=1,2, \ldots, n-1$, and let K be a real positive constant such that $0 \leqslant f(t) \leqslant K$ for $t \in(-\infty, \infty)$. Then there exists a subsequence of $\left\{y_{m}(t)\right\}_{m=n_{0}}^{\infty}$ which converges to
$\varphi_{0}(t)$. This function $\varphi_{0}(t)$ is a solution of (L) on $\left[t_{0}, \infty\right)$, and $(-1)^{k} L_{k} \varphi_{0}(t) \leqslant 0$ on $\left[t_{0}, \infty\right)$ for $k=0,1, \ldots, n-1$.

Proof. The proof is similar to the proof of Lemma 9 (instead of Lemma 6, part a), and Lemma 7 we use Lemma 6, part b) and Lemma 8, respectively), so it is omitted.

Theorem 1. Let n be an even number. Let (A) hold, and let $P_{k}(t) \equiv 0$ on $[a, \infty)$ for all odd integers $k \in[1, n]$. Let $P_{k}(t)$ be nondecreasing functions on $[a, \infty)$ such that $\int_{a}^{\infty} P_{k}(s) \mathrm{d} s>-\infty$ for $k=0,1, \ldots, n-1, \int_{a}^{\infty} 1 / p_{r}(s) \mathrm{d} s<\infty$ for $r=1,2, \ldots, n-1$, and let K be a real positive constant such that $0 \leqslant f(t) \leqslant K$ for all $t \in(-\infty, \infty)$. Then (L) admits a Kneser solution $y(t)$ on $[a, \infty)$, i.e. $y(t)>0,(-1)^{k} L_{k} y(t) \geqslant 0$ on $[a, \infty)$ for $k=1,2, \ldots, n-1$.

Proof. Let us take $t_{0} \in(a, \infty)$ such that $\int_{t_{0}}^{\infty} P_{k}(s) \mathrm{d} s \geqslant-\frac{1}{2}, \int_{t_{0}}^{\infty} 1 / p_{r}(s) \mathrm{d} s \leqslant \frac{1}{2}$ for $k=1,2, \ldots, n-1 ; r=1,2, \ldots, n-1$. According to Lemma 5 , there exists a sequence $\left\{y_{m}(t)\right\}_{m=n_{0}}^{\infty}$ of solutions of (L) on $\left[t_{0}, \infty\right)$ such that $L_{k} y_{m}(m)=(-1)^{k}$ for all $m \geqslant$ $n_{0}>t_{0}, k=0,1, \ldots, n-1$. Lemma 7 ensures validity of (B), and Lemma 6, part a), yields that $\left\{y_{m}(t)\right\}_{m=n_{0}}^{\infty}$ has the required properties from Lemma 9. According to the last-mentioned lemma, there exists a function $y(t)$ such that $L(y(t)) \equiv 0$ on $\left[t_{0}, \infty\right),(-1)^{k} L_{k} y(t) \geqslant 0$ on $\left[t_{0}, \infty\right)$ for $k=0,1, \ldots, n-1$. This solution $y(t)$ of (L) on $\left[t_{0}, \infty\right)$ can be continued onto $[a, \infty)$ by Lemma 5 . According to Lemma 6, part a), $y(t)$ is a Kneser solution of (L) on $[a, \infty)$ because $y(t)>0$ on $[a, \infty)$ (this follows from $f(0) \neq 0)$.

Theorem 2. Let n be an odd number. Let (A) hold, and let $P_{k}(t) \equiv 0$ on $[a, \infty)$ for all even integers $k \in[1, n]$. Let $P_{k}(t)$ be nondecreasing functions on $[a, \infty)$ such that $\int_{a}^{\infty} P_{k}(s) \mathrm{d} s>-\infty$ for $k=0,1, \ldots, n-1, \int_{a}^{\infty} 1 / p_{r}(s) \mathrm{d} s<\infty$ for $r=1,2, \ldots, n-1$ and let K be a real positive constant such that $0 \leqslant f(t) \leqslant K$ for all $t \in(-\infty, \infty)$. Then (L) admits a Kneser solution $y(t)$ on $[a, \infty)$, i.e. $y(t)<0,(-1)^{k} L_{k} y(t) \leqslant 0$ on $[a, \infty)$ for $k=1,2, \ldots, n-1$.

Proof. The proof is similar to that of the previous theorem (instead of Lemma 6, part a) and Lemma 9 we will use Lemma 6, part b) and Lemma 10, respectively) and so it is omitted.

Example 1. The equation

$$
\left(t^{4}\left(t^{3}\left(t^{2} y^{\prime}\right)^{\prime}\right)^{\prime}\right)^{\prime}-\frac{1}{t^{2}}\left(t^{3}\left(t^{2} y^{\prime}\right)^{\prime}\right)+\left[\left(\frac{72}{t^{8}}-\frac{1296}{t^{4}}\right) \sqrt{1+t^{-18}}\right] \frac{1}{\sqrt{1+y^{2}}} \equiv 0
$$

admits a Kneser solution $y(t)=t^{-9}$ on $[1, \infty)$ according to Theorem 1 because $\int_{1}^{\infty}\left(1 / p_{r}(t)\right) \mathrm{d} t<\infty$ for $r=1,2,3, P_{0}(t)$ is nonpositive and nondecreasing on $[1, \infty)$, ${ }_{\infty}^{1}$ $\int_{1}^{\infty} P_{k}(t) \mathrm{d} t>-\infty$ for $k=0,1,2,3,0 \leqslant 1 / \sqrt{1+y^{2}} \leqslant 1, f(0) \neq 0$.
Example 2. The equation of the n-th order (n is an even number)

$$
L_{n} y+\sum_{k=1}^{\frac{n}{2}-1} P_{2 k}(t) L_{2 k} y+P_{0}(t) f(y) \equiv 0
$$

where $P_{2 k}(t)=-t^{-2 k-2}$ for $k=0,1, \ldots, \frac{n}{2}-1, p_{r}(t)=t^{3 r}$ for $r=1,2, \ldots, n-1$, $f(t)=e^{-t^{2}}$ admits a Kneser solution on $[1, \infty)$ according to Theorem 1 because $\int_{1}^{\infty}\left(1 / p_{r}(t)\right) \mathrm{d} t<\infty$ for $r=1,2 \ldots, n-1, \int_{1}^{\infty} P_{2 k}(t) \mathrm{d} t>-\infty$ for $k=0,1, \ldots, \frac{n}{2}-1$, $0 \leqslant e^{-t^{2}} \leqslant 1, f(0) \neq 0$.

Example 3. The equation

$$
L_{5} y-\frac{1}{t^{6}} L_{3} y-\frac{1}{t^{2}} L_{1} y+\left(12 t^{-13}+1188 t^{-12}-14256 t^{-3}\right) \frac{\sqrt{1+t^{-48}}}{\sqrt{1+y^{4}}} \equiv 0
$$

where $p_{r}(t)=t^{r+1}$ for $r=1,2,3,4$ admits a Kneser solution $y(t)=-t^{-12}<0$ on $[1, \infty)$ according to Theorem 2 because $\int_{1}^{\infty}\left(1 / p_{r}(t)\right) \mathrm{d} t<\infty$ for $r=1,2,3,4, P_{0}(t)$ is nonpositive and nondecreasing on $[1, \infty), \int_{1}^{\infty} P_{k}(t) \mathrm{d} t>-\infty$ for $k=0,1,2,3,4$, $0 \leqslant \frac{1}{\sqrt{1+y^{4}}} \leqslant 1, f(0) \neq 0$.

References

[1] Barrett, J. H.: Two-point boundary problems for linear self-adjoint differential equations of the fourth-order with middle term. Duke Math. J. 29 (1962), 543-554.
[2] Hartman, P.: Ordinary Differential Equations. John Wiley \& Sons, New York, 1964.
[3] Leighton, W.; Nehari, Z.: On the oscillation of solutions of self-adjoint linear differential equations of the fourth order. Trans. Amer. Math. Soc. 89 (1958), 325-377.
[4] Palumbiny, O.: On existence of monotone solutions of a certain class of n-th order nonlinear differential equations. To appear.
[5] Philos, Ch. G.: Oscillation and asymptotic behaviour of third order linear differential equations. Bull. Inst. Math. Acad. Sinica 11(2) (1983), 141-160.
[6] Regenda, J.: Oscillatory and nonoscillatory properties of solutions of the differential equation $y^{(4)}+P(t) y^{\prime \prime}+Q(t) y=0$. Math. Slovaca 28 (1978), 329-342.
[7] Rovder, J.: Comparison theorems for third-order linear differential equations. Bull. Inst. Math. Acad. Sinica 19 (1991), 43-52.
[8] Rovder, J.: Kneser problem for third order nonlinear differential equation. Zborník vedeckých prác MtF STU Trnava (1993).
[9] Shair, A.: On the oscillation of solutions of a class of linear fourth order differential equations. Pacific J. Math. 34 (1970), 289-299.
[10] Škerlik, A.: Criteria of property A for third order superlinear differential equations. Math. Slovaca 43 (1993), 171-183.
[11] Švec, M.: On various properties of the solutions of third and fourth order linear differential equations. Proceedings of the conference held in Prague in September 1962. pp. 187-198.
[12] Švec, M.: U̇ber einige neue Eigenschaften der oszillatorischen Lösungen der linearen homogenen Differentialgleichung vierter Ordnung. Czechoslovak Math. J. 4 (79) (1954), 75-94.
[13] Tóthová, M.; Palumbíny, O.: On monotone solutions of the fourth order ordinary differential equations. Czechoslovak Math. J. 45(120) (1995), 737-746.

Author's address: Oleg Palumbiny, Department of Mathematics, Faculty of Material Engineering and Technology, Slovak Technical University, Paulínska 16, 91724 Trnava, Slovakia, e-mail: palum@mtf.stuba.sk.

