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Abstract. A proof is given that the system in the title has infinitely many solutions of
the form a1 + ia2, where a1 and a2 are rational numbers.
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1. A subset of solutions and derivation of an auxiliary cubic equation

Let R denote the set of rational numbers. Assume that x1 is real and x2, x3 are
conjugate complex numbers, x2 = a + ib, x3 = a − ib, a and b rational. The first
equation yields x1 = 1− 2a while the second implies

(1− 2a)(a2 + b2) = 1.

Consequently, we have

(1) b2 = (1− a2 + 2a3)/(1− 2a).

Hence the fraction in (1) has to be a square of a rational number. It is readily seen
that the same holds for

(1− a2 + 2a3)(1 − 2a),
i.e.,

(2) −4a4 + 4a3 − a2 − 2a+ 1 =M2,
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where M ∈ R. Let us set

(3) M = 1− a+ na2,

where n ∈ R. Substituting (3) in (2), we obtain

−4a4 + 4a3 − a2 = a2(1 + 2n)− 2na3 + n2a4.

The case a = 0 can be excluded as it leads to the well-known solution {1, i,−i}.
Cancelling by a2, we arrive at the equation

a2(n2 + 4)− a(2n+ 4) + 2n+ 2 = 0,

the roots of which are

a1,2 = (n2 + 4)−1
(
n+ 2± ((n+ 2)2 − (n2 + 4)(2n+ 2))1/2).

Its discriminant is

(4) −2n3 − n2 − 4n − 4 = D2.

Each solution (n, D) ∈ R ×R of the equation (4) yields a1 ∈ R, a2 ∈ R and hence a
couple of solutions of the given problem.

2. Modelling by a Weierstrass p-function

Let us mention that a similar equation is valid for the Weierstrass p-function,
namely

(5) 4p3(z)− g2p(z)− g3 = (p′(z))2,

where g2 and g3 are constants and p′(z) = dp(z)/ dz (see e.g. [1], p. 29). Since p is a
doubly periodic function, it can be used in solving the question whether the number
of couples (n, D) ∈ R × R, which satisfy the equation (4), is infinite.
If we substitute

n = − 12p − 1
6

in (4) and multiply by 16, we obtain

(6) 4p3 +
92
3

p − 1448
27
= (4D)2.
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If we write p := p(z), 4D := p′(z) and set

(7) 92/3 = −g2, 1448/27 = g3,

we arrive at the equation (5) for the p-function. Since the coefficients g2, g3 are real
numbers, one period of this doubly periodic function is real as well. Let us denote it
by ω.
The equation

4p3 +
92
3

p − 1448
27
= 0

has only one real root e1 /∈ R (as can be easily shown), since

e1 = 1
3 (η1 + η2)(8)

η1 = (181 + (44928)1/2)1/3, η2 = (181− (44928)1/2)1/3

by the Cardan formula. It is well-known that

p(ω/2) = e1, p′(ω/2) = 0.

By substitution, we find that (6) is satisfied by numbers p = 5
3 and D = ±1, i.e., for

p(z) = 5
3 and p′(z) = ±4. By means of the graph of the p-function we realize that

p = 5
3 and p′ = −4 corresponds to an argument z1 ∈ (0, ω/2), whereas the couple

p = 5
3 , p

′ = +4 corresponds to z2 ∈ (ω/2, ω). It is readily seen that z1 + z2 = ω.
Let us recall the addition theorem for p(z), which implies that if p(z1) ∈ R and

p′(z1) ∈ R, then p(kz1) ∈ R, p′(kz1) ∈ R for any natural number k, since they can
be expressed in terms of p(z1) and p′(z1) by means of a rational expression.
Let us consider p(kz1) for k = 2, 3, 4, . . .. The number of different values which

can be obtained in this way would be finite if and only if z1 = (r/t)ω, where r and
t are natural, i.e., if and only if z1 is commensurable with the period ω. Otherwise
there exists infinitely many different values of p(kz1).
It is therefore sufficient to prove that z1 is not commensurable with the period ω.

1◦ Assume that
z1 =

�

2n
ω,

where �, n are natural, � is odd and n > 1. Then we should have

p(nz1) = p(�ω/2) = p(ω/2).

This is, however, impossible, since p(nz1), when expressed in terms of 53 and (−4)
by a rational expression, is rational, whereas p(ω/2) = e1 /∈ R.
2◦ Assume that

z1 =
s

2n+ 1
,
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where s, n are natural, s is even. This is impossible, too. Indeed, then we have

z2 = ω − z1 =
�

2n+ 1
ω, with � odd.

We can calculate p(zi), i = 1, 2, in terms of p(zi/2) and p′(zi/2):

p(zi) = (4p4(zi/2) + 2g2p2(zi/2) + 8g3p(zi/2) + g22/4)(2p
′(zi/2))−2 = 5

3 .

Using the formula (5) for p′(zi/2) and the relation (7), in the end we arrive at the
equation

324p4(zi/2)− 2160p3(zi/2)− 4968p2(zi/2) + 18192p(zi/2) + 48004 = 0.

This equation has two real roots. One of them is equal to 113 , the other is irrational.
Let us denote it by ϑ. We have

ϑ = 1 + 13 (�1 + �2), �1 = (928 + 2(44928)1/2)1/3,

�2 = (928− 2(44928)1/2)1/3,

since ϑ is a root of the equation

108p3 − 324p2 − 2844p− 4364 = 0.

Since ϑ > 11
3 , the graph of the p-function implies that we may write p(z1/2) = ϑ,

p(z2/2) = 11
3 . Using (5) and (7), we obtain p′(z2/2) = −16. Multiplying the

argument z2/2 by (2n+ 1), we arrive at

p
[
(2n+ 1)

�ω

2(2n+ 1)

]
= p(�ω/2) = p(ω/2) = e1 /∈ R.

This contradicts the fact that p[(2n + 1)z2/2] can be expressed in terms of 113 and
(−16) be means of a rational expression.
3◦ It remains to consider the third possibility

z1 = �ω/(2n+ 1), � odd.

Then we have

p(z1/2) = p
[ �ω

2(n+ 1)

]
= ϑ

and
p[(2n+ 1)z1/2] = p(�ω/2) = p(ω/2) = e1.
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On the other hand, p[(2n+1)z1/2] can be expressed in terms of p(z1/2) and p′(z1/2)
by means of a rational expression, i.e., in terms of ϑ and (4ϑ3−g2ϑ−g3)1/2 (cf. (5)).
Theory of algebraic numbers (see e.g. [2]) implies that any rational expression in
terms of ϑ and (4ϑ3 − g2ϑ − g3)1/2 can be rewritten in the form

c0 + c1ϑ+ c2ϑ
2 + (d0 + d1ϑ+ d2ϑ

2)(4ϑ3 − g2ϑ − g3)
1/2,

where ci ∈ R and di ∈ R. Let us denote this expression by α0 ≡ A(ϑ). It satisfies
an equation of the sixth degree with rational coefficients.
Assume that at least one of the coefficients di is not zero. Denote by ϑ′, ϑ′′ the

numbers conjugate with ϑ, i.e., the roots of the minimal equation for ϑ. Then the
roots of the above mentioned equation are

α0 = A(ϑ), α1 = A(ϑ′), α2 = A(ϑ′′),

α3 = B(ϑ), α4 = B(ϑ′), α5 = B(ϑ′′),

where

B(ϑ) = c0 + c1ϑ+ c2ϑ
2 − (d0 + d1ϑ+ d2ϑ

2)(4ϑ3 − g2ϑ − g3)
1/2.

Among these roots also the roots of the minimal equation for α0 are contained. If
αi (i = 0, 1, 2) is a root of the minimal equation, then αi+3 is a root of this equation
as well and vice versa. Consequently, the minimal equation for α0 is an equation of
an even degree and its root α0 cannot equal e1, since e1 is a root of an irreducible
equation of the third degree.
Next, assume that p[(2n+1)z1/2] can be expressed by means of a rational expres-

sion in terms of p(z1/2) alone, i.e., let d0 = d1 = d2 = 0. Then it is readily seen
that

(10) e1 = c0 + c1ϑ+ c2ϑ
2 = C(ϑ), e′1 = C(ϑ′), e′′1 = C(ϑ′′),

where e′1 and e′′1 are the numbers conjugate with e1.
This is, however, impossible, as we can show by the following approach.
Summing the three equations (10) and making use of the minimal equations for

e1 and ϑ, we are led to the equation

3c0 + 3c1 +
185
3

c2 = 0.

Then for instance the second equation (102) yields (substituting c0 = −c1− c2185/9
and arranging) the couple of equations

3c1�1 + 6c2�1 + c2�
2
2 = 2η1,(11)

3c1�2 + 6c2�2 + c2�
2
1 = 3η2.(12)
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Multiplying (11) by �2 and (12) by �1, we obtain by subtraction that

c2 = 3(η2�1 − η1�2)(�
3
1 − �32)

−1.

Substituting for �1, �2, η1, η2 and arranging, we find that

4
3
c2(44928)1/2 = (566 · 449281/2 + 78112)1/3

+ (566 · 449281/2 − 78112)1/3.

If we multiply this equation by (44928)1/2, we obtain on the left-hand side

4
3
c244928 ∈ R,

whereas the right-hand side equals

(566 · 449282 + 78112 · 449283/2)1/3 + (566 · 449282 − 78112 · 449283/2)1/3,

which is a root of an irreducible cubic equation, as one can show. This number
cannot be rational and we thus arrive at a contradiction again.
Altogether, all possibilities have been considered. We have proved that z1 is

not commensurable with the period ω. There exists an infinite number of pairs
[p(kz1), p′(kz1)] ∈ R × R. (Of course, there can exist other arguments z for which
p(z) ∈ R and p′(z) ∈ R). As a consequence, the equation (6) has infinitely many
solutions (p, D) ∈ R×R. Obviously, there are infinitely many couples (n, D) ∈ R×R

satisfying the equation (4), and therefore infinitely many different numbers a ∈ R.
For each such a one finds ±b ∈ R in accordance with the equation (1). Thus we
arrive at an infinite set of triples {x1, x2, x3} with the above required properties.
������. The author of this contribution died in 1969. He published several

short papers on Diophantine equations in Czech journals during his life. As late
as in 1995 his son Ivan Hlaváček discovered the above manuscript in his father’s
inheritance and translated it into English.
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