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Abstract. The Euler-Lagrange equations are given in a geometrized framework using
a differential form related to the Poincaré-Cartan form. This new differential form is in-
trinsically characterized; the present approach does not suppose a distinction between the
field and the space-time variables (i.e. a fibration). In connection with this problem we
give another proof describing the most general Lagrangian leading to identically vanishing
Euler-Lagrange equations. This gives the possibility to have a geometric point of view of the
usual Noetherian symmetries for classical field theories and strongly supports the usefulness
of the above mentioned differential form.
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1. Introduction

Since variational principles were accepted as the foundation of many important
physical laws, it became apparent that one needs a coordinate independent formu-

lation of the Euler-Lagrange equations. This was pioneered by Poincaré and Cartan
for finite number of degrees of freedom using a differential 1-form instead of the

Lagrangian [1]–[2].

It was later realized that it is more convenient to work with the exterior differential

of the above Poincaré-Cartan form (see for instance [3]). This 2-form is generically
presymplectic and was used by Souriau [4] (see also [5]) to obtain the phase space as

a symplectic manifold in many physically interesting examples.

It is strongly advocated by Souriau that the fundamental mathematical object for

a Lagrangian system must be this 2-form and not the Lagrangian function or the
Poincaré-Cartan 1-form. His point of view keeps in the same framework the main

73



interesting features of both the Lagrangian and the Hamiltonian formalism. Also it

allows a natural definition for the usual Noetherian symmetries. We will call this
2-form the Lagrange-Souriau form.

The purpose of this paper is to investigate the generalization of the same point

of view to the classical field theory. To our knowledge in the literature the main
concern seems to be the identification of a suitable generalization of the Poincaré-

Cartan form to classical field theory; there is a number of such generalizations [6]–
[17]. In these references a fibration structure over the space-time manifold is used in

an essential way. Without this fibration hypothesis the Poincaré-Cartan form cannot
be intrinsically defined.

We will base our analysis on a generalization of the Lagrange-Souriau 2-form to

classical field theory. This object will be intrinsically and globally defined without
using the fibration hypothesis mentioned above. Moreover, this Lagrange-Souriau

form can be locally written as the exterior differential of a Poincaré-Cartan form re-
lated to some chosen fibration. This Poincaré-Cartan form is the same as that given

by Krupka [6], Betounes [7]–[8] and Rund [9]. The main feature of our globally de-
fined Lagrange-Souriau form is that it determines (locally) a Lagrangian but only up

to a variationally trivial Lagrangian, i.e. a Lagrangian giving trivial Euler-Lagrange
equations. This is related to the fact that one can define in a geometrically nice way

the Noetherian symmetries using the Lagrange-Souriau form. This is a very strong
reason for considering as the main object the Lagrange-Souriau form and not the

Poincaré-Cartan form.

In Part 2 of this paper we study the appropriate analog of the Lagrange-Souriau
form in this nonfibrating case. For this reason we will need an auxiliary operator

which seems to be new in literature. This is the main tool for an intrinsic definition
of the Lagrange-Souriau form. We also discuss the Euler-Lagrange equations in this

geometrical framework.

In Part 3 we prove that any Lagrangian determined by the Lagrange-Souriau

form is given up to a variationally trivial Lagrangian. To this purpose we give an
alternative proof for the most general expression of such a Lagrangian using the

homogeneous formalism (other proofs can be found in [18]–[21]). We close Part 3
relating the above remarks to the Noetherian symmetries.
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2. The geometry of the Euler-Lagrange equations

We present here the Lagrangian formalism in field theory from a purely geometric

point of view following the ideas of Souriau [4], as was told in the Introduction.
Our point of view treats the space-time and field variables on the same footing.

This is done in the same spirit as in the relativistic theories, where space and time
do not have an intrinsic meaning.

2.1. Let S be a differentiable manifold of dimension n + N . Usually S is con-
sidered to be a fibre bundle over the space-time manifold M of dimension n, the
N dimensional fibres describing the field variables. Also, in most cases, the above

assumed bundle is a linear one. We emphasize once again that we do not make this
hypothesis in this paper.

������ 1. When S is a fibration over the manifoldM , the space-time meaning

for M is given by an additional structure on M related to some hyperbolic nature
of the Euler-Lagrange equations. When this structure does not exists, M is usually

interpreted as the space. The case n = 1 is associated with dynamical systems having
finite numbers of degrees of freedom and M is then interpreted as the axis of the

absolute time.

Because we want to introduce the first derivatives of the fields in an intrinsic way,

we proceed as follows: Let Tp(S) be the tangent space to S at the point p ∈ S,
and denote by J1n(S)p the manifold of all n-dimensional linear subspaces of Tp(S).
Then J1n(S) ≡

⋃
p∈S

J1n(S)p has a natural fibre bundle structure over S. The canonical

projection is denoted by π : J1n(S) → S. This is the so called bundle of 1-jets of

n-dimensional submanifolds of S.
To arrive at the usual form of the Euler-Lagrange equations we shall need a system

of standard charts on J1n(S). Let (x
µ, ψA) (where µ = 1, . . . , n and A = 1, . . . , N) be

a coordinate system on the open set U ⊂ S. Then, on the open set V ⊂ π−1(U) we
choose the coordinate system (xµ, ψA, χAµ). The n-plane in Tp0(S) corresponding
to a given set of numbers ((xµ)0, (ψA)0, (χAµ)0) is spanned by the tangent vectors

(2.1)
δ

δxµ
≡ ∂

∂xµ
+ (χAµ)0

∂

∂ψA
.

(p0 corresponds to the set of numbers ((xµ)0, (ψA)0).

The purpose of the Lagrangian formalism (in this geometrical setting) is to describe
n-dimensional immersed submanifolds, usually given in a parameterized form: Ψ:

M → S (Ψ is the immersion). When S is a fibration over the space-time M , Ψ is
considered to be a cross section and is called a field evolution.
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We will need later the natural lift of the n-dimensional immersed submanifold

Ψ: M → S to an n-dimensional immersed submanifold Ψ̇ : M → J1n(S). We de-
scribe it using coordinates: if the immersed n-dimensional submanifold (cleverly
parameterized) is given by Ψ: (xµ) �→ (xµ, ψA(x)), then the lifted submanifold is:
Ψ̇ : (xµ) �→

(
xµ, ψA(x), ∂ψ

A

∂xµ (x)
)
. If L : U → � is a Lagrangian function (density),

then the Euler-Lagrange equations for Ψ are

(2.2) EA(Ψ) ≡ − ∂

∂xµ

(
∂L

∂χAµ
◦ Ψ̇

)
+

∂L

∂ψA
◦ Ψ̇ = 0.

2.2. We review here the case n = 1. For simplicity it is presented in terms of local
coordinates. In this case one usually denotes the xµ variables by t, the ψA variables
by qA and the velocity variables χAµ by v

A.

Suppose L is a function of (t, qA, vA) named the Lagrangian. Then one defines

the Poincaré-Cartan 1-form:

(2.3) θL ≡ ∂L

∂vA
( dqA − vA dt) + L dt,

and the Lagrange-Souriau 2-form:

(2.4) σL ≡ dθL.

A curve γ : � �→ S is a solution of the Euler-Lagrange equations iff it is an integral
curve of the foliation ker(σL) i.e.

(2.5) (γ̇)∗iX(σL) = 0

for every vector field X on the evolution space E ⊂ PT (S) ≡ J11 (S) (here γ̇ is the

natural lift of γ in PT (S)).

������ 2. One of the most important properties of the differential forms
θL and σL is the following one: θL is exact (or σL = 0) iff the Euler-Lagrange

equations for L are vanishing identically. In this case L is called a variationally
trivial Lagrangian.

2.3. Here we generalize to fields the above frame, valid for n = 1.
First we give some notation: using the framework from Section 2.1 we denote by

Dk
q (U) the differential k-forms on the open set U ⊂ J1n(S) vanishing when contracted

with q + 1 vertical vector fields (i.e. vector fields tangent to the fibers of the fiber
bundle π : J1n(S)→ S).
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For an intrinsic meaning of the Lagrange-Souriau form in the field case we define

an auxiliary operator K : Dk
1(J

1
n(S))→ Dk−1

0 (J1n(S)) in

Lemma 1. The operator K : Dk
1 (U)→ Dk−1

0 (U) defined with respect to a local
coordinate system (x, ψ, χ) by

(2.6) K(ω) ≡ i δ
δxµ

i ∂

∂χA
µ

(δψA ∧ ω)

is independent of the chosen coordinates. Here

(2.7) δψA ≡ dψA − χAµ dx
µ.

�����. Let (xµ, ψA) �→ (yµ, ϕA) be a change of coordinates on S. Here
yµ = yµ(x, ψ), ϕA = ϕA(x, ψ).

The induced change of coordinates on J1n(S) is

(xµ, ψA, χAµ) �→ (yµ, ϕA, ζAµ)
with yµ and ϕA as above and

(2.8) ζAµ =
δϕA

δyµ
=
δxν

δyµ
δϕA

δxν
.

From the last relation one can get the explicit dependence of ζAµ on the variables
(x, ψ, χ) using the following useful relation:

(2.9)
δ

δxµ
=
δyν

δxµ
δ

δyν
+

(
δζAν
δxµ

)
∂

∂ζAν
.

An easy consequence of (2.9) is

(2.10)
δxµ

δyν
δyν

δx�
= δµ� .

Now, one can get also

(2.11) δϕB =

(
∂ϕB

∂ψA
− ζBν

∂yν

∂ψA

)
δψA

and

(2.12)
δyν

δxµ
∂

∂χAµ
=

(
∂ϕB

∂ψA
− ζBν

∂yν

∂ψA

)
∂

∂ζBν
.

Hence it follows that

i δ
δxµ

i ∂

∂χA
µ

(δψA ∧ ω) = i δ
δyν

i ∂

∂ζB
ν

(δψB ∧ ω) + δxµ

δy�

(
δζBν
δxµ

)
i ∂

∂ζB
ν

i ∂

∂ζA
�

(δϕA ∧ ω).

But the second term above vanishes because ω ∈ Dk
1 (U). �
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������ 3. From (2.11) and (2.12) it follows that

(2.13)
δyν

δxµ

(
δψA ⊗ ∂

∂χAµ

)
= δϕB ⊗ ∂

∂ζBν
.

Definition 1. A Lagrange-Souriau form on the open set V ⊂ π−1(U) ⊂ J1n(S)
is a closed form σ ∈ Dn+1

1 (U) with Kσ = 0.

The linear space of these forms is denoted by S(U). Lemma 1 implies that σ is
intrinsically defined.

������ 4. This definition is justified by considering the case n = 1 and prov-
ing that σ can be written as in (2.3) and (2.4). We will prove below that such a

(local) expression also exists in the general case n � 1.

Namely, we have

Theorem 1. a) If (x, ψ, χ) is a system of coordinates on U and σ ∈ S(U), then
there exists a smooth function L : U �→ R such that σ = dθL where

(2.14)

θL ≡ εµ1,...,µn

n∑
k=0

1
k!
Ckn

∂kL

∂χA1µ1 . . . ∂χ
Ak

µk

δψA1 ∧ . . . ∧ δψAk ∧ dxµk+1 ∧ . . . ∧ dxµn .

(Here εµ1,...,µn is the signature of the permutation (1, . . . , n) �→ (µ1, . . . , µn).)
b) The n-dimensional immersed submanifold Ψ: M �→ S satisfies the Euler-

Lagrange equations for the Lagrangian L (above) iff

(2.15) Ψ̇∗iZσ = 0

for any vector field Z on J1n(S).

�����. a) We begin with a general result:

Lemma 2. If E → S is a differentiable bundle and Dk
q (U) is defined as at the

beginning of Section 2.3, then for a sufficiently small U we have

dDk
p(U) ∩Dk+1

q ⊂ dDk
q−1(U).

����� of Lemma 2. The case q > p is trivial. Suppose now that q � p, and

let ω ∈ dDk
p(U) ∩ Dk+1

q (U). It follows that ω = dλ with λ ∈ Dk
p(U). We choose

now (xα, yi) a set of local coordinates on U such that the projection E �→ S is

(xα, yi) �→ (xα). Because λ ∈ Dk
p(U) there exists λ

′ ∈ Dk
p−1(U) and λ

′′ of the form

λ′′ = λi1,...,ip ∧ dyi1 ∧ . . . ∧ dyip
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with λi1,...,ip ∈ Dk−p
0 (U) such that λ = λ′ + λ′′. From dλ ∈ Dk+1

q (U) it follows that

p∑
r=0

(−1)r ∂

∂yir
(λi0,...,îr,...,ip) = 0.

Using the Poincaré lemma we can find ϕi1,...,ip−1 ∈ Dk−p
0 (U) such that

λi1,...,ip =
p∑
r=1

(−1)r−1 ∂

∂yir
(ϕi1,...,îr,...,ip).

Taking λ̂′′ = λ′′ − dϕ with ϕ ≡ pϕi1,...,ip−1 ∧ dyi1 ∧ . . . ∧ dyip−1 we have λ̂′′ ∈
Dk
p−1(U) and dλ̂

′′ = dλ′′. Now, if λ̂ ≡ λ′+λ′′ then dλ̂ = dλ = ω and λ̂ ∈ Dk
p−1(U).

Iterating the above argument we prove the result. �
Now we apply the above lemma for σ satisfying dσ = 0 and σ ∈ Dn+1

1 (U). Hence,

there exists θ ∈ Dn
0 (U) such that σ = dθ. The general form of such a θ is

(2.16) θ ≡ εµ1,...,µn

n∑
k=0

1
k!
CknL

µ1,...,µk

A1,...,Ak
δψA1 ∧ . . . ∧ δψAk ∧ dxµk+1 ∧ . . . ∧ dxµn .

Hereafter one has

σ = dθ = εµ1,...,µn

n∑
k=0

1
k!
Ckn

(
dLµ1,...,µk

A1,...,Ak
− Lµ0,...,µk

A0,...,Ak
dχA0µ0

)
∧

δψA1 ∧ . . . ∧ δψAk ∧ dxµk+1 ∧ . . . ∧ dxµn .(2.17)

Next, from Kσ = 0 we obtain equivalently

Lµ1,...,µk

A1,...,Ak
=
1
k2

k∑
i,j=1

(−1)i+j ∂

∂χAj
µi

(
Lµ1,...µ̂i,...,µk

A1,...,Âj,...,Ak

)
.

Iterating from k = 0 we obtain

(2.18) Lµ1,...,µk

A1,...,Ak
=
1
k!

∑
σ∈Pk

(−1)|σ| ∂kL

∂χA1µσ(1)
. . . ∂χAk

µσ(k)

,

which proves (2.14). �

b) Let (xµ) �→ (xµ,ΦA(x)) be an n-dimensional submanifold and Z = Zµ δ
δxµ +

ZA ∂
∂ψA + ZAµ

∂
∂χA

µ
a vector field on U ⊂ J1n(S). Making the left hand side of (2.15)

explicit by using

(2.19) Ψ̇∗
∂

∂xµ
=

∂

∂xµ
+
∂ΨA

∂xµ
∂

∂ψA
+

∂2ΨA

∂xµ∂xν
∂

∂χAν
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we get

(2.20)
(
Ψ̇∗iZσ

) (
∂

∂x1
, . . . ,

∂

∂xn

)
= const.ZAEA(Ψ).

(For notation, see (2.2).) �

2.4. The above proof was based on an explicit computation worked out in a local
system of coordinates. The formula (2.15) suggests that the proof of part b) of the
above theorem can be provided in an intrinsic way. For this we use the extremal
property of the Euler-Lagrange equations.

If L is a Lagrangian function and θ ∈ Dn
0 (U) such that for some θA we have

(2.21) θ = L dx1 ∧ . . . ∧ dxn + θA ∧ δψA

then the action functional is

(2.22) A(Ψ) ≡
∫
M

Ψ̇∗θ.

(Here Ψ(M) ⊂ U .)

The variation of A along a vector field Y on S is given by

δYA(Ψ) =
∫
M

Ψ̇∗iẎ dθ +
∫
∂M

Ψ̇∗iẎ θ

(where Ẏ is the natural lift of Y to Jn1 (U)). Then, for fixed boundary variations,
i.e. Ẏ |Ψ̇(∂M) = 0, the second term on the right hand side vanishes. Moreover, suppose
that θ in (2.21) has the property

(2.23) Ψ̇∗iV dθ = 0

for every vertical vector field V and every immersed n-dimensional submanifold Ψ.
Y being arbitrary in the equation∫

M

Ψ̇∗iẎ dθ = 0,

(2.15) follows. Note that (2.21) and (2.23) are fulfilled by θL by virtue of (2.14).

������ 5. The Euler-Lagrange equations can be written as (2.15) if θ ∈
Dn
0 (U) satisfies (2.21) and (2.23). These two conditions do not determine θ uniquely
(except for the case n = 1). This explains why for n > 1 there are other expressions

for θ (also named Poincaré-Cartan forms) in literature. For example one can consider
only the terms corresponding to k = 0, 1 in the sum appearing in (2.14) [11]. The

Poincaré-Cartan form (2.14) was also found starting from a different point of view
in [6], [7].
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3. Variationally trivial Lagrangians

In this part of the paper, we describe the most general Lagrangian function L for
which the Euler-Lagrange equations (2.2) are identically satisfied. In other words,

using Theorem 1, we shall describe the Poincaré-Cartan forms θL such that:

Ψ̇∗iZ dθL = 0

for every n-dimensional submanifold Ψ and every vector field Z. This will give an

important property of the Lagrange-Souriau form σ from Def. 1.
As was mentioned in Introduction, this problem was already solved in literature

[18]–[21].
We give here an alternative approach to this problem. For this we will generalize

the homogeneous formalism in the Lagrangian description of particles (i.e. n = 1).
In this formalism one uses as Lagrangian a homogeneous function of degree one on

the tangent space to S.

3.1. Thus we need a suitable substitute for T (S) (used for n = 1) in the case
n > 1. So, we introduce the principal bundle of n-frames of T (S), denoted by

Rn(S). The fibre over p ∈ S is, by definition, the set Rn(S)p of linear injective maps
from �

n into Tp(S). The structural group is GL(n,�) (it acts freely on Rn(S)) and

we have
Rn(S)/GL(n,�) ∼= J1n(S),

i.e. the base manifold of the principal bundleRn(S) is J1n(S). Let ξ
a(a = 1, . . . , n+N)

be a local system of coordinates on the open set U ∈ S. Then on the open set V ⊂
Rn(S), projecting into U , we give the coordinates (ξa, �ai ) such that the corresponding

linear injective map in Rn(S) is

(3.1) �
n � τ �→ τ i�ai

∂

∂ξa
∈ Tp(S).

From now on it is convenient to parameterize an immersed n-submanifold in S with

parameters in I ⊂ �
n , i.e. Ψ: I �→ S. Then there exists a natural lift Ψ̃ : I �→ Rn(S)

given by Ψ̃(τ) ≡ Ψ∗,τ ; using the above local coordinates system it becomes

Ψ̃(τ) =
(
Ψa(τ),

∂Ψa

∂τ i
(τ)

)
.

Definition 2. A homogeneous Lagrangian is a smooth function L defined on

an open GL(n,�)-invariant set E ⊂ Rn(S) such that

(3.2) L̃(�α) = det(α)L̃(�)

for any α ∈ GL(n,�) and � ∈ E.
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3.2. Now we give the connection with the Lagrangian formalism from Part 2. If
(x, ψ, χ) is a local system of coordinates on J1n(S), we define ξ

a by ξµ = xµ (µ =
1, . . . , n) and ξn+A = ψA (A = 1, . . . , N). If (ξa, �ai ) is a point in Rn(S), projecting
on J1n(S) at the point (x, ψ, χ), we have

xµ = ξµ (µ = 1, . . . , n)(3.3)

ψA = ξn+A (A = 1, . . . , N)(3.4)

χAµ = �
n+A
i (�−1)iµ(3.5)

where (�−1)iµ is the inverse matrix of the submatrix �
µ
i of �

a
i .

If L is a Lagrangian function in the variables (x, ψ, χ), then the corresponding
homogeneous Lagrangian is

(3.6) L̃(ξa, �ai ) = det(�
µ
i )L(x

µ, ψA, χAi)

where the variables on the right hand side are given by the above expressions. Indeed,

it is easy to see that (3.2) is verified. Moreover, for every L̃ verifying (3.2) there exists
an L such that we have (3.6). The formula (3.6) has an important consequence:

A(ψ) =
∫
L̃ ◦ ψ̃ dτ

so that if L gives trivial Euler-Lagrange equations, the same is true for L̃ and con-
versely.

Because L̃ above does not depend on τ we can use a result from [21] obtaining

Theorem 2. The Euler-Lagrange equations for the homogeneous Lagrangian L̃
are identically satisfied iff there exists a set of smooth functions Ω̃a1,...,an depending

only on (ξa) and completely antisymmetric in a1, . . . , an, such that

(3.7) L̃(ξa, �ai ) =
1
n!
�a11 . . . �an

n Ω̃a1,...,an(ξ)

and the differential form

(3.8) Ω̃ ≡ Ω̃a1,...,an(ξ) dξ
a1 ∧ . . . ∧ dξan

is exact.

�����. From [21] it follows that

(3.9) L̃(ξa, �ai ) =
n∑
k=1

�a1i1 . . . �
ak
ik
Ω̃i1,...,ika1,...,ak

(ξ)
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where Ω̃...... depends only on (ξ
a), is completely antisymmetric in the upper and lower

indices (separately), and the differential forms on S

Ω̃i1,...,ik = Ω̃i1,...,ika1,...,ak
dξa1 ∧ . . . ∧ dξak

are closed. This is a consequence of the triviality of the Euler-Lagrange equations.

Now, using the condition (3.2), only the term corresponding to k = n in (3.9) can
be nonzero. �

Corollary 1. The Euler-Lagrange equations for the homogeneous Lagrangian L̃
are identically satisfied iff there exists a set of functions Λ̃a1,...,an−1 depending only

on (ξa) which are completely antisymmetric in a’s and such that

(3.10) L̃(ξ, �) = �ai
∂

∂ξa
Λ̃i

where

Λ̃i(ξ, �) =
n

(n!)2
�a1i1 . . . �

an−1
in−1 ε

i,i1,...,in−1Λ̃a1,...,an−1(ξ).

�����. From dΩ̃ = 0 and the Poincaré lemma, there exists an n − 1 form Λ̃
such that Ω̃ = dΛ̃, with:

Λ̃ = Λ̃a1,...,an−1(ξ) dξ
a1 ∧ . . . ∧ dξan−1 .

Inserting this in (3.7) we get (3.10). �

������ 6. Using coordinates (x, ψ, χ) instead of (ξ, �) we get from (3.6) the

corresponding statement of (3.10):

(3.11) L(x, ψ, χ) =
δΛµ

δxµ

with

Λµ(x, ψ, χ) =
n∑
k=0

χA1µ1 . . . χ
Ak

µk
Λµ,µ1,...,µk

A1,...,Ak
(x, ψ)

where Λµ,µ1,...,µk

A1,...,Ak
is completely antisymmetric in the upper and lower indices.

Formulæ (3.10) and (3.11) suggest

Definition 3. The (homogeneous) Lagrangians of the form (3.10) or (3.11) are
called variationally trivial Lagrangians.
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Theorem 3. Let σ be a Lagrange-Souriau form. Then the (local) Lagrangian
corresponding to it according to Theorem 1 is determined up to addition of a varia-
tionally trivial Lagrangian.

�����. Let L1, L2 be two Lagrangians such that dθL1 = dθL2 = σ. Hereafter
dθL1−L2 = 0. Using Theorem 1, part b, it follows that the Euler-Lagrange equations
for L1 − L2 are identically satisfied. Applying Theorem 2 we get the result. �

������ 7. Looking back we see that the definition of the operator K and

implicitly of the Lagrange-Souriau form is rather hard to be justified. A possible
way to find out the explicit form of σ, given in Theorem 1 proposed in [6], [7] is to

use the fact that dθL = 0 iff L is a total divergence Lagrangian.

3.3. We close with some remarks concerning Noetherian symmetries. Let Φ: S →
S be a diffeomorphism such that the natural lift Φ̃ : Rn(S) → Rn(S) leaves Ẽ ⊂
Rn(S) invariant (here Ẽ = π̃−1(E) with π̃ : Rn(S)→ J1n(S) the bundle projection).

Such a Φ is called a kinematical symmetry. If moreover, for a given homogeneous
Lagrangian L̃, there exists a variationally trivial Lagrangian L̃Φ such that

(3.12) L̃ ◦ Φ̃− L̃ = L̃Φ

then Φ is called a restricted Noetherian symmetry for L. From (3.12) we get

(3.13) Φ̇∗σ = σ.

The above property of Φ, related to σ, can be taken as the definition of a restricted
Noetherian symmetry (equivalent to that in (3.12)). This suggests to define, more

generally, a Noetherian symmetry as any diffeomorphism ϕ : E → E (not necessary
a lift from S) verifying:

(3.14) ϕ∗σ = σ;

(this kind of symmetries are sometimes called dynamical).
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4. Final remarks

The necessity of having a formalism for the general case (without a fibre bundle
structure) becomes apparent, for instance, when studying the relativistic particle.

Then S is the Minkowski space which does not have a fibre bundle structure over
some absolute time [22].

Using the Lagrange-Souriau form for studying Lagrangian systems with groups
of Noetherian symmetries seems to be fruitful. This was already used to find all

possible Lagrangians having a given group of Noetherian symmetries. Remarkably
enough, this can be done also for infinite-dimensional (gauge-like) groups [23]–[25].

It would be interesting to rephrase some results from this paper using the language
of sheaf theory in the spirit of the analysis for a finite number of degrees of freedom

[26]. This might be profitable in the classification of Lagrangians admitting a given
group of Noetherian symmetries analogous to [26], [27].

Secondly, one could try to generalize the main results of this paper to Lagrangians
depending on derivatives of orders higher than one [12].
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[2] E. Cartan: Leçons sur les invariants integraux. Hermann, Paris, 1922.
[3] J. Klein: Espaces variationels et mécanique. Ann. Inst. Fourier 12 (1962), 1–124.
[4] J. M. Souriau: Structure des Systemes Dynamique. Dunod, Paris, 1970.
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