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Abstract. In the present paper we deal with sequential convergences on a vector lattice
L which are compatible with the structure of L.
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In this paper we will investigate the system ConvL of all sequential convergences
in a vector lattice L. The analogously defined notions of sequential convergences in
a lattice ordered group or in a Boolean algebra were studied in [3]–[12].

The following results will be established.

The set ConvL is nonempty if and only if L is archimedean. Let L be archime-
dean. Then ConvL has the least element (it need not have, in general, a greatest
element). Each interval of ConvL is a Brouwerian lattice. If L is (ℵ0, 2)-distributive,
then ConvL is a complete lattice. There is a convex vector sublattice L1 of L such
that (i) ConvL1 is a complete lattice; (ii) if L2 is a convex vector sublattice of L such
that ConvL2 is a complete lattice, then L2 ⊆ L1. Let Xi (i = 1, 2) be archimedean
vector lattices; if X1 and X2 are isomorphic as lattices and if ConvX1 is a complete
lattice, then ConvX2 is a complete lattice as well. If L is a direct sum of linearly
ordered vector lattices, then ConvL is a complete lattice and has no atom. Some
further results (concerning orthogonal sequences and strong units) are also proved.
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1. Preliminaries

The notion of a vector lattice is applied here in the same sense as in [1], Chap. XV.
(In [16], the term “Riesz space” is used; in [13] vector lattices are called K-lineals.)

Let L be a vector lattice and let � be the set of all positive integers. The direct
product

∏
n∈�

Ln, where Ln = L for each n ∈ �, will be denoted by L�. The elements

of L� are denoted, e.g., as (xn)n∈�, or simply (xn); instead of n, sometimes other
indices will be applied. (xn) is said to be a sequence in L. If x ∈ L and xn = x for
each n ∈ �, then we denote (xn) = constx. The notion of a subsequence has the
usual meaning.

If α ⊆ L� × L, then instead of ((xn), x) ∈ α we also write xn →α x.

If the partial order (as defined in L) is not taken into account, then we obtain a
linear space which will be denoted by �(L); similarly, if we disregard the multiplica-
tion of elements of L by reals, then we get a lattice ordered group; we denote it by
G(L).

The set of all reals will be denoted by �. The symbol 0 denotes both the real
number zero and the neutral element of L; the meaning of this symbol will be clear
from the context. For (an) ∈ �� and a ∈ � the symbol an → a has the usual
meaning.

1.1. Definition. (Cf., e.g., [15].) A nonempty subset α of L� × L will be said
to be a convergence in �(L) if it satisfies the following conditions:

(i) If xn →α x and if (yn) is a subsequence of (xn), then yn →α x.
(ii) If xn →α x and xn →α y, then x = y.
(iii) If xn →α x and yn →α y, then xn + yn →α x+ y.
(iv) If xn →α x and a ∈ �, then axn →α ax.
(v) If x ∈ L, (an) ∈ �� , a ∈ � and an → a, then anx →α ax.

The system of all convergences in �(L) will be denoted by Conv� L.

1.2. Definition. (Cf. [3].) A nonempty subset α of L� × L will be said to be
a convergence in G(L) if it satisfies the conditions (i), (ii), (iii) from 1.1, and if also
the following conditions are fulfilled:

(i1) If ((xn), x) ∈ L�×L and if each subsequence (yn) of (xn) has a subsequence
(zn) such that zn →α x, then xn →α x.

(ii1) If x ∈ L and (xn) = constx, then xn →α x.
(iii1) If xn →α x, then −xn →α −x.
(iv1) If xn →α x and yn →α y, then xn ∧ yn →α x ∧ y and xn ∨ yn →α x ∨ y.
(v1) If xn →α x, yn →α x, (zn) ∈ L� and xn � zn � yn for each n ∈ �, then

zn →α x.
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The system of all convergences in G(L) will be denoted by Convg L.
Let us remark that in the paper [14] the Urysohn property (i1) (which will be

systematically applied below) was not assumed to be valid when investigating a
sequential convergence in a lattice ordered group.
We denote by d the system of all elements ((xn), x) ∈ L�×L having the property

that there is m ∈ � such that xn = x for each n � m. It is easy to verify that
d belongs to Convg L, hence Convg L is nonempty. The system Convg L will be
considered to be partially ordered by inclusion. It is obvious that d is the least
element of Convg L.
Let us remark that the conditions (i), (ii), (iii), (i1), (ii1) and (iii1) define a con-

vergence group in the sense of [18] or a FLUSH convergence on the corresponding
group (cf. [17]).

1.3. Definition. A nonempty subset α of L�×L will be said to be a convergence
in L if α ∈ Conv� L ∩Convg L. The system of all convergences in L will be denoted
by ConvL. If ConvL �= ∅, then the set ConvL will be partially ordered by inclusion.
The vector lattice L is said to be archimedean if, whenever x, y ∈ L and 0 � nx � y

for each n ∈ �, then x = 0.

1.4. Lemma. Let L be non-archimedean. Then ConvL = ∅.
�����. There exist x, y ∈ L such that 0 < nx � y for each n ∈ �. By way of

contradiction, assume that α ∈ ConvL. Because 1n → 0 in �, in view of 1.1, (v) we
infer that 1ny →α 0. Since 0 < x � 1

ny for each n ∈ �, according to (ii1) and (v1)
of 1.2 the relation xn →α x is valid, where (xn) = constx. Thus in view of (ii1) and
(ii) we have arrived at a contradiction. �

1.5. Lemma. Let α ∈ Convg L. Then α satisfies the condition (iv) from 1.1.

�����. Let xn →α x and let a ∈ �. There is m ∈ � with |a| � m. We have

xn →α x ⇒ |xn − x| →α 0,

whence in view of (iii) and by induction we get m|xn − x| →α 0. Since

0 � |axn − ax| = |a| |xn − x| � m|xn − x|,
according to (v1) we obtain |axn − ax| →α 0, thus axn →α ax. �

1.6. Corollary. Let α ∈ Convg L. Then α ∈ ConvL if and only if α satisfies
the condition (v) from 1.1.

If L �= {0}, then the element d of Convg L does not satisfy the condition (v) of
1.1. Hence if L �= {0}, then Convg L fails to be a subset of ConvL.
The positive cone {x ∈ L : x � 0} of L will be denoted by L+. Under the inherited

partial order and the operation +, L+ is a lattice ordered semigroup.
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1.7. Definition. A convex subsemigroup β of (L+)� will be said to be a
0-convergence in G(L) if the following conditions are satisfied:

(I) If (gn) ∈ β, then each subsequence of (gn) belongs to β.
(II) If (gn) ∈ (L+)� and if each subsequence of (gn) has a subsequence belonging

to (β), then (gn) belongs to β.
(III) Let x ∈ L+. Then constx belongs to β if and only if x = 0.

The system of all 0-convergences in G(L) will be denoted by 0-Convg L. Let d0
be the set of all (xn) ∈ (L+)� such that ((xn), 0) ∈ d. Then d0 ∈ 0-Convg L. Hence
0-Convg G �= ∅. The system 0-Convg L is partially ordered by inclusion.
Let α ∈ Convg L. Put

(1) ϕ1(α) = {(|xn − x|) : xn →α x}.

Conversely, let β ∈ 0-Convg L. Denote

(2) ϕ2(β) = {((xn), x) : (|xn − x|) ∈ β}.

1.8. Lemma. (Cf. [4], Lemma 1.4 and Theorem 1.6.) ϕ1 and ϕ2 are inverse
isomorphisms of Convg L onto 0-Convg L, or of 0-Convg L onto Convg L, respectively.

1.9. Definition. A nonempty subset β of (L+)� will be said to be a
0-convergence in L if β ∈ 0-Convg L and if, moreover, the following condition
is satisfied:

(IV) If x ∈ L and an → 0 in �, then (anx) ∈ β.

Let 0-ConvL be the set of all 0-convergences in L. If this set is nonempty, then it
will be considered to be partially ordered by inclusion.
Now let α and β run over the set ConvL or 0-ConvL, respectively, and let ϕ1 and

ϕ2 be defined as in (1) and (2). Then by a routine proof and by using 1.5 we obtain
the following result which is analogous to 1.8:

1.10. Lemma. (i) ConvL = ∅ ⇔ 0-ConvL = ∅. (ii) If ConvL �= ∅, then ϕ1 and
ϕ2 are inverse isomorphisms of ConvL onto 0-ConvL, or of 0-ConvL onto ConvL,
respectively.

As we remarked in the introduction, we are interested in studying the partially
ordered system ConvL. Now, in view of 1.10, it suffices to investigate the sys-
tem 0-ConvL. Next, according to 1.4, it suffices to consider the case when L is
archimedean.
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2. Regular sets

In what follows we assume that L is an archimedean vector lattice.
Let ∅ �= A ⊆ (L+)�. The set A will be said to be regular with respect to G(L) (or

L, respectively) if there is α ∈ 0-Convg L (or α ∈ 0-ConvL) such that A ⊆ α.

2.1. Lemma. Let ∅ �= A ⊆ (L+)�. Then the following conditions are equivalent:
(i) A fails to be regular with respect to G(L).
(ii) There exist 0 < z ∈ L, positive integers m, k, elements (y1n), . . . , (y

k
n) of A

and subsequences (x1n) of (y
1
n), . . . , (x

k
n) of (y

k
n) such that

z � m(x1n ∨ x2n ∨ . . . ∨ xk
n) for each n ∈ � .

�����. The implication (ii)⇒(i) is obvious. Let (i) be valid. In view of the
results of [4] (cf. also [10], Proposition 2.1) there exist 0 < z ∈ L, positive integers
m1, k, elements (y1n), . . . , (y

k
n) of A and subsequences (x1n) of (y

1
n), . . . , (x

k
n) of (y

k
n)

such that
z � m1(x1n + x2n + . . .+ xk

n) for each n ∈ � .

Hence according to Lemma 2.4, [10] there is m ∈ � with

z � m(x1n ∨ x2n ∨ . . . ∨ xk
n) for each n ∈ � .

�

Let A0 be the set of all sequences (xn) in L having the property that there are
0 � x ∈ L and (an) ∈ (�+ )� such that an → 0 in � and xn = anx for each n ∈ �.

2.2. Lemma. The set A0 is regular with respect to G(L) and also with respect
to L.

�����. By way of contradiction, assume that A0 fails to be regular with respect
to G(L). Then the condition (ii) from 2.1. holds for A0.
For each i ∈ {1, 2, . . . , k} there are 0 < xi ∈ L and (ai

n) ∈ (�+ )� such that ai
n → 0

in � and
xi

n = ai
nxi for each n ∈ � .

For n ∈ � we put an = max{a1n, a2n, . . . , ak
n}. Then an → 0 in � and

0 < z � m(x1n ∨ x2n ∨ . . . ∨ xk
n) = m(a1nx1 ∨ . . . ∨ ak

nxk)

� man(x1 ∨ . . . ∨ xk) for each n ∈ � .
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Next, for each n ∈ � there is n(1) ∈ � such that man(1) < 1
n , hence

0 < z < 1
n (x

1 ∨ . . . ∨ xk) for each n ∈ � .

Thus nz < x1∨. . .∨xk for each n ∈ �, which is impossible, because L is archimedean.
Thus there is α ∈ 0-Convg L with A0 ⊆ α. Then α fulfils the condition (IV), hence
α ∈ 0-ConvL. �

2.3. Theorem. Let L be an archimedean vector lattice. Then ConvL �= ∅.
�����. In view of 2.2 there is α ∈ 0-ConvL with A0 ⊆ α. Hence 0-ConvL �= ∅.

Thus according to 1.10 we have ConvL �= ∅. �

2.4. Lemma. Let α ∈ 0-ConvL. Then A0 ⊆ α.

�����. This follows immediately from the fact that α satisfies the condition
(IV) of 1.9. �

2.5. Corollary. Let I be a nonempty set and for each i ∈ I let αi ∈ 0-ConvL.
Then ∅ �= ⋂

i∈I

αi ∈ 0-ConvL.

Let us denote by d0 the intersection of all αi ∈ 0-ConvL with A0 ⊆ αi (such αi

do exist in view of 2.2). According to 2.4 and 2.5 we obtain:

2.6. Corollary. d0 is the least element of 0-ConvL. If α ∈ 0-ConvL, then the
interval [d0, α] of the partially ordered set 0-ConvL is a complete lattice.

2.7. Proposition. d0 = A0.

�����. In view of the definition of d0 we have A0 ⊆ d0. Let (zn) ∈ d0. Then
in view of [10], Proposition 2.1, and according to 2.4 there are m, k ∈ �, elements
(y1n), . . . , (y

k
n) of A0 and subsequences (x

1
n) of (y

1
n), . . . , (x

k
n) of (y

k
n) such that

zn � m(x1n ∨ . . . ∨ xk
n).

For each i ∈ {1, 2, . . . , k} there are xi ∈ L+ and (ai
n) ∈ (�+ )� such that ai

n → 0 in �
and xi

n = ai
nxi for each n ∈ �. Put an = max{a1n, . . . , ak

n}. Hence an → 0 in � and

zn � an(mx1 ∨ . . . ∨ mxn).

Thus (zn) ∈ A0 and therefore d0 ⊆ A0. �
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For each X ⊆ (L+)� let us denote by X∗ the set of all (xn) ∈ (L+)� such that
each subsequence of (xn) has a subsequence which belongs to X .
Let A1 be the set of all (xn) ∈ (L+)� which have the following property: there

exist 0 � x ∈ L and m ∈ � such that xn � 1
nx for each n � m.

Another constructive characterization of d0 is given by the following lemma.

2.8. Lemma. d0 = A∗
1.

�����. Since A1 ⊆ A0, we clearly have A∗
1 ⊆ d0. Let (xn) ∈ d0. In view of 2.7

there are x ∈ L+ and (an) ∈ (�+ )� such that xn = anx for each n ∈ �. Let (yn) be
a subsequence of (xn) and let (bn) be the corresponding subsequence of (an); hence
yn = bnx for each n ∈ �. There exists a subsequence (cn) of (bn) such that cn � 1

n

for each n ∈ �. Put zn = cnx for each n ∈ �. Then (cnx) is a subsequence of (yn)
and (cnx) ∈ A1. Hence (xn) ∈ A∗

1 and thus d0 ⊆ A∗
1. �

2.9. Proposition. There exists an archimedean vector lattice L such that
0-ConvL has no greatest element.

�����. It suffices to apply an analogous example as in [3], Section 5 (with
the distinction that the real functions under consideration in the example are not
assumed to be integer valued). �

2.10. Theorem. Let L be an archimedean vector lattice. Suppose that L is
(ℵ0, 2)-distributive. Then 0-ConvL possesses a greatest element.

�����. This is a consequence of 2.6 and of the fact that 0-Convg L has a
greatest element (cf. [12]). �

Lemma 1.10 and Lemma 2.6 yield that each interval of the partially ordered set
0-ConvL is, at the same time, an interval of 0-Convg L. Hence in view of [5], Theorem
2.5 we obtain:

2.11. Proposition. Each interval of 0-ConvL is a Brouwerian lattice.

3. The sets of the form α ∪ A0

Let ∅ �= α ⊆ (L+)� be such that α is regular with respect to G(L). We shall
investigate the problem whether the set α ∪ A0 is regular with respect to L.
First we shall deal with the case when L is a projectable vector lattice. (Projectable

lattice ordered groups and vector lattices were studied by several authors; cf. e.g.,
[2] and [16].)
For the sake of completeness we recall the following notions.
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Let L be a vector lattice and X ⊆ L. We put

Xd = {y ∈ L : |y| ∧ |x| = 0 for each x ∈ X}.

Then Xd is said to be a polar of L. The vector lattice L is called projectable if for
each x ∈ L, the set {x}d is a direct factor of L.
An element e ∈ L is called a strong unit of L if for each x ∈ L there is n ∈ � such

that x � ne.
Since each strong unit of an archimedean vector lattice L1 is, at the same time, a

strong unit of the Dedekind completion of L1, we have

3.1. Proposition. (Cf., e.g., [19], Theorem V.3.1.) Let L1 be an archimedean
vector lattice having a strong unit. Then there is a set I such that there exists an
isomorphism of L1 into the vector lattice

∏
i∈I

Ri, where Ri = � for each i ∈ I.

3.2. Lemma. Let α ∈ Convg L. Then the following conditions are equivalent:

(i) The set α ∪ A0 fails to be regular with respect to G(L).
(ii) There are t, z ∈ L and (zn) ∈ α such that 0 < z � t and

z = zn ∨ (z ∧ 1
n t) for each n ∈ � .

�����. According to 2.1, (ii)⇒(i). Suppose that (i) is valid. Thus in view
of 2.7 and 2.8, the set α ∪ A1 fails to be regular with respect to G(L). Hence the
condition (ii) from 2.1 holds, where A = α ∪ A1.
If (x1n), . . . , (x

k
n) ∈ α, then α would not be regular with respect to G(L), which is

a contradiction. If (x1n), . . . , (x
k
n) ∈ A1, then we obtain a contradiction with respect

to 2.2. Hence without loss of generality we can suppose that there is k(1) ∈ � with
1 < k(1) < k such that

(x1n), . . . , (x
k(1)
n ) ∈ α and (xk(1)+1

n ), . . . , (xk
n) ∈ A1.

Put zn = m(x1n ∨ . . . ∨ x
k(1)
n ) for each n ∈ �. Then (zn) ∈ α.

For each j ∈ {k(1) + 1, . . . , k} there are 0 < yj ∈ L and (aj
n) ∈ (�+ )� such that

aj
n → 0 in � and yj

n = aj
nyj for each n ∈ �. Denote

an = max{ak(1)+1
n , . . . , ak

n}, t = yk(1)+1 ∨ . . . ∨ yk.

There is a subsequence (n(1)) of the sequence (n) such that

man(1) < 1
n for each n ∈ � .
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Hence we have

m(xk(1)+1
n(1) ∨ . . . ∨ xk

n(1)) � 1
n t for each n ∈ � .

Therefore

0 < z � zn(1) ∨ 1
n t for each n ∈ � .

Becuase (zn(1)) ∈ α, it suffices to write zn instead of zn(1). Thus

(1) z = z ∧ (zn ∨ 1
n t) = (z ∧ zn) ∨ (z ∧ 1

n t) for each n ∈ � .

If z ∧ t = 0, then z ∧ 1
n t = 0 for each n ∈ �, whence z � zn for each n ∈ � and

thus α fails to be regular, which is a contradiction. Therefore z ∧ t > 0 and then,
without loss of generality, we can take z ∧ t instead of z; hence we have z � t. Next,
(z ∧ zn) ∈ α, thus without loss of generality we can take (z ∧ zn) instead of (zn).
Hence in view of (1) we infer that (ii) is valid. �

3.3. Proposition. Assume that L is projectable. Let α ∈ 0-Convg L. Then
α ∪ A0 is regular with respect to L.

�����. In view of 2.7 it suffices to verify that α ∪A0 is regular with respect to
G(L).
By way of contradiction, suppose that α ∪ A0 fails to be regular with respect to

G(L). Then the condition (ii) from 3.2 is valid. There exists m ∈ � such that
z � 1

m t. Thus

(1′) z0 = (z − 1
m t)+ > 0.

Let us denote by P the polar of L generated by z0; i.e., P = {z0}dd. Since L is
projectable, P is a direct factor in L. For each g ∈ L let g(P ) be the component of
g in P . In view of the condition (ii) of 3.2 we have

(2) z(P ) = zn(P ) ∨ (z(P ) ∧ 1
n t(P )) for each n ∈ � .

If z(P ) = 0, then z0 = z0(P ) = 0, which is a contradiction. Thus z(P ) > 0. Next,
from z � t we infer that z(P ) � t(P ).
Let L1 be the convex �-subgroup of G(P ) generated by the element t(P ). Then

t(P ) is a strong unit of L1 and L1 is a linear subspace of L. Let I and ϕ be as in 3.2.
For each i ∈ I we have ϕ(z(P ))(i) � 0. According to the definition of P we obtain

(z − 1
m t)− ∈ P d
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whence (z − 1
m t)(P ) = z0(P ). In view of (1′),

(3) 0 < z0 = z0(P ) = z(P )− 1
m t(P ),

hence the set I1 = {i ∈ I : ϕ(z(P ))(i) > 0} is nonempty.
Let i ∈ I1 and n > m. According to (3),

(4) ϕ(z(P ))(i) � 1
nϕ(t(P ))(i).

Also, in view of (2),

ϕ(z(P ))(i) = ϕ(zn(P ))(i) ∨ (ϕ(z(P ))(i) ∧ 1
nϕ(t(P ))(i))

= max{ϕ(zn(P ))(i),min{ϕ(z(P ))(i), 1nϕ(t(P ))(i))}}.

Thus according to (4),

ϕ(z(P ))(i) = max{ϕ(zn(P )(i), 1nϕ(t(P ))(i)}.

By applying (4) again we get

ϕ(z(P ))(i) = ϕ(zn(P ))(i).

Therefore ϕ(z(P ))(i) = ϕ(zn(P ))(i) for each i ∈ I. Hence

(5) 0 < z(P ) = zn(P ) for each n > m.

Since zn(P ) � zn for each n ∈ � and since (zn) is regular with respect to L, we infer
that (zn(P )) is regular with respect to L. Thus in view of (5) we have arrived at a
contradiction. �

Now let us drop the assumption that L is projectable. We denote by L′ the
Dedekind completion of L. It is well-known that L′ is projectable.

3.4. Lemma. Let ∅ �= α ⊆ (L+)�. Assume that α is regular with respect to
G(L). Then α is regular with respect to G(L′).

�����. By way of contradiction, assume that α fails to be regular with respect
to G(L′). Then the condition (ii) from 2.1 holds (with the distinction that z ∈ L′ and
A is replaced by α). There exists 0 < z1 ∈ L with z1 � z. But by applying 2.1 again
we infer that α fails to be regular with respect to L, which is a contradiction. �

3.5. Lemma. Let ∅ �= α ⊆ (L+)�. Assume that α is regular with respect to
G(L). Then α is regular with respect to G(L).

�����. This is an immediate consequence of 2.1. �
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3.6. Theorem. Let ∅ �= α ⊆ (L+)�. Assume that α is regular with respect to
G(L). Then α ∪ A0 is regular with respect to G(L) and with respect to L.

�����. In view of 3.4, α is regular with respect to G(L′). Because G(L′) is
projectable, according to 3.3 we obtain that α∪A0 is regular with respect to G(L′).
Thus 3.5 yields that α∪A0 is regular with respect to G(L). Now it follows from 2.7
that α ∪ A0 is regular with respect to L. �

3.7. Corollary. Let α ∈ 0-Convg L. Then α ∨ d0 does exist in 0-Convg L and
in 0-ConvL.

3.8. Proposition. The following conditions are equivalent:

(i) 0-ConvL has the greatest element.
(ii) 0-Convg L has the greatest element.

�����. We obviously have (ii)⇒(i). Let (i) hold and let β be the greatest
element of 0-ConvL. Let α ∈ 0-Convg L. According to 3.7, the element α ∨ d0

does exist in 0-ConvL. Thus α � α ∨ d0 � β. Hence β is the greatest element of
0-Convg L. �

3.9. Corollary. Let 0-ConvL have the greatest element. Then 0-ConvL is a
complete lattice and 0-ConvL is a principal dual ideal of 0-Convg L generated by
the element d0.

Let us remark that if L1 is a convex �-subgroup ofG(L), then it is a linear subspace
of L.

3.10. Theorem. There exists a convex �-subgroup L1 of G(L) such that the
following conditions are satisfied:

(i) ConvL1 is a complete lattice.
(ii) If L2 is a convex �-subgroup of G(L) such that ConvL2 is a complete lattice,
then L2 � L1.

�����. This follows from 3.8 and from [10], Theorem 5.5. �

Let L1 be a vector lattice. If neither the operation + nor the multiplication of
elements of L1 by reals is taken into account, then we obtain a lattice which will be
denoted by L01.

3.11. Theorem. Let Li (i = 1, 2) be archimedean vector lattices. Assume that
the lattices L01 and L02 are isomorphic and that ConvL1 possesses a greatest element.
Then ConvL2 possesses a greatest element as well.
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�����. According to 1.10, 0-ConvL1 possesses a greatest element. Then in
view of 3.8, 0-Convg L has a greatest element. Since L01 is isomorphic to L02, by
applying [10], Theorem 3.5 we conclude that 0-Convg L2 has a greatest element as
well. Now according to 3.8 and 1.10, ConvL2 possesses a greatest element. �

4. Disjoint sequences

A sequence (xn) in L will be said to be disjoint (or orthogonal) if xn ∧ xm = 0
whenever n and m are distinct positive integers.
The following assertion follows from the results proved in [4].

(A) Assume that L possesses a disjoint sequence all members of which are strictly
positive. Then there exist infinitely many elements αi of 0-Convg L such that
each αi is generated by a disjoint sequence.

4.1. Lemma. (Cf. [4].) Let (xn) be a disjoint sequence in L. Then the set (xn)
is regular with respect to G(L).

4.2. Lemma. Let (xn) be a disjoint sequence in L. Then the set {(xn)}∪A0 is
regular with respect to G(L) and with respect to L.

�����. This is a consequence of 4.1 and 3.6. �

If (xn) ∈ (L+)� and the set {(xn)} is regular in G(L) then the least element α of
0-Convg L satisfying the relation {(xn)} ∪ A0 ⊆ α will be denoted by α(xn).
Let (xn) be a disjoint sequence in L such that xn > 0 for each n ∈ �. Then

(xn) /∈ d0. On the other hand, (xn) can belong to d0 (cf. Proposition 4.6 below).

4.3. Lemma. Let (xn) and (yn) be disjoint sequences in L such that xn∧ym = 0
for each m, n ∈ �. Let yn > 0 for each n ∈ � and (yn) /∈ d0. Then (yn) /∈ α(xn).

�����. By way of contradiction, assume that yn ∈ α(xn). Then in view of
[10], Lemma 2.3 there are m, k ∈ � and (z1n), . . . , (zk

n) ∈ (L+)� such that each (zi
n)

(i = 1, 2, . . . , k) is a subsequence of a sequence belonging to {(xn)} ∪ A0 and

0 < yn � m(z1n ∨ . . . ∨ zk
n) for each n ∈ � .

Since (yn) /∈ A0, without loss of generality we can assume that (z1n), . . . , (z
k−1
n ) are

subsequences of (xn) and that (zk
n) is a subsequence of (

1
nx) for some 0 < x ∈ L.

Thus
0 < yn � (mz1n ∨ . . . ∨ mzk−1

n ) ∨ 1
nx′ for each n ∈ � ,

where x′ = mx. But yn ∧ (mz1n ∨ . . .∨mzk−1
n ) = 0, whence yn � 1

nx′ for each n ∈ �.
Since (yn) /∈ d0, we have arrived at a contradiction. �
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4.4. Theorem. Assume that L possesses an infinite orthogonal subset. Next,
suppose that no disjoint sequence (xn) in L with xn > 0 for each n ∈ � belongs to
d0. Then 0-ConvL is infinite.

�����. In view of the assumption there are disjoint sequences (xi
n) (i ∈ �) in

L such that xi
n > 0 for each n, i ∈ �, and xi

n ∧ xj
m = 0 whenever m, n, i, j ∈ � and

i �= j. In view of 4.2 we have α(xi
n) ∈ 0-Convg L for each i ∈ �. Let i, j be distinct

elements of �. According to 4.3, α(xi
n) �= α(xj

n). �

For a relevant result concerning convergences in a lattice ordered group cf. [4].

4.5. Theorem. Assume that L possesses no infinite orthogonal subset. Then
0-ConvL is a one-element set.

�����. The case L = {0} is trivial; let L �= {0}. The system 0-Convg L was
described in [4], Section 6. According to [4], if α ∈ 0-Convg L and ( 1nx) ∈ α for each
0 < x ∈ L, then α is the greatest element of 0-Convg L; hence only this greatest
element of 0-Convg L can belong to 0-ConvL. �

4.6. Proposition. Assume that L is orthogonally complete. Then each disjoint
sequence in L belongs to d0.

�����. Let (xn) be a disjoint sequence in L. Then (nxn) is disjoint as well.
Since L is orthogonally complete, there exists x =

∨
n∈�

nxn in L. For each n ∈ � we
have 0 � xn � 1

nx, whence (xn) ∈ d0. �

4.7. Corollary. The assertion (A) does not hold in general if 0-Convg L is
replaced by 0-ConvL.

4.8. Proposition. Assume that L �= {0} has a strong unit and that (xn) is a
disjoint sequence in L such that xn > 0 for each n ∈ �. Then there is a sequence
(an) with an ∈ � for each n ∈ � having the property that (anxn) /∈ d0.

�����. Let e be a strong unit in L. Since L is archimedean, for each n ∈ �
there is an ∈ � such that

(1) anxn � e.

By way of contradiction, assume that (anxn) ∈ d0. Hence in view of 2.8 there is a
subsequence (bnyn) of (anxn) such that (bnyn) ∈ A1. Thus there are m ∈ � and
0 < x ∈ L such that bnyn � 1

nx for each n � m. Next, since e is a strong unit in L,
there is k ∈ � with x � ke. Thus

bnyn � k

n
e for each n � m.
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Hence for n > max{m, k} we have bnyn � e. But in view of (1) the relation bnyn � e

is valid for each n ∈ �, which is a contradiction. �

4.9. Proposition. Assume that L has a strong unit. Then (A) is valid with
Convg L replaced by ConvL.

�����. This is a consequence of 4.3 and 4.8. �

5. Direct sums of linearly ordered vector lattices

Let us denote by S the class of all archimedean vector lattices which can be
expressed as the direct sum of linearly ordered vector lattices. Next, let L be the
class of all linearly ordered vector lattices.
In this section it will be shown that if L ∈ S, then 0-ConvL is a complete lattice

which has no atom.
The case L = {0} being trivial, we assume in the present section that L is a

nonzero archimedean vector lattice which can be represented as

(1) L =
∑

i∈I

Li, where Li ∈ L for each i ∈ I.

Also, without loss of generality we can suppose that Li �= {0} for each i ∈ I.

5.1. Proposition. 0-ConvL is a complete lattice.

�����. From (1) it follows that L is completely distributive. Hence in view of
2.10, 0-ConvL possesses a greatest element. Thus 0-ConvL is a complete lattice. �

5.2. Lemma. Let (xn) be a disjoint sequence in L such that xn > 0 for each
n ∈ �. Then (xn) is not upper-bounded in L.

�����. This is an immediate consequence of (1). �

In view of 5.2 and 2.8 we obtain

5.3. Corollary. Let (xn) be as in 5.2. Then (xn) does not belong to d0.

5.4. Proposition. Let I be finite. Then 0-ConvL is a one-element set.

�����. From (1) we infer that L has no infinite orthogonal subset. Hence in
view of 4.5, 0-ConvL is a one-element set. �
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5.5. Proposition. Let I be infinite. Then 0-ConvL is infinite.

�����. According to (1), L possesses an infinite orthogonal subset. Then 4.4
and 5.3 yield that 0-ConvL is infinite. �

5.6. Lemma. Let α ∈ 0-ConvL. Assume that (xn) ∈ α, xn > 0 for each n ∈ �,
and that the sequence (xn) is disjoint. Then α fails to be an atom of 0-ConvL.

�����. Consider the sequences (x2n) and (x2n+1). In view of 5.3, (x2n) /∈ d0

and (x2n+1) /∈ d0. Hence by applying the notation from Section 4 we have

d0 < α(x2n) � α, d0 < α(x2n+1) � α.

Next, according to 4.3, α(x2n) �= α(x2n+1). Hence α cannot be an atom of 0-ConvL.
�

For x ∈ L and i ∈ I, let x(i) be the component of x in Li. We put Supx = {i ∈
I : x(i) �= 0}. If (xn) is a sequence in L, then we denote

Sup(xn) =
⋃

n∈�
Supxn.

5.7. Lemma. Let (xn) ∈ (L+)� be such that {(xn)} is regular and suppose
that Sup(xn) if finite. Then α(xn) = d0.

�����. In view of the assumption there is a finite subset I(1) of I such that
xn ∈ L(1) =

∑
i∈I(1)

Li for each n ∈ �. Then according to 4.5, (xn) belongs to the least

element of 0-ConvL(1). Next, in view of 2.8, (xn) belongs to d0. Hence α(xn) = d0.
�

5.8. Lemma. Let (xn) ∈ (L+)� be such that {(xn)} is regular and suppose that
Sup(xn) is infinite. Then α(xn) contains a disjoint sequence with strictly positive
elements.

�����. Since Sup(xn) is infinite and (1) holds, there is a subsequence (yn) of
(xn) such that for each n ∈ �, Sup yn is not a subset of the set

Sup y1 ∪ . . . ∪ Sup yn−1.

Therefore the sequence (yn) is disjoint and belongs to α(xn). �

5.9. Theorem. Let L ∈ S. Then 0-ConvL has no atom.

�����. By way of contradiction, assume that α is an atom of 0-ConvL. Then
there is (xn) ∈ (L+)� such that α = α(xn). If Sup(xn) is finite, then 5.7 yields
a contradiction. If Sup(xn) is infinite, then by means of 5.8 and 5.6 we arrive at
a contradiction. �
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