# SEQUENTIAL CONVERGENCES IN A VECTOR LATTICE 

Ján Jakubík, Košice

(Received August 5, 1996)

Abstract. In the present paper we deal with sequential convergences on a vector lattice $L$ which are compatible with the structure of $L$.

Keywords: vector lattice, sequential convergence, archimedean property, Brouwerian lattice

MSC 2000: 46A19

In this paper we will investigate the system Conv $L$ of all sequential convergences in a vector lattice $L$. The analogously defined notions of sequential convergences in a lattice ordered group or in a Boolean algebra were studied in [3]-[12].

The following results will be established.
The set Conv $L$ is nonempty if and only if $L$ is archimedean. Let $L$ be archimedean. Then Conv $L$ has the least element (it need not have, in general, a greatest element). Each interval of Conv $L$ is a Brouwerian lattice. If $L$ is $\left(\aleph_{0}, 2\right)$-distributive, then Conv $L$ is a complete lattice. There is a convex vector sublattice $L_{1}$ of $L$ such that (i) Conv $L_{1}$ is a complete lattice; (ii) if $L_{2}$ is a convex vector sublattice of $L$ such that Conv $L_{2}$ is a complete lattice, then $L_{2} \subseteq L_{1}$. Let $X_{i}(i=1,2)$ be archimedean vector lattices; if $X_{1}$ and $X_{2}$ are isomorphic as lattices and if Conv $X_{1}$ is a complete lattice, then Conv $X_{2}$ is a complete lattice as well. If $L$ is a direct sum of linearly ordered vector lattices, then Conv $L$ is a complete lattice and has no atom. Some further results (concerning orthogonal sequences and strong units) are also proved.

## 1. Preliminaries

The notion of a vector lattice is applied here in the same sense as in [1], Chap. XV. (In [16], the term "Riesz space" is used; in [13] vector lattices are called $K$-lineals.)

Let $L$ be a vector lattice and let $\mathbb{N}$ be the set of all positive integers. The direct product $\prod_{n \in \mathbb{N}} L_{n}$, where $L_{n}=L$ for each $n \in \mathbb{N}$, will be denoted by $L^{\mathbb{N}}$. The elements of $L^{\mathbb{N}}$ are denoted, e.g., as $\left(x_{n}\right)_{n \in \mathbb{N}}$, or simply $\left(x_{n}\right)$; instead of $n$, sometimes other indices will be applied. $\left(x_{n}\right)$ is said to be a sequence in $L$. If $x \in L$ and $x_{n}=x$ for each $n \in \mathbb{N}$, then we denote $\left(x_{n}\right)=\operatorname{const} x$. The notion of a subsequence has the usual meaning.

If $\alpha \subseteq L^{\mathbb{N}} \times L$, then instead of $\left(\left(x_{n}\right), x\right) \in \alpha$ we also write $x_{n} \rightarrow_{\alpha} x$.
If the partial order (as defined in $L$ ) is not taken into account, then we obtain a linear space which will be denoted by $\ell(L)$; similarly, if we disregard the multiplication of elements of $L$ by reals, then we get a lattice ordered group; we denote it by $G(L)$.

The set of all reals will be denoted by $\mathbb{R}$. The symbol 0 denotes both the real number zero and the neutral element of $L$; the meaning of this symbol will be clear from the context. For $\left(a_{n}\right) \in \mathbb{R}^{\mathbb{N}}$ and $a \in \mathbb{R}$ the symbol $a_{n} \rightarrow a$ has the usual meaning.
1.1. Definition. (Cf., e.g., [15].) A nonempty subset $\alpha$ of $L^{\mathbb{N}} \times L$ will be said to be a convergence in $\ell(L)$ if it satisfies the following conditions:
(i) If $x_{n} \rightarrow{ }_{\alpha} x$ and if $\left(y_{n}\right)$ is a subsequence of $\left(x_{n}\right)$, then $y_{n} \rightarrow_{\alpha} x$.
(ii) If $x_{n} \rightarrow_{\alpha} x$ and $x_{n} \rightarrow_{\alpha} y$, then $x=y$.
(iii) If $x_{n} \rightarrow_{\alpha} x$ and $y_{n} \rightarrow_{\alpha} y$, then $x_{n}+y_{n} \rightarrow_{\alpha} x+y$.
(iv) If $x_{n} \rightarrow_{\alpha} x$ and $a \in \mathbb{R}$, then $a x_{n} \rightarrow_{\alpha} a x$.
(v) If $x \in L,\left(a_{n}\right) \in \mathbb{R}^{\mathbb{N}}, a \in \mathbb{R}$ and $a_{n} \rightarrow a$, then $a_{n} x \rightarrow_{\alpha} a x$.

The system of all convergences in $\ell(L)$ will be denoted by $\operatorname{Conv}_{\ell} L$.
1.2. Definition. (Cf. [3].) A nonempty subset $\alpha$ of $L^{\mathbb{N}} \times L$ will be said to be a convergence in $G(L)$ if it satisfies the conditions (i), (ii), (iii) from 1.1, and if also the following conditions are fulfilled:
(i $\mathrm{i}_{1}$ ) If $\left(\left(x_{n}\right), x\right) \in L^{\mathbb{N}} \times L$ and if each subsequence $\left(y_{n}\right)$ of $\left(x_{n}\right)$ has a subsequence $\left(z_{n}\right)$ such that $z_{n} \rightarrow_{\alpha} x$, then $x_{n} \rightarrow_{\alpha} x$.
(ii ${ }_{1}$ ) If $x \in L$ and $\left(x_{n}\right)=\mathrm{const} x$, then $x_{n} \rightarrow{ }_{\alpha} x$.
(iii $1_{1}$ If $x_{n} \rightarrow_{\alpha} x$, then $-x_{n} \rightarrow_{\alpha}-x$.
(iv $v_{1}$ If $x_{n} \rightarrow_{\alpha} x$ and $y_{n} \rightarrow_{\alpha} y$, then $x_{n} \wedge y_{n} \rightarrow_{\alpha} x \wedge y$ and $x_{n} \vee y_{n} \rightarrow_{\alpha} x \vee y$.
$\left(\mathrm{v}_{1}\right)$ If $x_{n} \rightarrow_{\alpha} x, y_{n} \rightarrow_{\alpha} x,\left(z_{n}\right) \in L^{\mathbb{N}}$ and $x_{n} \leqslant z_{n} \leqslant y_{n}$ for each $n \in \mathbb{N}$, then $z_{n} \rightarrow_{\alpha} x$.

The system of all convergences in $G(L)$ will be denoted by $\operatorname{Conv}_{g} L$.
Let us remark that in the paper [14] the Urysohn property ( $\mathrm{i}_{1}$ ) (which will be systematically applied below) was not assumed to be valid when investigating a sequential convergence in a lattice ordered group.

We denote by $d$ the system of all elements $\left(\left(x_{n}\right), x\right) \in L^{\mathbb{N}} \times L$ having the property that there is $m \in \mathbb{N}$ such that $x_{n}=x$ for each $n \geqslant m$. It is easy to verify that $d$ belongs to $\operatorname{Conv}_{g} L$, hence $\operatorname{Conv}_{g} L$ is nonempty. The system $\operatorname{Conv}_{g} L$ will be considered to be partially ordered by inclusion. It is obvious that $d$ is the least element of $\mathrm{Conv}_{g} L$.

Let us remark that the conditions (i), (ii), (iii), ( $\mathrm{i}_{1}$ ), ( $\mathrm{ii}_{1}$ ) and (iii $\mathrm{I}_{1}$ define a convergence group in the sense of [18] or a FLUSH convergence on the corresponding group (cf. [17]).
1.3. Definition. A nonempty subset $\alpha$ of $L^{\mathbb{N}} \times L$ will be said to be a convergence in $L$ if $\alpha \in \operatorname{Conv}_{\ell} L \cap \operatorname{Conv}_{g} L$. The system of all convergences in $L$ will be denoted by Conv $L$. If Conv $L \neq \emptyset$, then the set Conv $L$ will be partially ordered by inclusion.

The vector lattice $L$ is said to be archimedean if, whenever $x, y \in L$ and $0 \leqslant n x \leqslant y$ for each $n \in \mathbb{N}$, then $x=0$.
1.4. Lemma. Let $L$ be non-archimedean. Then Conv $L=\emptyset$.

Proof. There exist $x, y \in L$ such that $0<n x \leqslant y$ for each $n \in \mathbb{N}$. By way of contradiction, assume that $\alpha \in \operatorname{Conv} L$. Because $\frac{1}{n} \rightarrow 0$ in $\mathbb{R}$, in view of 1.1 , (v) we infer that $\frac{1}{n} y \rightarrow{ }_{\alpha} 0$. Since $0<x \leqslant \frac{1}{n} y$ for each $n \in \mathbb{N}$, according to (ii ${ }_{1}$ ) and ( $\mathrm{v}_{1}$ ) of 1.2 the relation $x_{n} \rightarrow_{\alpha} x$ is valid, where $\left(x_{n}\right)=$ const $x$. Thus in view of (ii $i_{1}$ ) and (ii) we have arrived at a contradiction.
1.5. Lemma. Let $\alpha \in \operatorname{Conv}_{g} L$. Then $\alpha$ satisfies the condition (iv) from 1.1.

Proof. Let $x_{n} \rightarrow_{\alpha} x$ and let $a \in \mathbb{R}$. There is $m \in \mathbb{N}$ with $|a| \leqslant m$. We have

$$
x_{n} \rightarrow_{\alpha} x \Rightarrow\left|x_{n}-x\right| \rightarrow_{\alpha} 0
$$

whence in view of (iii) and by induction we get $m\left|x_{n}-x\right| \rightarrow_{\alpha} 0$. Since

$$
0 \leqslant\left|a x_{n}-a x\right|=|a|\left|x_{n}-x\right| \leqslant m\left|x_{n}-x\right|
$$

according to ( $\mathrm{v}_{1}$ ) we obtain $\left|a x_{n}-a x\right| \rightarrow_{\alpha} 0$, thus $a x_{n} \rightarrow_{\alpha} a x$.
1.6. Corollary. Let $\alpha \in \operatorname{Conv}_{g} L$. Then $\alpha \in \operatorname{Conv} L$ if and only if $\alpha$ satisfies the condition (v) from 1.1.

If $L \neq\{0\}$, then the element $d$ of $\operatorname{Conv}_{g} L$ does not satisfy the condition (v) of 1.1. Hence if $L \neq\{0\}$, then $\operatorname{Conv}_{g} L$ fails to be a subset of Conv $L$.

The positive cone $\{x \in L: x \geqslant 0\}$ of $L$ will be denoted by $L^{+}$. Under the inherited partial order and the operation,$+ L^{+}$is a lattice ordered semigroup.
1.7. Definition. A convex subsemigroup $\beta$ of $\left(L^{+}\right)^{\mathbb{N}}$ will be said to be a 0 -convergence in $G(L)$ if the following conditions are satisfied:
(I) If $\left(g_{n}\right) \in \beta$, then each subsequence of $\left(g_{n}\right)$ belongs to $\beta$.
(II) If $\left(g_{n}\right) \in\left(L^{+}\right)^{\mathbb{N}}$ and if each subsequence of $\left(g_{n}\right)$ has a subsequence belonging to $(\beta)$, then $\left(g_{n}\right)$ belongs to $\beta$.
(III) Let $x \in L^{+}$. Then const $x$ belongs to $\beta$ if and only if $x=0$.

The system of all 0 -convergences in $G(L)$ will be denoted by $0-\operatorname{Conv}_{g} L$. Let $d_{0}$ be the set of all $\left(x_{n}\right) \in\left(L^{+}\right)^{\mathbb{N}}$ such that $\left(\left(x_{n}\right), 0\right) \in d$. Then $d_{0} \in 0-\operatorname{Conv}_{g} L$. Hence $0-\operatorname{Conv}_{g} G \neq \emptyset$. The system $0-\operatorname{Conv}_{g} L$ is partially ordered by inclusion.

Let $\alpha \in \operatorname{Conv}_{g} L$. Put

$$
\begin{equation*}
\varphi_{1}(\alpha)=\left\{\left(\left|x_{n}-x\right|\right): x_{n} \rightarrow_{\alpha} x\right\} \tag{1}
\end{equation*}
$$

Conversely, let $\beta \in 0-\operatorname{Conv}_{g} L$. Denote

$$
\begin{equation*}
\varphi_{2}(\beta)=\left\{\left(\left(x_{n}\right), x\right):\left(\left|x_{n}-x\right|\right) \in \beta\right\} \tag{2}
\end{equation*}
$$

1.8. Lemma. (Cf. [4], Lemma 1.4 and Theorem 1.6.) $\varphi_{1}$ and $\varphi_{2}$ are inverse isomorphisms of $\operatorname{Conv}_{g} L$ onto $0-\operatorname{Conv}_{g} L$, or of $0-\operatorname{Conv}_{g} L$ onto $\operatorname{Conv}_{g} L$, respectively.
1.9. Definition. A nonempty subset $\beta$ of $\left(L^{+}\right)^{\mathbb{N}}$ will be said to be a 0 -convergence in $L$ if $\beta \in 0-\operatorname{Conv}_{g} L$ and if, moreover, the following condition is satisfied:
(IV) If $x \in L$ and $a_{n} \rightarrow 0$ in $\mathbb{R}$, then $\left(a_{n} x\right) \in \beta$.

Let 0 -Conv $L$ be the set of all 0 -convergences in $L$. If this set is nonempty, then it will be considered to be partially ordered by inclusion.

Now let $\alpha$ and $\beta$ run over the set Conv $L$ or 0 -Conv $L$, respectively, and let $\varphi_{1}$ and $\varphi_{2}$ be defined as in (1) and (2). Then by a routine proof and by using 1.5 we obtain the following result which is analogous to 1.8:
1.10. Lemma. (i) $\operatorname{Conv} L=\emptyset \Leftrightarrow 0$-Conv $L=\emptyset$. (ii) If $\operatorname{Conv} L \neq \emptyset$, then $\varphi_{1}$ and $\varphi_{2}$ are inverse isomorphisms of $\operatorname{Conv} L$ onto $0-\operatorname{Conv} L$, or of $0-\operatorname{Conv} L$ onto $\operatorname{Conv} L$, respectively.

As we remarked in the introduction, we are interested in studying the partially ordered system Conv $L$. Now, in view of 1.10 , it suffices to investigate the system 0 -Conv $L$. Next, according to 1.4 , it suffices to consider the case when $L$ is archimedean.

## 2. Regular sets

In what follows we assume that $L$ is an archimedean vector lattice.
Let $\emptyset \neq A \subseteq\left(L^{+}\right)^{\mathbb{N}}$. The set $A$ will be said to be regular with respect to $G(L)$ (or $L$, respectively) if there is $\alpha \in 0-\operatorname{Conv}_{g} L$ (or $\alpha \in 0$ - Conv $L$ ) such that $A \subseteq \alpha$.
2.1. Lemma. Let $\emptyset \neq A \subseteq\left(L^{+}\right)^{\mathbb{N}}$. Then the following conditions are equivalent:
(i) $A$ fails to be regular with respect to $G(L)$.
(ii) There exist $0<z \in L$, positive integers $m$, $k$, elements $\left(y_{n}^{1}\right), \ldots,\left(y_{n}^{k}\right)$ of $A$ and subsequences $\left(x_{n}^{1}\right)$ of $\left(y_{n}^{1}\right), \ldots,\left(x_{n}^{k}\right)$ of $\left(y_{n}^{k}\right)$ such that

$$
z \leqslant m\left(x_{n}^{1} \vee x_{n}^{2} \vee \ldots \vee x_{n}^{k}\right) \quad \text { for each } n \in \mathbb{N} .
$$

Proof. The implication (ii) $\Rightarrow$ (i) is obvious. Let (i) be valid. In view of the results of [4] (cf. also [10], Proposition 2.1) there exist $0<z \in L$, positive integers $m_{1}, k$, elements $\left(y_{n}^{1}\right), \ldots,\left(y_{n}^{k}\right)$ of $A$ and subsequences $\left(x_{n}^{1}\right)$ of $\left(y_{n}^{1}\right), \ldots,\left(x_{n}^{k}\right)$ of $\left(y_{n}^{k}\right)$ such that

$$
z \leqslant m_{1}\left(x_{n}^{1}+x_{n}^{2}+\ldots+x_{n}^{k}\right) \quad \text { for each } n \in \mathbb{N} .
$$

Hence according to Lemma 2.4, [10] there is $m \in \mathbb{N}$ with

$$
z \leqslant m\left(x_{n}^{1} \vee x_{n}^{2} \vee \ldots \vee x_{n}^{k}\right) \quad \text { for each } n \in \mathbb{N}
$$

Let $A_{0}$ be the set of all sequences $\left(x_{n}\right)$ in $L$ having the property that there are $0 \leqslant x \in L$ and $\left(a_{n}\right) \in\left(\mathbb{R}^{+}\right)^{\mathbb{N}}$ such that $a_{n} \rightarrow 0$ in $\mathbb{R}$ and $x_{n}=a_{n} x$ for each $n \in \mathbb{N}$.
2.2. Lemma. The set $A_{0}$ is regular with respect to $G(L)$ and also with respect to $L$.

Proof. By way of contradiction, assume that $A_{0}$ fails to be regular with respect to $G(L)$. Then the condition (ii) from 2.1. holds for $A_{0}$.

For each $i \in\{1,2, \ldots, k\}$ there are $0<x^{i} \in L$ and $\left(a_{n}^{i}\right) \in\left(\mathbb{R}^{+}\right)^{\mathbb{N}}$ such that $a_{n}^{i} \rightarrow 0$ in $\mathbb{R}$ and

$$
x_{n}^{i}=a_{n}^{i} x^{i} \quad \text { for each } n \in \mathbb{N} .
$$

For $n \in \mathbb{N}$ we put $a_{n}=\max \left\{a_{n}^{1}, a_{n}^{2}, \ldots, a_{n}^{k}\right\}$. Then $a_{n} \rightarrow 0$ in $\mathbb{R}$ and

$$
\begin{aligned}
0<z & \leqslant m\left(x_{n}^{1} \vee x_{n}^{2} \vee \ldots \vee x_{n}^{k}\right)=m\left(a_{n}^{1} x^{1} \vee \ldots \vee a_{n}^{k} x^{k}\right) \\
& \leqslant m a_{n}\left(x^{1} \vee \ldots \vee x^{k}\right) \quad \text { for each } n \in \mathbb{N} .
\end{aligned}
$$

Next, for each $n \in \mathbb{N}$ there is $n(1) \in \mathbb{N}$ such that $m a_{n(1)}<\frac{1}{n}$, hence

$$
0<z<\frac{1}{n}\left(x^{1} \vee \ldots \vee x^{k}\right) \quad \text { for each } n \in \mathbb{N}
$$

Thus $n z<x^{1} \vee \ldots \vee x^{k}$ for each $n \in \mathbb{N}$, which is impossible, because $L$ is archimedean. Thus there is $\alpha \in 0-\operatorname{Conv}_{g} L$ with $A_{0} \subseteq \alpha$. Then $\alpha$ fulfils the condition (IV), hence $\alpha \in 0-\operatorname{Conv} L$.
2.3. Theorem. Let $L$ be an archimedean vector lattice. Then Conv $L \neq \emptyset$.

Proof. In view of 2.2 there is $\alpha \in 0$ - Conv $L$ with $A_{0} \subseteq \alpha$. Hence 0 -Conv $L \neq \emptyset$. Thus according to 1.10 we have Conv $L \neq \emptyset$.
2.4. Lemma. Let $\alpha \in 0$-Conv $L$. Then $A_{0} \subseteq \alpha$.

Proof. This follows immediately from the fact that $\alpha$ satisfies the condition (IV) of 1.9.
2.5. Corollary. Let $I$ be a nonempty set and for each $i \in I$ let $\alpha_{i} \in 0$-Conv $L$. Then $\emptyset \neq \bigcap_{i \in I} \alpha_{i} \in 0-\operatorname{Conv} L$.

Let us denote by $d^{0}$ the intersection of all $\alpha_{i} \in 0-\operatorname{Conv} L$ with $A_{0} \subseteq \alpha_{i}$ (such $\alpha_{i}$ do exist in view of 2.2 ). According to 2.4 and 2.5 we obtain:
2.6. Corollary. $d^{0}$ is the least element of 0 -Conv $L$. If $\alpha \in 0$-Conv $L$, then the interval $\left[d^{0}, \alpha\right]$ of the partially ordered set 0 -Conv $L$ is a complete lattice.
2.7. Proposition. $d^{0}=A_{0}$.

Proof. In view of the definition of $d^{0}$ we have $A_{0} \subseteq d^{0}$. Let $\left(z_{n}\right) \in d^{0}$. Then in view of [10], Proposition 2.1, and according to 2.4 there are $m, k \in \mathbb{N}$, elements $\left(y_{n}^{1}\right), \ldots,\left(y_{n}^{k}\right)$ of $A_{0}$ and subsequences $\left(x_{n}^{1}\right)$ of $\left(y_{n}^{1}\right), \ldots,\left(x_{n}^{k}\right)$ of $\left(y_{n}^{k}\right)$ such that

$$
z_{n} \leqslant m\left(x_{n}^{1} \vee \ldots \vee x_{n}^{k}\right)
$$

For each $i \in\{1,2, \ldots, k\}$ there are $x^{i} \in L^{+}$and $\left(a_{n}^{i}\right) \in\left(\mathbb{R}^{+}\right)^{\mathbb{N}}$ such that $a_{n}^{i} \rightarrow 0$ in $\mathbb{R}$ and $x_{n}^{i}=a_{n}^{i} x^{i}$ for each $n \in \mathbb{N}$. Put $a_{n}=\max \left\{a_{n}^{1}, \ldots, a_{n}^{k}\right\}$. Hence $a_{n} \rightarrow 0$ in $\mathbb{R}$ and

$$
z_{n} \leqslant a_{n}\left(m x^{1} \vee \ldots \vee m x^{n}\right)
$$

Thus $\left(z_{n}\right) \in A_{0}$ and therefore $d^{0} \subseteq A_{0}$.

For each $X \subseteq\left(L^{+}\right)^{\mathbb{N}}$ let us denote by $X^{*}$ the set of all $\left(x_{n}\right) \in\left(L^{+}\right)^{\mathbb{N}}$ such that each subsequence of $\left(x_{n}\right)$ has a subsequence which belongs to $X$.

Let $A_{1}$ be the set of all $\left(x_{n}\right) \in\left(L^{+}\right)^{\mathbb{N}}$ which have the following property: there exist $0 \leqslant x \in L$ and $m \in \mathbb{N}$ such that $x_{n} \leqslant \frac{1}{n} x$ for each $n \geqslant m$.

Another constructive characterization of $d^{0}$ is given by the following lemma.
2.8. Lemma. $d^{0}=A_{1}^{*}$.

Proof. Since $A_{1} \subseteq A_{0}$, we clearly have $A_{1}^{*} \subseteq d^{0}$. Let $\left(x_{n}\right) \in d^{0}$. In view of 2.7 there are $x \in L^{+}$and $\left(a_{n}\right) \in\left(\mathbb{R}^{+}\right)^{\mathbb{N}}$ such that $x_{n}=a_{n} x$ for each $n \in \mathbb{N}$. Let $\left(y_{n}\right)$ be a subsequence of $\left(x_{n}\right)$ and let $\left(b_{n}\right)$ be the corresponding subsequence of $\left(a_{n}\right)$; hence $y_{n}=b_{n} x$ for each $n \in \mathbb{N}$. There exists a subsequence $\left(c_{n}\right)$ of $\left(b_{n}\right)$ such that $c_{n} \leqslant \frac{1}{n}$ for each $n \in \mathbb{N}$. Put $z_{n}=c_{n} x$ for each $n \in \mathbb{N}$. Then $\left(c_{n} x\right)$ is a subsequence of $\left(y_{n}\right)$ and $\left(c_{n} x\right) \in A_{1}$. Hence $\left(x_{n}\right) \in A_{1}^{*}$ and thus $d^{0} \subseteq A_{1}^{*}$.
2.9. Proposition. There exists an archimedean vector lattice $L$ such that 0 -Conv $L$ has no greatest element.

Proof. It suffices to apply an analogous example as in [3], Section 5 (with the distinction that the real functions under consideration in the example are not assumed to be integer valued).
2.10. Theorem. Let $L$ be an archimedean vector lattice. Suppose that $L$ is ( $\aleph_{0}, 2$ )-distributive. Then 0-Conv $L$ possesses a greatest element.

Proof. This is a consequence of 2.6 and of the fact that $0-\operatorname{Conv}_{g} L$ has a greatest element (cf. [12]).

Lemma 1.10 and Lemma 2.6 yield that each interval of the partially ordered set 0 -Conv $L$ is, at the same time, an interval of $0-\operatorname{Conv}_{g} L$. Hence in view of [5], Theorem 2.5 we obtain:
2.11. Proposition. Each interval of 0 -Conv $L$ is a Brouwerian lattice.

## 3. The sets of the form $\alpha \cup A_{0}$

Let $\emptyset \neq \alpha \subseteq\left(L^{+}\right)^{\mathbb{N}}$ be such that $\alpha$ is regular with respect to $G(L)$. We shall investigate the problem whether the set $\alpha \cup A_{0}$ is regular with respect to $L$.

First we shall deal with the case when $L$ is a projectable vector lattice. (Projectable lattice ordered groups and vector lattices were studied by several authors; cf. e.g., [2] and [16].)

For the sake of completeness we recall the following notions.

Let $L$ be a vector lattice and $X \subseteq L$. We put

$$
X^{d}=\{y \in L:|y| \wedge|x|=0 \quad \text { for each } x \in X\}
$$

Then $X^{d}$ is said to be a polar of $L$. The vector lattice $L$ is called projectable if for each $x \in L$, the set $\{x\}^{d}$ is a direct factor of $L$.

An element $e \in L$ is called a strong unit of $L$ if for each $x \in L$ there is $n \in \mathbb{N}$ such that $x \leqslant n e$.

Since each strong unit of an archimedean vector lattice $L_{1}$ is, at the same time, a strong unit of the Dedekind completion of $L_{1}$, we have
3.1. Proposition. (Cf., e.g., [19], Theorem V.3.1.) Let $L_{1}$ be an archimedean vector lattice having a strong unit. Then there is a set $I$ such that there exists an isomorphism of $L_{1}$ into the vector lattice $\prod_{i \in I} R_{i}$, where $R_{i}=\mathbb{R}$ for each $i \in I$.
3.2. Lemma. Let $\alpha \in \operatorname{Conv}_{g} L$. Then the following conditions are equivalent:
(i) The set $\alpha \cup A_{0}$ fails to be regular with respect to $G(L)$.
(ii) There are $t, z \in L$ and $\left(z_{n}\right) \in \alpha$ such that $0<z \leqslant t$ and

$$
z=z_{n} \vee\left(z \wedge \frac{1}{n} t\right) \quad \text { for each } n \in \mathbb{N}
$$

Proof. According to 2.1 , (ii) $\Rightarrow$ (i). Suppose that (i) is valid. Thus in view of 2.7 and 2.8 , the set $\alpha \cup A_{1}$ fails to be regular with respect to $G(L)$. Hence the condition (ii) from 2.1 holds, where $A=\alpha \cup A_{1}$.

If $\left(x_{n}^{1}\right), \ldots,\left(x_{n}^{k}\right) \in \alpha$, then $\alpha$ would not be regular with respect to $G(L)$, which is a contradiction. If $\left(x_{n}^{1}\right), \ldots,\left(x_{n}^{k}\right) \in A_{1}$, then we obtain a contradiction with respect to 2.2 . Hence without loss of generality we can suppose that there is $k(1) \in \mathbb{N}$ with $1<k(1)<k$ such that

$$
\left(x_{n}^{1}\right), \ldots,\left(x_{n}^{k(1)}\right) \in \alpha \quad \text { and }\left(x_{n}^{k(1)+1}\right), \ldots,\left(x_{n}^{k}\right) \in A_{1} .
$$

Put $z_{n}=m\left(x_{n}^{1} \vee \ldots \vee x_{n}^{k(1)}\right)$ for each $n \in \mathbb{N}$. Then $\left(z_{n}\right) \in \alpha$.
For each $j \in\{k(1)+1, \ldots, k\}$ there are $0<y^{j} \in L$ and $\left(a_{n}^{j}\right) \in\left(\mathbb{R}^{+}\right)^{\mathbb{N}}$ such that $a_{n}^{j} \rightarrow 0$ in $\mathbb{R}$ and $y_{n}^{j}=a_{n}^{j} y^{j}$ for each $n \in \mathbb{N}$. Denote

$$
a_{n}=\max \left\{a_{n}^{k(1)+1}, \ldots, a_{n}^{k}\right\}, \quad t=y^{k(1)+1} \vee \ldots \vee y^{k} .
$$

There is a subsequence $(n(1))$ of the sequence $(n)$ such that

$$
m a_{n(1)}<\frac{1}{n} \quad \text { for each } n \in \mathbb{N}
$$

Hence we have

$$
m\left(x_{n(1)}^{k(1)+1} \vee \ldots \vee x_{n(1)}^{k}\right) \leqslant \frac{1}{n} t \quad \text { for each } n \in \mathbb{N}
$$

Therefore

$$
0<z \leqslant z_{n(1)} \vee \frac{1}{n} t \quad \text { for each } n \in \mathbb{N}
$$

Becuase $\left(z_{n(1)}\right) \in \alpha$, it suffices to write $z_{n}$ instead of $z_{n(1)}$. Thus

$$
\begin{equation*}
z=z \wedge\left(z_{n} \vee \frac{1}{n} t\right)=\left(z \wedge z_{n}\right) \vee\left(z \wedge \frac{1}{n} t\right) \quad \text { for each } n \in \mathbb{N} \tag{1}
\end{equation*}
$$

If $z \wedge t=0$, then $z \wedge \frac{1}{n} t=0$ for each $n \in \mathbb{N}$, whence $z \leqslant z_{n}$ for each $n \in \mathbb{N}$ and thus $\alpha$ fails to be regular, which is a contradiction. Therefore $z \wedge t>0$ and then, without loss of generality, we can take $z \wedge t$ instead of $z$; hence we have $z \leqslant t$. Next, $\left(z \wedge z_{n}\right) \in \alpha$, thus without loss of generality we can take $\left(z \wedge z_{n}\right)$ instead of $\left(z_{n}\right)$. Hence in view of (1) we infer that (ii) is valid.
3.3. Proposition. Assume that $L$ is projectable. Let $\alpha \in 0-\operatorname{Conv}_{g} L$. Then $\alpha \cup A_{0}$ is regular with respect to $L$.

Proof. In view of 2.7 it suffices to verify that $\alpha \cup A_{0}$ is regular with respect to $G(L)$.

By way of contradiction, suppose that $\alpha \cup A_{0}$ fails to be regular with respect to $G(L)$. Then the condition (ii) from 3.2 is valid. There exists $m \in \mathbb{N}$ such that $z \not \equiv \frac{1}{m} t$. Thus

$$
z^{0}=\left(z-\frac{1}{m} t\right)^{+}>0
$$

Let us denote by $P$ the polar of $L$ generated by $z^{0}$; i.e., $P=\left\{z^{0}\right\}^{d d}$. Since $L$ is projectable, $P$ is a direct factor in $L$. For each $g \in L$ let $g(P)$ be the component of $g$ in $P$. In view of the condition (ii) of 3.2 we have

$$
\begin{equation*}
z(P)=z_{n}(P) \vee\left(z(P) \wedge \frac{1}{n} t(P)\right) \quad \text { for each } n \in \mathbb{N} \tag{2}
\end{equation*}
$$

If $z(P)=0$, then $z^{0}=z^{0}(P)=0$, which is a contradiction. Thus $z(P)>0$. Next, from $z \leqslant t$ we infer that $z(P) \leqslant t(P)$.

Let $L_{1}$ be the convex $\ell$-subgroup of $G(P)$ generated by the element $t(P)$. Then $t(P)$ is a strong unit of $L_{1}$ and $L_{1}$ is a linear subspace of $L$. Let $I$ and $\varphi$ be as in 3.2. For each $i \in I$ we have $\varphi(z(P))(i) \geqslant 0$. According to the definition of $P$ we obtain

$$
\left(z-\frac{1}{m} t\right)^{-} \in P^{d}
$$

whence $\left(z-\frac{1}{m} t\right)(P)=z_{0}(P)$. In view of $\left(1^{\prime}\right)$,

$$
\begin{equation*}
0<z^{0}=z^{0}(P)=z(P)-\frac{1}{m} t(P) \tag{3}
\end{equation*}
$$

hence the set $I_{1}=\{i \in I: \varphi(z(P))(i)>0\}$ is nonempty.
Let $i \in I_{1}$ and $n>m$. According to (3),

$$
\begin{equation*}
\varphi(z(P))(i) \geqslant \frac{1}{n} \varphi(t(P))(i) \tag{4}
\end{equation*}
$$

Also, in view of (2),

$$
\begin{aligned}
\varphi(z(P))(i) & =\varphi\left(z_{n}(P)\right)(i) \vee\left(\varphi(z(P))(i) \wedge \frac{1}{n} \varphi(t(P))(i)\right) \\
& \left.=\max \left\{\varphi\left(z_{n}(P)\right)(i), \min \left\{\varphi(z(P))(i), \frac{1}{n} \varphi(t(P))(i)\right)\right\}\right\}
\end{aligned}
$$

Thus according to (4),

$$
\varphi(z(P))(i)=\max \left\{\varphi\left(z_{n}(P)(i), \frac{1}{n} \varphi(t(P))(i)\right\}\right.
$$

By applying (4) again we get

$$
\varphi(z(P))(i)=\varphi\left(z_{n}(P)\right)(i)
$$

Therefore $\varphi(z(P))(i)=\varphi\left(z_{n}(P)\right)(i)$ for each $i \in I$. Hence

$$
\begin{equation*}
0<z(P)=z_{n}(P) \quad \text { for each } n>m \tag{5}
\end{equation*}
$$

Since $z_{n}(P) \leqslant z_{n}$ for each $n \in \mathbb{N}$ and since $\left(z_{n}\right)$ is regular with respect to $L$, we infer that $\left(z_{n}(P)\right)$ is regular with respect to $L$. Thus in view of (5) we have arrived at a contradiction.

Now let us drop the assumption that $L$ is projectable. We denote by $L^{\prime}$ the Dedekind completion of $L$. It is well-known that $L^{\prime}$ is projectable.
3.4. Lemma. Let $\emptyset \neq \alpha \subseteq\left(L^{+}\right)^{\mathbb{N}}$. Assume that $\alpha$ is regular with respect to $G(L)$. Then $\alpha$ is regular with respect to $G\left(L^{\prime}\right)$.

Proof. By way of contradiction, assume that $\alpha$ fails to be regular with respect to $G\left(L^{\prime}\right)$. Then the condition (ii) from 2.1 holds (with the distinction that $z \in L^{\prime}$ and $A$ is replaced by $\alpha$ ). There exists $0<z_{1} \in L$ with $z_{1} \leqslant z$. But by applying 2.1 again we infer that $\alpha$ fails to be regular with respect to $L$, which is a contradiction.
3.5. Lemma. Let $\emptyset \neq \alpha \subseteq\left(L^{+}\right)^{\mathbb{N}}$. Assume that $\alpha$ is regular with respect to $G(L)$. Then $\alpha$ is regular with respect to $G(L)$.

Proof. This is an immediate consequence of 2.1.
3.6. Theorem. Let $\emptyset \neq \alpha \subseteq\left(L^{+}\right)^{\mathbb{N}}$. Assume that $\alpha$ is regular with respect to $G(L)$. Then $\alpha \cup A_{0}$ is regular with respect to $G(L)$ and with respect to $L$.

Proof. In view of $3.4, \alpha$ is regular with respect to $G\left(L^{\prime}\right)$. Because $G\left(L^{\prime}\right)$ is projectable, according to 3.3 we obtain that $\alpha \cup A_{0}$ is regular with respect to $G\left(L^{\prime}\right)$. Thus 3.5 yields that $\alpha \cup A_{0}$ is regular with respect to $G(L)$. Now it follows from 2.7 that $\alpha \cup A_{0}$ is regular with respect to $L$.
3.7. Corollary. Let $\alpha \in 0-\operatorname{Conv}_{g} L$. Then $\alpha \vee d^{0}$ does exist in $0-\operatorname{Conv}_{g} L$ and in 0 -Conv $L$.
3.8. Proposition. The following conditions are equivalent:
(i) 0-Conv $L$ has the greatest element.
(ii) $0-\operatorname{Conv}_{g} L$ has the greatest element.

Proof. We obviously have (ii) $\Rightarrow$ (i). Let (i) hold and let $\beta$ be the greatest element of 0 -Conv $L$. Let $\alpha \in 0-\operatorname{Conv}_{g} L$. According to 3.7, the element $\alpha \vee d^{0}$ does exist in 0 -Conv $L$. Thus $\alpha \leqslant \alpha \vee d^{0} \leqslant \beta$. Hence $\beta$ is the greatest element of $0-$ Conv $_{g} L$.
3.9. Corollary. Let 0 -Conv $L$ have the greatest element. Then 0 -Conv $L$ is a complete lattice and 0 -Conv $L$ is a principal dual ideal of $0-\operatorname{Conv}_{g} L$ generated by the element $d^{0}$.

Let us remark that if $L_{1}$ is a convex $\ell$-subgroup of $G(L)$, then it is a linear subspace of $L$.
3.10. Theorem. There exists a convex $\ell$-subgroup $L_{1}$ of $G(L)$ such that the following conditions are satisfied:
(i) Conv $L_{1}$ is a complete lattice.
(ii) If $L_{2}$ is a convex $\ell$-subgroup of $G(L)$ such that Conv $L_{2}$ is a complete lattice, then $L_{2} \leqslant L_{1}$.

Proof. This follows from 3.8 and from [10], Theorem 5.5.
Let $L_{1}$ be a vector lattice. If neither the operation + nor the multiplication of elements of $L_{1}$ by reals is taken into account, then we obtain a lattice which will be denoted by $L_{1}^{0}$.
3.11. Theorem. Let $L_{i}(i=1,2)$ be archimedean vector lattices. Assume that the lattices $L_{1}^{0}$ and $L_{2}^{0}$ are isomorphic and that Conv $L_{1}$ possesses a greatest element. Then Conv $L_{2}$ possesses a greatest element as well.

Proof. According to 1.10, 0 - Conv $L_{1}$ possesses a greatest element. Then in view of $3.8,0-\operatorname{Conv}_{g} L$ has a greatest element. Since $L_{1}^{0}$ is isomorphic to $L_{2}^{0}$, by applying [10], Theorem 3.5 we conclude that $0-\operatorname{Conv}_{g} L_{2}$ has a greatest element as well. Now according to 3.8 and 1.10, Conv $L_{2}$ possesses a greatest element.

## 4. Disjoint sequences

A sequence $\left(x_{n}\right)$ in $L$ will be said to be disjoint (or orthogonal) if $x_{n} \wedge x_{m}=0$ whenever $n$ and $m$ are distinct positive integers.

The following assertion follows from the results proved in [4].
(A) Assume that $L$ possesses a disjoint sequence all members of which are strictly positive. Then there exist infinitely many elements $\alpha_{i}$ of $0-\operatorname{Conv}_{g} L$ such that each $\alpha_{i}$ is generated by a disjoint sequence.
4.1. Lemma. (Cf. [4].) Let $\left(x_{n}\right)$ be a disjoint sequence in $L$. Then the set $\left(x_{n}\right)$ is regular with respect to $G(L)$.
4.2. Lemma. Let $\left(x_{n}\right)$ be a disjoint sequence in $L$. Then the $\operatorname{set}\left\{\left(x_{n}\right)\right\} \cup A_{0}$ is regular with respect to $G(L)$ and with respect to $L$.

Proof. This is a consequence of 4.1 and 3.6.
If $\left(x_{n}\right) \in\left(L^{+}\right)^{\mathbb{N}}$ and the set $\left\{\left(x_{n}\right)\right\}$ is regular in $G(L)$ then the least element $\alpha$ of 0 - $\operatorname{Conv}_{g} L$ satisfying the relation $\left\{\left(x_{n}\right)\right\} \cup A_{0} \subseteq \alpha$ will be denoted by $\alpha\left(x_{n}\right)$.

Let $\left(x_{n}\right)$ be a disjoint sequence in $L$ such that $x_{n}>0$ for each $n \in \mathbb{N}$. Then $\left(x_{n}\right) \notin d_{0}$. On the other hand, $\left(x_{n}\right)$ can belong to $d^{0}$ (cf. Proposition 4.6 below).
4.3. Lemma. Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be disjoint sequences in $L$ such that $x_{n} \wedge y_{m}=0$ for each $m, n \in \mathbb{N}$. Let $y_{n}>0$ for each $n \in \mathbb{N}$ and $\left(y_{n}\right) \notin d^{0}$. Then $\left(y_{n}\right) \notin \alpha\left(x_{n}\right)$.

Proof. By way of contradiction, assume that $y_{n} \in \alpha\left(x_{n}\right)$. Then in view of [10], Lemma 2.3 there are $m, k \in \mathbb{N}$ and $\left(z_{n}^{1}\right), \ldots,\left(z_{n}^{k}\right) \in\left(L^{+}\right)^{\mathbb{N}}$ such that each $\left(z_{n}^{i}\right)$ $(i=1,2, \ldots, k)$ is a subsequence of a sequence belonging to $\left\{\left(x_{n}\right)\right\} \cup A_{0}$ and

$$
0<y_{n} \leqslant m\left(z_{n}^{1} \vee \ldots \vee z_{n}^{k}\right) \quad \text { for each } n \in \mathbb{N} .
$$

Since $\left(y_{n}\right) \notin A_{0}$, without loss of generality we can assume that $\left(z_{n}^{1}\right), \ldots,\left(z_{n}^{k-1}\right)$ are subsequences of $\left(x_{n}\right)$ and that $\left(z_{n}^{k}\right)$ is a subsequence of $\left(\frac{1}{n} x\right)$ for some $0<x \in L$. Thus

$$
0<y_{n} \leqslant\left(m z_{n}^{1} \vee \ldots \vee m z_{n}^{k-1}\right) \vee \frac{1}{n} x^{\prime} \quad \text { for each } n \in \mathbb{N}
$$

where $x^{\prime}=m x$. But $y_{n} \wedge\left(m z_{n}^{1} \vee \ldots \vee m z_{n}^{k-1}\right)=0$, whence $y_{n} \leqslant \frac{1}{n} x^{\prime}$ for each $n \in \mathbb{N}$. Since $\left(y_{n}\right) \notin d^{0}$, we have arrived at a contradiction.
4.4. Theorem. Assume that $L$ possesses an infinite orthogonal subset. Next, suppose that no disjoint sequence $\left(x_{n}\right)$ in $L$ with $x_{n}>0$ for each $n \in \mathbb{N}$ belongs to $d^{0}$. Then 0 -Conv $L$ is infinite.

Proof. In view of the assumption there are disjoint sequences $\left(x_{n}^{i}\right)(i \in \mathbb{N})$ in $L$ such that $x_{n}^{i}>0$ for each $n, i \in \mathbb{N}$, and $x_{n}^{i} \wedge x_{m}^{j}=0$ whenever $m, n, i, j \in \mathbb{N}$ and $i \neq j$. In view of 4.2 we have $\alpha\left(x_{n}^{i}\right) \in 0-\operatorname{Conv}_{g} L$ for each $i \in \mathbb{N}$. Let $i, j$ be distinct elements of $\mathbb{N}$. According to $4.3, \alpha\left(x_{n}^{i}\right) \neq \alpha\left(x_{n}^{j}\right)$.

For a relevant result concerning convergences in a lattice ordered group cf. [4].
4.5. Theorem. Assume that $L$ possesses no infinite orthogonal subset. Then 0 -Conv $L$ is a one-element set.

Proof. The case $L=\{0\}$ is trivial; let $L \neq\{0\}$. The system 0 - $^{-\operatorname{Conv}_{g}} L$ was described in [4], Section 6. According to [4], if $\alpha \in 0-\operatorname{Conv}_{g} L$ and $\left(\frac{1}{n} x\right) \in \alpha$ for each $0<x \in L$, then $\alpha$ is the greatest element of $0-\operatorname{Conv}_{g} L$; hence only this greatest element of $0-\operatorname{Conv}_{g} L$ can belong to 0 -Conv $L$.
4.6. Proposition. Assume that $L$ is orthogonally complete. Then each disjoint sequence in $L$ belongs to $d^{0}$.

Proof. Let $\left(x_{n}\right)$ be a disjoint sequence in $L$. Then $\left(n x_{n}\right)$ is disjoint as well. Since $L$ is orthogonally complete, there exists $x=\bigvee_{n \in \mathbb{N}} n x_{n}$ in $L$. For each $n \in \mathbb{N}$ we have $0 \leqslant x_{n} \leqslant \frac{1}{n} x$, whence $\left(x_{n}\right) \in d^{0}$.
4.7. Corollary. The assertion (A) does not hold in general if $0-\operatorname{Conv}_{g} L$ is replaced by 0-Conv $L$.
4.8. Proposition. Assume that $L \neq\{0\}$ has a strong unit and that $\left(x_{n}\right)$ is a disjoint sequence in $L$ such that $x_{n}>0$ for each $n \in \mathbb{N}$. Then there is a sequence $\left(a_{n}\right)$ with $a_{n} \in \mathbb{N}$ for each $n \in \mathbb{N}$ having the property that $\left(a_{n} x_{n}\right) \notin d^{0}$.
$\operatorname{Proof}$. Let $e$ be a strong unit in $L$. Since $L$ is archimedean, for each $n \in \mathbb{N}$ there is $a_{n} \in \mathbb{N}$ such that

$$
\begin{equation*}
a_{n} x_{n} \not \equiv e \tag{1}
\end{equation*}
$$

By way of contradiction, assume that $\left(a_{n} x_{n}\right) \in d^{0}$. Hence in view of 2.8 there is a subsequence $\left(b_{n} y_{n}\right)$ of $\left(a_{n} x_{n}\right)$ such that $\left(b_{n} y_{n}\right) \in A_{1}$. Thus there are $m \in \mathbb{N}$ and $0<x \in L$ such that $b_{n} y_{n} \leqslant \frac{1}{n} x$ for each $n \geqslant m$. Next, since $e$ is a strong unit in $L$, there is $k \in \mathbb{N}$ with $x \leqslant k e$. Thus

$$
b_{n} y_{n} \leqslant \frac{k}{n} e \quad \text { for each } n \geqslant m
$$

Hence for $n>\max \{m, k\}$ we have $b_{n} y_{n} \leqslant e$. But in view of (1) the relation $b_{n} y_{n} \not \equiv e$ is valid for each $n \in \mathbb{N}$, which is a contradiction.
4.9. Proposition. Assume that $L$ has a strong unit. Then (A) is valid with Conv $_{g} L$ replaced by Conv $L$.

Proof. This is a consequence of 4.3 and 4.8.

## 5. Direct sums of linearly ordered vector lattices

Let us denote by $\mathcal{S}$ the class of all archimedean vector lattices which can be expressed as the direct sum of linearly ordered vector lattices. Next, let $\mathcal{L}$ be the class of all linearly ordered vector lattices.

In this section it will be shown that if $L \in \mathcal{S}$, then 0 -Conv $L$ is a complete lattice which has no atom.

The case $L=\{0\}$ being trivial, we assume in the present section that $L$ is a nonzero archimedean vector lattice which can be represented as

$$
\begin{equation*}
L=\sum_{i \in I} L_{i}, \quad \text { where } L_{i} \in \mathcal{L} \text { for each } i \in I \tag{1}
\end{equation*}
$$

Also, without loss of generality we can suppose that $L_{i} \neq\{0\}$ for each $i \in I$.

### 5.1. Proposition. 0 -Conv $L$ is a complete lattice.

Proof. From (1) it follows that $L$ is completely distributive. Hence in view of $2.10,0$-Conv $L$ possesses a greatest element. Thus 0 - Conv $L$ is a complete lattice.
5.2. Lemma. Let $\left(x_{n}\right)$ be a disjoint sequence in $L$ such that $x_{n}>0$ for each $n \in \mathbb{N}$. Then $\left(x_{n}\right)$ is not upper-bounded in $L$.

Proof. This is an immediate consequence of (1).
In view of 5.2 and 2.8 we obtain
5.3. Corollary. Let $\left(x_{n}\right)$ be as in 5.2. Then $\left(x_{n}\right)$ does not belong to $d^{0}$.
5.4. Proposition. Let $I$ be finite. Then 0 -Conv $L$ is a one-element set.

Proof. From (1) we infer that $L$ has no infinite orthogonal subset. Hence in view of 4.5, 0 -Conv $L$ is a one-element set.
5.5. Proposition. Let $I$ be infinite. Then 0 -Conv $L$ is infinite.

Proof. According to (1), L possesses an infinite orthogonal subset. Then 4.4 and 5.3 yield that 0 -Conv $L$ is infinite.
5.6. Lemma. Let $\alpha \in 0$-Conv $L$. Assume that $\left(x_{n}\right) \in \alpha, x_{n}>0$ for each $n \in \mathbb{N}$, and that the sequence $\left(x_{n}\right)$ is disjoint. Then $\alpha$ fails to be an atom of $0-\operatorname{Conv} L$.

Proof. Consider the sequences $\left(x_{2 n}\right)$ and $\left(x_{2 n+1}\right)$. In view of $5.3,\left(x_{2 n}\right) \notin d^{0}$ and $\left(x_{2 n+1}\right) \notin d^{0}$. Hence by applying the notation from Section 4 we have

$$
d^{0}<\alpha\left(x_{2 n}\right) \leqslant \alpha, \quad d^{0}<\alpha\left(x_{2 n+1}\right) \leqslant \alpha
$$

Next, according to $4.3, \alpha\left(x_{2 n}\right) \neq \alpha\left(x_{2 n+1}\right)$. Hence $\alpha$ cannot be an atom of 0 -Conv $L$.

For $x \in L$ and $i \in I$, let $x(i)$ be the component of $x$ in $L_{i}$. We put $\operatorname{Sup} x=\{i \in$ $I: x(i) \neq 0\}$. If $\left(x_{n}\right)$ is a sequence in $L$, then we denote

$$
\operatorname{Sup}\left(x_{n}\right)=\bigcup_{n \in \mathbb{N}} \operatorname{Sup} x_{n}
$$

5.7. Lemma. Let $\left(x_{n}\right) \in\left(L^{+}\right)^{\mathbb{N}}$ be such that $\left\{\left(x_{n}\right)\right\}$ is regular and suppose that $\operatorname{Sup}\left(x_{n}\right)$ if finite. Then $\alpha\left(x_{n}\right)=d^{0}$.

Proof. In view of the assumption there is a finite subset $I(1)$ of $I$ such that $x_{n} \in L(1)=\sum_{i \in I(1)} L_{i}$ for each $n \in \mathbb{N}$. Then according to $4.5,\left(x_{n}\right)$ belongs to the least element of 0 -Conv $L(1)$. Next, in view of $2.8,\left(x_{n}\right)$ belongs to $d^{0}$. Hence $\alpha\left(x_{n}\right)=d^{0}$.
5.8. Lemma. Let $\left(x_{n}\right) \in\left(L^{+}\right)^{\mathbb{N}}$ be such that $\left\{\left(x_{n}\right)\right\}$ is regular and suppose that $\operatorname{Sup}\left(x_{n}\right)$ is infinite. Then $\alpha\left(x_{n}\right)$ contains a disjoint sequence with strictly positive elements.

Proof. Since $\operatorname{Sup}\left(x_{n}\right)$ is infinite and (1) holds, there is a subsequence $\left(y_{n}\right)$ of $\left(x_{n}\right)$ such that for each $n \in \mathbb{N}, \operatorname{Sup} y_{n}$ is not a subset of the set

$$
\operatorname{Sup} y_{1} \cup \ldots \cup \operatorname{Sup} y_{n-1}
$$

Therefore the sequence $\left(y_{n}\right)$ is disjoint and belongs to $\alpha\left(x_{n}\right)$.
5.9. Theorem. Let $L \in \mathcal{S}$. Then 0 -Conv $L$ has no atom.

Proof. By way of contradiction, assume that $\alpha$ is an atom of 0 -Conv $L$. Then there is $\left(x_{n}\right) \in\left(L^{+}\right)^{\mathbb{N}}$ such that $\alpha=\alpha\left(x_{n}\right)$. If $\operatorname{Sup}\left(x_{n}\right)$ is finite, then 5.7 yields a contradiction. If $\operatorname{Sup}\left(x_{n}\right)$ is infinite, then by means of 5.8 and 5.6 we arrive at a contradiction.

## References

[1] G. Birkhoff: Lattice Theory. Third edition, Providence, 1967.
[2] P. Conrad: Lattice Ordered Groups. Tulane University, 1970.
[3] M. Harminc: Sequential convergences on abelian lattice ordered groups. Convergence Structures, Proc. Conf. Bechyně 1984, Mathematical Research 24 (1985), 153-158.
[4] M. Harminc: The cardinality of the system of all sequential convergences on an abelian lattice ordered group. Czechoslovak Math. J. 37 (1987), 533-546.
[5] M. Harminc: Sequential convergences on lattice ordered groups. Czechoslovak Math. J. 39 (1989), 232-238.
[6] M. Harminc, J. Jakubik: Maximal convergences and minimal proper convergences in €-groups. Czechoslovak Math. J. 39 (1989), 631-640.
[7] J. Jakubik: Convergences and complete distributivity of lattice ordered groups. Math. Slovaca 38 (1988), 269-272.
[8] J. Jakubik: On summability in convergence $\ell$-groups. Časopis Pěst. Mat. 113 (1988), 286-292.
[9] J. Jakubik: On some types of kernels of a convergence $\ell$-group. Czechoslovak Math. J. 39 (1989), 239-247.
[10] J. Jakubik: Lattice ordered groups having a largest convergence. Czechoslovak Math. J. 39 (1989), 717-729.
[11] J. Jakubik: Sequential convergences in Boolean algebras. Czechoslovak Math. J. 38 (1988), 520-530.
[12] J. Jakubik: Convergences and higher degrees of distributivity in lattice ordered groups and Boolean algebras. Czechoslovak Math. J. 40 (1990), 453-458.
[13] L. V. Kantorovich, B. Z. Vulikh, A. G. Pinsker: Functional Analysis in Semiordered Spaces. Moskva, 1950. (In Russian.)
[14] S. Leader: Sequential convergence in lattice groups. In: Problems in analysis, Sympos. in Honor of S. Bochner. Princeton Univ. Press, 1970, pp. 273-290.
[15] L. A. L'usternik, V. I. Sobolev: Elements of Functional Analysis. Moskva, 1951. (In Russian.)
[16] W. A. J. Luxemburg, A. C. Zaanen: Riesz Spaces, Vol. 1. Amsterdam-London, 1971.
[17] P. Mikusiński: Problems posed at the conference. Proc. Conf. on Convergence, Szczyrk 1979. Katowice, 1980, pp. 110-112.
[18] J. Novák: On convergence groups. Czechoslovak Math. J. 20 (1970), 357-374.
[19] B. Z. Vulikh: Introduction to the Theory of Semiordered Spaces. Moskva, 1961. (In Russian.)

Author's address: Ján Jakubik, Matematický ústav SAV, Grešákova 6, 04001 Košice, Slovakia, e-mail: musavke@linux1.saske.sk.

