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Summary. We prove the existence of the least positive eigenvalue with a corresponding
nonnegative eigenfunction of the quasilinear eigenvalue problem

—div(a(z,u)| v ulP "2 vu) = \b(z, w|ulP"2u  in Q,
u=0 on 012,

where Q is a bounded domain, p > 1 is a real number and a(z, u), b(z, u) satisfy appropriate
growth conditions. Moreover, the coefficient a(z, u) contains a degeneration or a singularity.
We work in a suitable weighted Sobolev space and prove the boundedness of the eigenfunc-
tion in L°°(2). The main tool is the investigation of the associated homogeneous eigenvalue
problem and an application of the Schauder fixed point theorem.

Keywords: weighted Sobolev space, degenerated quasilinear partial differential equations,
weak solutions, eigenvalue problems, Schauder fixed point theorem, boundedness of the
solution

MSC 1991: 35J20, 35J70, 35B35, 35B45

1. INTRODUCTION

The aim of this paper is to prove the existence of the least positive eigenvalue A and
the corresponding nonnegative eigenfunction u of the nonhomogeneous degenerated
quasilinear eigenvalue problem

—div(a(z,u)| VulP 2 Vu) = \b(z,u)|u|P"*u in Q,

1.1
1) u=20 on 011,
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where Q is a bounded domain, p > 1 is a real number and a(z, s),b(z,s): QxR — R
are real functions satisfying appropriate growth conditions (see Section 4). Moreover,
the function a(z,s) may contain a degeneration or a singularity. We work in a
suitable weighted Sobolev space Wol’p(w, Q) with the weight function w > 0 a.e. in Q
(see Section 2) and prove that for a given R > 0 there exists the least A > 0 and a
corresponding u € Wy'P (w, Q) N L®(Q) such that u > 0 a.e. in €, llull v (@) = R and
the equation in (1.1) is fulfilled in the weak sense (see Theorem 4.10). In fact, a more
general result (dealing with more general growth conditions imposed on b(z, s)) is
proved in Theorem 4.5.

This paper generalizes the result of Boccardo [5] and Drabek, Kudera [6] (where
nondegenerated uniformly elliptic quasilinear operators were considered) and com-
pletes the papers on eigenvalues of p-Laplacian published by Anane [2], Barles [3],
Bhattacharya [4], Garcia Azorero, Peral Alonso [9], Otani, Teshima [14] and oth-
ers (where nondegenerated and homogeneous operators were considered). Let us
note that neither global results for nonlinear eigenvalue problems, nor Ljusternik-
Schnirelmann theory can be used, since the operator in (1.1) is not (in general) a
potential operator.

The paper is organized as follows. In Section 2, which has a preliminary character,
we define appropriate weighted Sobolev spaces and prove some useful imbeddings.
We prove also a version of Friedrichs inequality in the weighted Sobolev space. More-
over, an auxiliary assertion due to Stampacchia is proved and we present some conse-
quences of Clarkson’s inequality. In Section 3 we study the homogeneous eigenvalue
problem associated with (1.1) (i.e. we consider the problem (1.1) with a(z,u) := a(x)
and b(z,u) := b(z)). We prove the existence of the least positive eigenvalue and the
corresponding nonnegative eigenfunction of this problem. We show that the eigen-
function belongs to L>°(£2). We also prove the simplicity of the least eigenvalue
and study some useful properties of the homogeneous operator associated with the
principal part. The main result we prove in Section 4. The tools are an a apriori
estimate in L>(Q), the results for the homogeneous eigenvalue problem (namely
the continuous dependence of the least eigenvalue and the corresponding nonnega-
tive eigenfunction of the homogeneous problem with respect to a(z), b(z)) and the
Schauder fixed point theorem. Finally, Section 5 contains ezamples which illustrate
our general result.
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2. PRELIMINARIES

2.1. Weighted Sobolev space. Let us suppose that € is an open bounded
subset of the n-dimensional FEuclidean space R™, p > 1 is an arbitrary real number
and w is a weight function (i.e. positive and measurable) in Q. Assume that

1 1
(2.1) we Li(Q) and — € L7 ().
w

Let us define the weigted Sobolev space W1P(w, ) as the set of all real valued

functions u defined in € for which

(2.2) lell1,p,0 = </ |u|? dz + / w|V ul? dm) ’ < 0.
Q Q

It follows from (2.1) that W? (w, Q) is a reflezive Banach space and that Wy ? (w, Q)
is well defined as the closure of C§°(£2) in WP (w, ) with respect to the norm ||-||1 p,w

(see e.g. Kufner, Sindig [11]).
Let s > p—il be a real number. A simple application of the Holder inequality yields
that the continuous imbedding

(2.3) WP (w, Q) — WP (Q)
holds provided
1 s _ ps
EEL (Q) and p; = e

2.2. Compact imbeddings. It follows from (2.3) and from the Sobolev imbed-
ding theorem (see e.g. Adams [1], Kufner, John, Fucik [10]) that for s +1 < ps <
n(s + 1) we have

(2.4) Wy P (w, Q) = WyP (Q) < LI(Q),
where 1 < g = n’i”;l = n(szf;py and for ps > n(s + 1) the imbedding (2.4) holds

with arbitrary 1 < ¢ < oo.
Moreover, the compact imbedding

Wy P (w, Q) < L7(Q)

holds provided 1 < r < gq.
An easy calculation yields that s > % implies ¢ > p. In particular, we have

(2.5) Wy (w, Q) < LPF1(Q)
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for 0 < n < g — p provided

1 1
(2.6) — € L°(Q) and s € (2,4_00) N [—,—i—oo).
w D p—1

2.3. Friedrichs inequality in weighted Sobolev spaces. In what follows we
will always assume that (2.6) is fulfilled. Let u € C§°(Q). Then due to ¢ > p and
the imbedding W, """ (Q) < L4(Q) we have

(2.7) (/ |u|de> "< c1</ |u|qu> "< CQ</[|u|p1 +|Vu|p1]dm>
Q Q Q

The Friedrichs inequality in W(} P1(Q) yields

a 1
(2.8) (/uuvn +|Vu|p1]dx> ' <c3(/ |V ulP dm) "
Q Q
Using the Holder inequality we obtain
a a
P1 r1 1 P1
(/ | V ulP? dm) = (/ | VulPrwr —5 dm)
Q Q w P
1 1 p=p1 1
P P r1
(2.9) < (/ w|Vu|pda;) (/ ﬁdx)
Q Qwr p—r1
1 Pe »
g(/—dx> </w|Vu|pdx>
o w* Q

(see Subsection 2.1 for the relation between s, p and pq). It follows from (2.7)—(2.9)

that
/ lulP do < c4/ w| VulP dz
Q Q

with a constant cs > 0 independent of u € C§°(€2). Hence the norm

fullo = [ wlvuras)
Q

on the space Wy (w, Q) is equivalent to the norm || - || p., defined by (2.2).

2.4. Equivalent norms. Let us assume that w is a weight function defined in
Q and satisfying inequalities

(2.10) csw(z) < w(z) < cgw(x)
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for a.e. z € Q with some constants cg > ¢5 > 0. Then obviously
W()Lp(w’ Q) = W()Lp(w’ Q)

and the norms || - || and || - ||., are equivalent on Wy (w, ). It follows from Clark-
son’s inequality (see Kufner, John, Fucik [10]) that W(}’p(w, Q) is a uniformly convez
Banach space with respect to the norm || - ||z for any @ satisfying (2.10).

2.5. Lemma. (cf. Murthy, Stampacchia [13]). Let ¢ = ((t) be a nonnegative,
nonincreasing function on a half line t > ko > 0 such that

(2.11) ¢(h) < er(h—k)7(C(R))°
for h > k > ko. Then o >0, § > 1 imply

C(ko +d) =0,

d—1

where d = 07% (C(ko)) = - 2757

Proof. Let us define a sequence (k,) by

d
(2.12) ke = kn_1 +

— =1,2,....
2n7n =

Substituting (2.12) into (2.11) we get by induction

Cha) < SR

= 2n—511

for n — oco. Since li_>m k, = ko + d and ( is nonincreasing, we obtain (ko 4+ d) = 0.
O

2.6. Lemma. Let p > 2. Then

[ta —t1]”

(2.13) tal” 617 > plt1 2t (b2 — 1) + oy

for all points t; and ty in R™.
Let 1 < p < 2. Then

3plp—1)  |ta—t4|?
16 ([t1] + [t2])2P

(214) |t2|p — |t1|p 2 p|t1|p_2t1(t2 — tl) +

for all points t; and ty in R™.

Proof of this lemma is based on Clarkson’s inequality and can be found in Lindqvist
[12].

173



2.7. Remark. It follows from (2.13) and (2.14) that the inequality
(215) |t2|p — |t1|p > p|t1|p72t1(t2 — tl)

holds for any t1,t2 € R™, t; # t2 and for any p > 1. Note that inequality (2.15) is
just a restating of the strict convexity of the mapping ¢ — |¢|? and can be proved
independently of (2.13) and (2.14).

3. HOMOGENEOUS EIGENVALUE PROBLEM

3.1. Weak formulation. Let us suppose that w is the weight function satisfying
(2.1) and (2.6). Let a(x), b(x) be measurable functions satisfying

w()

(3.1) < al2) < esw(z),

Cs

(3.2) 0 < b(z)

for a.e. © € Q with some constant cg > 1, and b(z) € qu—ﬂ(Q) for p < ¢" < g,
b(xz) € L*=(Q) for ¢ = p (see Subsection 2.2 for ¢). Moreover, let

(3.3) meas{z € Q; b(z) > 0} > 0.

Further we will assume that p < ¢* < g. The proofs in the forthcoming subsections
can be performed in the same way also in the case ¢* = p.
Let us consider homogeneous eigenvalue problem

—div(a(z)| VuP? Vu) = Ab(z)|[ulP?u in Q,

3.4
(3.4) u = 0 on 0f2.

We will say that A € R is an eigenvalue and u € Wol’p(w,Q), u # 0, is the
corresponding eigenfunction of the eigenvalue problem (3.4) if

(3.5) /Qa(a:)| Vulf?vuvedr = )\/Qb(a;)|u|p_2uga dz
holds for any ¢ € Wy * (w, Q).

3.2. Lemma. There exists the least (the first) eigenvalue A\; > 0 and at least

one corresponding eigenfunction u; > 0 a.e. in Q(uy # 0) of the eigenvalue problem
(3.4).
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Proof. Set

Alzinf{/ﬂa(mﬂvdl’dm; /Qb(x)|v|pdm:1}.

Obviously A\; > 0. Let (v,) be the minimizing sequence for Ay, i.e.
(3.6) / b(z)|v,|P dz =1 and / a(z)| Vo, |P dz = A1 + 6y,
Q Q

with §, — 04 for n — oco. It follows from (3.6) that ||v,||. < co, With cg > 0
independent of n. The reflexivity of Wy* (w, Q) (see Subsection 2.4) yields the weak
convergence v, — up in Wy*(w,Q) for some u; (at least for some subsequence of
(vn)). The compact imbedding Wy'? (w,Q) << L7 (Q) implies the strong conver-
gence v, — up in L7 (). It follows from (3.2),(3.6), from the Minkowski and the
Holder inequality that

1
— T P !
1—n1L%o</ b(x)|vy| d:c)

Q
< lim ( b(m)|vn—u1|pdm) "y (/b(m)|u1|”dm> ’
Q

n—r 00 Q

< tin ([ )™ ao)

= (/Qb(a:)|u1|pdx);,

and analogously

1
3

1 .</Q|vn—u1|q* dx)q + (/Qb(x)|u1|”dx>;

1 * 1

( / b<x>|u1|pdx)p < lim ( [ otan= dx) ; ( [ v dx)q
+ lim (/ b(m)|vn|”dm> T

/ b(@)|ua|? dz = 1.
Q

In particular, u; #Z 0. The property of the weakly convergent sequence (v,) in
Wy P (w, Q) yields

Hence

A < / a(z)| Vur [P dz = ||up||2 < liminf ||v,||P
Q n— oo

=liminf | a(z)| Vv,|P dz =lminf(A\ + d,) = A1,
0 n—roo

n—roo
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i.e.
(3.7) A :/a(x)|Vu1|pdx.
Q

It follows from (3.7) that A; > 0 and it is easy to see that A; is the least eigenvalue
of (3.4) with the corresponding eigenfunction u;. Moreover, if u is an eigenfunction
corresponding to A; then |u| is also an eigenfunction corresponding to A;. Hence we
can suppose that u; > 0 a.e. in €. O

3.3. Remark. It follows from the proof of Lemma 3.2 that v, — wu; in
Wy (w, Q) and |lvnlla — [Ju1lla- The uniform convexity of Wy *(w, Q) (see Subsec-
tion 2.4) then implies the strong convergence v, — uy in Wy ¥ (w, Q).

3.4. Lemma. Let u € Wol’p(w,Q), u > 0 a.e. in Q, be the eigenfunction cor-

responding to the first eigenvalue A\; > 0 of the eigenvalue problem (3.4). Then
uwe€ L"(Q) for any 1 < r < 0.

Proof. The assertion of lemma is fulfilled automatically if ps > n(s+ 1) (see
Subsection 2.2). Let us suppose that ps < n(s+1). For M > 0 define

v (z) = inf{u(z), M} € Wy P (w, Q) N L=(Q).
Let us choose ¢ = v§?*"(k > 0) in
(3.8) /Qa(x)| Vull2vuVveds =\ /Q b(x)|uP~?up dz.
Obviously ¢ € Wy (w, Q) N L>=(Q). Tt follows from (3.8) that

(3.9) (Iip+1)/ a(x)v’]‘\%vz,mpdx:)\l/ b(x)upqv;fﬂ de.
Q Q

Due to (3.1) and the imbedding W, ”(w, Q) < L?(Q) we have

(kp+1) / a(z)vyf | Vo |? do
Q

1
(3.10) >t /w(x)u’;ﬂvumpdx
Cs Q
_ K:p—’_l k+1 rk+1 %
= m/ﬂw(ﬂs)lv(w )Ipdw%:s(/g(vM ) da
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Hence it follows from (3.2), (3.8), (3.9), (3.10) and the Holder inequality that

</ v(MKH)q dx) ' < C1o/ b(:z:)up_lfug/f;+1 dz
Q

Q
< C10</ b(.ﬁ)% dx) ! . (/ U(K+1)q* dx> ! .
Q Q

Since u € L™() for any 1 < r < ¢ (see Subsection 2.2), we can choose & in (3.11) in

(3.11)

the following way:
(3.12) (k+1)¢" = q.

Then substituting (3.12) into (3.11) we obtain

(3.13) </ U(M“H)q dx) ! < c11</ u? d:c) ' < cio,
Q Q

ie. vy € L7 (Q),q = (k+1)g, for any M > 0. We have u(z) = A}im vy (z),z € Q.
—r 00
Then the Fatou lemma and (3.13) yield

2 »
’ q 1 q
u? dz) < liminf vl dx) <ec
(fuae)" <yuine ([ o) <o

ie. ue L7 (Q), where
¢=-21q
7
Repeating the same argument we can choose k in (3.11) as (k + 1)¢* = ¢’ and get
we LY (Q),q" = q(q%)Q7 etc. Since ¢ > g¢x, the bootstrap argument implies the

assertion of lemma. O

3.5. Lemma. Let u € Wol’p(w,Q),u > 0 a.e. in Q be the eigenfunction cor-
responding to the first eigenvalue A\; > 0 of the eigenvalue problem (3.4). Then
u € L>(Q).

Proof. Let k> 0 be a real number. Set
p(z) = sup {u(z), k} —k

n (3.8). We obtain

| a@ivepds=n [ btk pds,
Qu>k) Q(u>k)
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i.e.

(3.14) /' w@ﬂvﬂﬂmgAmg/ b(z)( + k)P~ o da.
Q(u>k) Q(u>k)
Let us choose i
r > max{i(p_ 1)‘1,‘1 ,q}.
p(q — q*)

Due to the homogeneity of (3.8) and Lemma 3.4 we can assume without loss of
generality that

The imbedding W, " (w, Q) < L(Q) implies

(3.15) [ w@l e de > enlllue,
Q(u>k:)

Since r > ¢, the Holder inequality yields

/ b(z)(p + B o da
Q(u>k)

a*—p .

< (/ b(x)qqifp dm) ' </ ((p—l—k)pl;)lq*@q?* dm)q
Q(u>k) Q(u>k)

1
3

(316) < C14 </ (QO + k)q* dl‘) ! </ QOq* dm) !
Q(u>k) Q(u>k)

p—1

- p=1,1_a*
< c14</ u” d:c) (meas Qu > k)) )
Q

X </ ©? dm) ’ (meas Q(u > k))‘%*(l_%).
Q
It follows from (3.14)—(3.16) that
P (1)

(3.17) 17 q) < c15(R)(meas Q(u > k)«

On the other hand, for h > k we obtain

ooty = ([ fu-krac)
Q(u>k)

</ |u—k|qdm) ’ > (h —k)P~" (meas Q(u > h))%
Q(u>h)

(3.18)

WV
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Set ((t) = measQ(u > t). Then ((¢) is a nonnegative and nonincreasing function
and it follows from (3.17), (3.18) that

G < G (et OO

ie.
C(h) < @s(R)(h— k) (C(k))°,

where

p—1l ¢ r qr q

Due to the choice of r we have § > 1. It follows from Lemma 2.5 that there exists
d = d(r,q, R, meas Q) > 0 such that ¢(d) = 0. Hence u(z) < d for a.e. z € Q. O

3.6. Proposition. There exists precisely one nonnegative eigenfunction uq,
Uy || 7 = 1, corresponding to the first eigenvalue A\; > 0 of the eigenvalue
L (Q)
problem (3.4).

Proof. Due to the variational characterization of A\; the function u €
Wol’p(w, Q) is an eigenfunction corresponding to A; if and only if

/ a(x)|VulP dz — A\ / b(z)|lulPdz =0
Q Q

— it {/ a(m)|Vv|pdx—)\1/ b(x)|v|”dm}.
vEW()l‘p(w,Q) Q Q

This imlies that if uy,us € WO1 P(w, ) are two eigenfunctions corresponding to A
then also

01(2) = maxus (2), w (@)}, ea(e) = minfu (@), va(2)}

are eigenfunctions corresponding to A provided that vy Z 0. Indeed, we have vy, vy €
Wy P (w, Q) and
/ a(2)|Vor P dz — Ay / b(a)|o1 P da + / a(2)| Vs P da — Ay / b(@)|vsl? de
Q Q Q Q
= / a(x)|Vup|P dx — A\ / b(x)|uy|? dx —|—/ a(z)|Vue|P dz — A\ / b(z)|uz|? dz.
Q Q Q Q

Hence

/ a(x)|Vor [P dz — A / b(x)|v1|P dz = / a(x)|Vus|P dz — Ay / b(z)|v2|P dz = 0.
Q Q Q Q
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Let u; > 0 and uy > 0 be two eigenfunctions corresponding to A; such that
Uy 7_é u27n1€ig{u1(x)7u2(x)} 7_é 0 and
luillpes @) = lluallpes (@) = 1.

Denote vz(z) = kjva(z) = Ky melg{ul(x),uz(x)}, where k; > 0 is chosen in such a
way that
[vsllLas (@) = 1.

Then v3 € WO1 P(w, ) is again an eigenfunction corresponding to A; such that vy #
u1. Moreover,
{z € Q;ui(z) =0} C {z € Q; v3(z) = 0}.

Set vz(x) = kova(x) = k2 lfneaéc{ul(x),1}3(33)}7 where ks > 0 is chosen such that
[vsllzar (@) = 1.
Then vy € WO1 "P(w, ) is an eigenfunction corresponding to A; such that vy # u; and
{z € Q; v5(z) =0} = {x € Q; us(z) =0}.

Let, now, u; > 0 and us > 0 be two eigenfunctions corresponding to A; such that

ur # us, ||[ur]| Lo (@) = lluzll e (@) = 1 and

glelg{ul (x),us(x)} = 0.

Denote @y = k3 max{u;(z), usz(z)}, where 0 < ks < 1 is chosen such that
@1 zex (@) =1,
and Uy = kg max{u; (), (z)}, where 0 < k4 < 1 is such that
2l e (@) = 1.
Then @; and @s are eigenfunctions corresponding to A; such that 4y # 4, and
{z € Q; 1 =0} ={z €Q; uy =0}

We will prove the assertion of proposition via contradiction. Due to the argument
presented above we assume that v > 0 and v > 0 are eigenfunctions corresponding
to A1 such that

(3.19) lullzer @) = vllzar (@) =1, uZw,
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and vanishing in © on the same set (almost everywhere in the sense of the Lebesgue
measure). Then

(3.20) / a(z)| VulP 2 vuvedr =X\ / b(x)|ulP2up dx
Q Q

for any ¢ € W, ¥ (w, ), and

3.21 a(x VUP_QVvvwdmz)\l b(x v”_vadm
Q Q

for any ¢ € Wy (w, Q). For ¢ > 0 set

u: =u—+¢eand v. = v+ €.

Substitute
ul —o?
Y = —
ul™t
into (3.20) and
P — P
¢ — € — £
i

into (3.21). Since 1=, &= € L>(Q2) and

vomfrrwn () o) e
V= [1+ (p— 1)(5—;)11] Vv—p<z—j>p_1vu,

we have ¢, € Wy (w,Q). Adding (3.20) and (3.21) (with ¢ and % chosen above)
we obtain

froffoe o0 () oo

v p—1 u p—1
—/a(x){p(u—g) |Vu|”_2Vqu+p(v—8) |Vv|”_2VvVu}dm
Q

(> g

-\ /Q b(z) [(UEE)'H . (Uﬁg)p_l] (W? — v?) da.
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|V ul

Ue

Since |V logu.| = , the last equality is equivalent to

/ a(e)(u? — o?)[| Vlog us|? — | ¥ log vz [?] da
Q

- / a(x)pv?| Vlogu. [P~ V log u. (V logv. — Vlogu.)dz
(3.22) @
- / a(x)pu®| Vlogv. [P Vlogv.(Vlogu. — Vlogv.)dx

Q
= 1/96(13)[(%) - (U—UE) ](ué’—vf)dm.

Let p > 2. We use (2.13) in order to estimate the left hand side of (3.22) (we first
set t; = Vlogue, to = Vlogv. and then t; = Vloguv., ty = Vlogu.). We obtain

el -G e

1
(3.23) T — / a(z)| vVlogu. — Vlogv. |P(uf + v?) dx
—1Ja

1 1 1
_ 1 1 B ,
T i /Qa(x)<vp + up) |ve Vu —us Vo|Pdz > 0.

€ €

Let 1 < p < 2. We use (2.14) in order to estimate the left hand side of (3.22)
(similarly as above) obtaining

el ) -G Jeme

3p(p—1) / 1 1 |v. Vu —u. Vol?
> —° — > 0.
2 16 Qa(x)( 5+ >('UE|VU|+US|VU|)2*7’ dz >0

(3.24)

uf " of
We have u,v € L>(Q) (see Lemma 3.5) and

U v
— =1, — =1 —0
(3.25) U Y (e +)

a.e. in  where u > 0 and v > 0, respectively;

v
3.26 — =0, — =0(f 0
(3.26) “ ' (for any € > 0)

elsewhere (since u and v vanish on the same set in Q). Hence it follows from (3.25),
(3.26) and the Lebesgue theorem that for any p, 1 < p < oo,

M /Q b(z) K%)p_l _ (%)p_l] (W — ) dz 0 (¢ — 04).
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This together with (3.23), (3.24) and the Fatou lemma implies
[vVu—uVol=0a.e. in Q

for any 1 < p < co. Hence there exists a constant k£ > 0 such that v = kv a.e. in Q.
But (3.19) yields k =1, i.e. u = v a.e. in 2, which is a contradiction. O

The proof of Proposition 3.6 follows the lines of the proof of Lemma 3.1 in Lindqvist
[12] for the nondegenerate case (a(z) =1 in Q).

3.7. Lemma. Let J: W) (w,Q) — [W, " (w,Q)]* be an operator defined by
Uw.¢) = [ a@| vl vuveds
Q

for any u,o € Wy"(w,Q) (here (-,-) denotes the duality between [Wy ™" (w,€2)]*
and W, P (w,Q)). Then J is surjective and J~': [WP (w, Q)]* — Wy (w, Q) is
bounded and continuous.

Proof. The operator J is bounded, strictly monotone, continuous and coercive.
Then it follows from the Browder theorem (see e.g. Fuéik, Kufner [8]) that J is
surjective. It follows from the Holder inequality that

(3.27) (J(v) = J(u),v —u) = (Jolli™" = lullz) lvlla = llull.)

for any u,v € W, (w, Q). The boundedness of J~" follows immediately from (3.27).
Let us suppose to the contrary that J—! is not continuous. Then there exists a
sequence (f,) such that f, — f in [Wy ™ (w, Q)]* and [|J 1 (fn) = J 1 (f)]la > 6 for
some § > 0. Denote u, = J~1(f,),u = J~1(f). It follows from (3.27) that

[fnlls - llunlla = (Frstn) = (T (un), un) 2 |lunllg,
ie.
lun 2™ < 1l
(|| - ||+ denotes the norm in the dual space [Wy ' (w, )]*). Then (u,) is bounded in

Wy P (w, Q) and we can assume that there exists @ € W, ¥ (w, ) such that u, — @
in Wy (w, Q). Hence we have

(J(up) = J(@), uy — @) =

(3.28) _ _ ~
= (J(un) — J(w),u, — @) + (J(u) — J(@),un, — @) — 0

since J(u,) — J(u) in [WyP(w,Q)]*. It follows from (3.27) (where we set v =
Up,u = @) and (3.28) that |[un|le — [|@]le. The uniform convexity of W (w,Q)
equipped with the norm || - ||, (see Subsection 2.4) implies u, — @ in Wy (w, Q).
This convergence together with the convergence J(u,) — J(u) in [W, 7P (w,Q)]*
implies % = « which is a contradiction. The continuity of J~! is proved. g
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4. NONHOMOGENEOUS EIGENVALUE PROBLEM

4.1. Weak formulation. In this section we will consider the nonhomogeneous

eigenvalue problem

(4.1) —div(a(z,u)| VulP~? Vu) = Ab(z,u)|uP~?u in Q,

' u =10 on O0f.

Let g: [0,00) — [1,00) be a nondecreasing function, a(z) € L#-7 () for q >
q* > p,a(z) € L>®(Q) for ¢* = p (for q,q* see Subsection 3.1), 3 > 0 a constant.
We assume that a(z, s),b(x, s) are Carathéodory functions (i.e. continuous in s for
a.e. € ) and measurable in z for all s € R) and

42) M) < afes) < agshuo)
(43) 0 < b(.II,S) < OZ(.II) +I6|S|q*_l7

hold for a.e. x € Q2 and for all s € R.
Moreover, assume that

(4.4) meas {x € Q; b(z,v(z)) >0} >0

for any v € L% (Q),v # 0. (Note that the condition (4.4) is fulfilled e.g. if b(z, s) > 0
for a.e. x € 2 and for all s #0.)

We will say that A € R is an eigenvalue and u € Wol’p(w, Q),u £ 0, is the
corresponding eigenfunction of the eigenvalue problem (4.1) if

(4.5) /Qa(x,u(x))| Vulf ?vuveds = )\/Qb(m,u(x))|u|p72u<p dz

holds for any ¢ € Wy (w, Q).
4.2. Proposition (apriori estimate). Let u € L>(Q),[lul e @) = R >0,

u > 0 be any eigenfunction of (4.1) corresponding to the eigenvalue X\. Then there
exists d(R) > 0 (independent of g) such that |[ul[z~q) < d(R).

Proof. Choose ¢ =u"?*! in (4.5) with k > 0. We obtain
(kp+1) / a(z,u(z))u?| VulP de = )\/ bz, u(x))uTHP dz, ie.
Q Q
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rp+ 1 a(z,u(r w P de = z,u(x))u" TP dg
40 25 [ el @) Ve = [ b a0 da,

It follows from (4.2) and the imbedding Wy (w, Q) < L9(Q) that
. 1
[ ateu@) V)P o> - [ w(@)] )P ds
Q Cs Ja
(4.7)
oy e
Q

with ¢16 > 0 independent of k, R and g.
Applying the Holder inequality, (4.3) and the Minkowski inequality we obtain

/ bz, u(z))ul<tDP dz
Q

(48) < ( /Q (b(ﬂ:,u(ar)))"*qi” dm) hi < /Q WD dm) w

(/ a(m)% dx) ' +,8</ uq* dx) ' ](/ u(fﬂ-l)q* d&?)q
Q Q Q

It follows from (4.6), (4.7) and (4.8) that

¥

<

/u(ﬁ+1)q dz
(4.9) ?
' 1) IRE . \T
< CUL)E[HQH - + BRY —p] ) (/ u(+ e dx) ’
(kp+1)7 LT =7 (Q) Q

with c¢;7 > 0 independent of x, R and g. Let j be a nonnegative integer. Substitute
= =) ingo (4.9):

K (g7)7
(o]
) L
w@ dx < c17 (e*) -
Q J—(g*)7 P
(4.10) [q TR 1]
<llal e R ([ o)
La*—» () Q
Since .
qJ+1
lim - = 0Q,
j—o0 (qX)J

there exists the least jo such that

Jo+1 -1 *
= q — > max{i(p )qq ,q}
(g*)Jo (g —q%)
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It follows from (4.9), (4.10) (setting j = jo,jo — 1,---,1) that

</dex>i < R(R),

where R > 0 is independent of g.
Now we set a(z) := a(z,u(z)) and b(z) := b(z,u(x)) in the proof of Lemma 3.5.
Following the lines of this proof we obtain

llull L~ @) < d(R),

where d = d(R) is independent of g. This completes the proof of Proposition 4.2.
O

4.3. Truncation in the principal part. Let R > 0 and d = d(R) > 0 be as
above. We define

a(x,s) for z € Q, |s| < d(R),
(4.11) a(z,s) =< a(z,d(R)) for x € Q,s > d(R),
a(z,—d(R)) forz € Q,s < —d(R).

Let us consider the nonhomogeneous eigenvalue problem

—div(a(z,u)| VulP2 vV u) = Ab(x, u)|uf ?u in Q,

(4.12)
u = 0 on 0.

Then it follows from Proposition 4.2 that u € Wy (w,Q), [ullpo* () = R, uw > 01is
an eigenfunction of (4.12) if and only if it is an eigenfunction of (4.1).

4.4. Application of the fixed point theorem. For a given v € L (Q) set
a,(z) = a(z,v(x)),by(z) = b(x,v(x)). It follows from (4.2), (4.3), (4.4) and (4.11)
that a,(x) and b, (x) fulfil (3.1), (3.2), (3.3) for any fixed v € L? (). Let us consider
the homogeneous eigenvalue problem

—div(a, (2)| VulP 2 Vu) = \b,(x)|u|P2u in Q,

(4.13)
u = 0 on 09

for any fixed v € L9 (Q). Due to the results of Section 3 there exists the least
eigenvalue X\, > 0 of (4.13) and precisely one corresponding eigenfunction w, such
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that u, > 0 a.e. in Q,u, € L*(Q) and |luy|[ () = R. Hence we can define the
operator
S: LY (Q) — LT (Q)

which associates with v € L7 () the first nonnegative eigenfunction u, of (4.13)
such that [[u,|[Le (o) = R.

Let us assume for a moment that S is a compact operator. Since it maps the ball
Br = {u € L7 (Q), [ullLo* (@) < R} into itself it follows from the Schauder fixed
point theorem (see e.g. Fuéik, Kufner [8]) that S has a fized point u € Br. Hence
there exists A, > 0 such that

—div(ay(2)| VuP 72 Vu) = A\yby (2)|ulP~2u in Q,
U= 0 on 0f),

and it follows from the considerations in Subsection 4.3 that A, > 0 is the least
eigenvalue of (4.1) and u € L>*(02),u > 0 a.e. in £, is the corresponding eigenfunction
satisfying [[ul| Lo+ (o) = R.

The main result of this paper follows from the considerations presented above.

4.5. Theorem. Let the assumptions from Subsection 4.1 be fulfilled. Then for a
given real number R > 0 there exists the least eigenvalue A > 0 and the corresponding
eigenfunction u € WO1 Pw, Q) N L>(Q) of the nonhomogeneous eigenvalue problem
(4.1) such that u > 0 a.e. in  and [Jul| e () = R.

In the forthcoming subsections it remains to prove the compactness of the operator
S in order to justify our assumption in Subsection 4.4.

4.6. The Nemytskii operators. Let us define the Nemytskii operators
Gi:urs [ulP2u, Go:uwrs [ulf, Gz:uws bz, u(x)).
Then G; is a bounded and continuous operator from L? () into L= () fori =1,
from L7 () into L7 (Q) for i = 2, and from L% () into L7=7 () for i = 3 (see
e.g. Vajnberg [15], Fu¢ik, Kufner [8]). The Nemytskii operator
Ga: (U 21,y 2) = a(z,u(z) (22 (x) + ...+ 22(x)) =

is bounded and continuous from L9 (Q) x LP(w,Q) x ... x LP(w,Q) into
L;T)l(w_ﬁ,ﬂ) (see e.g. Drabek, Kufner, Nicolosi [7], Kufner, Séndig [11]).
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4.7. Lemma. Let z,z, € W, " (w,Q) and

/ 0(@)| V2P 2V 2V pdz = / f(@)pl) da,
Q Q

/aun,(x)IVznlp*ZVznvwdx:/ Fo(@)0(z) dz
Q Q

for any @, € Wy (w, Q) and let v, — v in LY (Q), f, — f in [W"(w,Q)]*. Then
2z — 2 in Wy P (w, Q).

Proof. Define operators J,.J, : Wy (w, Q) — [Wo? (w, Q)]* by

(T(u), ) = /Q 0, (@) VUl Vu v pdz,

(T (), ) = /Q G0, (1) VulP 2 Vu v ¢ dz

for any ¢, 1, u € Wol’p(w,Q). Hence J(2) = f and J,(2n) = fa.
Let n € N be fixed. Consider the equation

JIn(u) = h.

It follows that

| a@ivuras = [ h@pu() s,

[ullf, < caslhllflullw,

1
p—1
*

(4.14) [, (h)]|w < csl|h

for any h € [Wol’p(w, 2)]*, where ¢;3 > 0 is independent of n and h. Analogously

_1
(4.15) 177 (W)l < exslBIIZT
(cf. Lemma 3.7). Applying Lemma 3.7 for a(z) := a,(x) we obtain continuity of J~*
(with J defined in this subsection).
Assume that (u,) is a sequence satisfying u, — z in Wy " (w, Q). It follows from
the continuity of the Nemytskii operator G4 that
[ Tn(un) = J(un)lls = sup |(Jn(un) = J(un), 9)|

llellw<1

[ @0, @) = @) Y V0,V pda

= sup
el <1
(4.16)
< sup /[avn(x)IVunlp‘QVun—av(x)IVzl”‘QVZ]de
lello<t | Jo
+ sup /[av(m)|vz|f’_2vz—av(x)|Vun|p—2Vun]V@dx
lelo<t | Jo
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p—1

< sup </w(m)pll|avn(m)|Vun|p_2Vun—av(x)|Vz|p_2Vz|PlT)ldm> '
Q

[lellw <1
x ( / w<x>|wmdx)
Q

+ sup (/w(w)‘%m(x)lv,zl”2Vz—av(x)lwn|”wn
llellw<1 Q

p—1

v P
r=1 dg

X (/Qw(a:)|Vga|pda;>; -0

Set u,, = J!(f,). Then the assumptions of lemma and the continuity of J !

for n — oo.
imply
(4.17) Uy — z in Wy P (w, Q).
The relations (4.14)—(4.17) and the continuity of J~! now yield

[Tt (F) = T ()l + 17 () = T H (D)
[T (T = DT ()l + 1T (F) = T () o
< easl| T (un) = T () [F77 + 1T (fn) = T H(H)llw = 0

for n — oo, which completes the proof. O

4.8. Proposition. The operator S: L () — L% (Q) defined in Subsection 4.4
is compact.

Proof. We prove that S is a continuous operator from L4 (2) into Wy (w, ©2).
The assertion then follows from the compact imbedding W, * (w, Q) << L1" () (see
Subsection 2.2). Let u,, = S(v,),u, = S(v). Suppose to the contrary that v, — v
in L9 () and

(4.18) o, — tollw > 6

for some 6 > 0. We have

(4.19) / ay(2)| VU, [P 2 Vu, Vodr = )\U/ by ()1 |P 2upp de,
Q Q

(4.20) / ay, ()| V Uy, P2 Vi, Vibdz = A, / by, ()|, |p*2uvn¢dx
Q Q
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for any ¢, v € Wol’p(w,Q). It follows from Lemma 3.7 that for any v, € L (Q)
there exists z, € Wy'"(w, Q) such that

(4.21) / o, (2)|V 2,|P 2V 2, Vipdz = A, / by ()| |P 2 uyp d
Q Q
for any ¢ € Wy P (w,Q). Lemma 4.7 yields z, — u, in Wy (w,Q) (and hence also

in L9 (). Applying the Holder inequality, (4.3) and the Minkowski inequality, we
obtain

‘/Qb(x,v(x))|uu|p2uv(zn —u,)dz

< (/Q(b(m’v(m)))qq*llw e d33> </|Zn_uu|q dw)%
) </Q(b(x’”(x)))qf;dx) 2
(4.22) ) -
X </Q|UU|q* dx? </Q|Zn—uv|q dx) .
< [</Qa(m)%dx> - +5</Q lv(z)] d$> qq*P]

p—1 1
X (/ |, |7 d:c) ! </ |20 — uy|? da:)q -0
Q Q

for n — oco. Applying the Holder inequality, (4.3), the Minkowski inequality and the

continuity of the Nemytskii operators Gz, G5 we obtain

| o vn@zal? = b v@)ll] do

/ b(z, v, () [|2a]? — |uo|?] dz

; [b(m v () — b(x,v(x))] |uy [P da

</ oteyes) " 5( [ o s l
+ </Q (@, vn () = b, v(z))[ 7 = d$>

(4.23)

<

2
F

(/ | dx) 50
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for n — oo. It follows from the variational characterization of A, , (4.19)—(4.23) that

fQ a,, ()| V 2,|P dz
Au, <
" Jq bu,, (2)|2n [P dz
A Jo bo |uu|p 20y 2n d \ Jq bo(@)|uy|? dz B
B fQ v, (T)| 2|7 dz "o bo(@)|up P dz

Hence
(4.24) limsup A,, < Ay

Applying the Holder inequality, the Minkowski inequality and the assumptions (4.2),
(4.3) we obtain from (4.20) (with ¥ = u,,):

1
o, z</av (@) T, |pdw—xvn/b (@), |7 da
]

(4.25) Au, K/ ()| =7 dm) ! +8

D

([rrs)”
([ )™

It follows from the assumption |uy, [|re* (@) = R, from v, — v in L7 (Q) and
from(4.25) that

(4.26) lty, |l < const
for any n € N. Due to (4.26) we have
(4.27) Uy, — u in WyP (w, Q)

(at least for some subsequence) for some u € WO1 P(w, Q) and hence u, — u in
L7 (Q).

The Holder inequality, the Minkowski inequality, (4.3) and the continuity of the
Nemytskii operators G; and G3 imply

P2, — bz, v(z))|uP~2ulp dz

(4.28) ‘ | b vn(e)lun,

< ‘/Q [b(z, v, (z)) — b(:c,v(a:))]|uvn|p*2uvngadx

+

<

b(z,v()) [Ju.,

P2, — P 2] pde

Q
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*—p p—1

o = i =
-r dg |y, |9 dz
Q

</ 1b(z, va (2)) — bz, v(x))
(e

(/ la(z)| 77 dx) +ﬂ</ () qf—pdx> ]

Q Q

x </ |[tho, [P~ w0, — |uP"?u qudm) ’ (/ o4 dx) o
Q Q

for any ¢ € WO1 P (w, ). Passing to suitable subsequences we can assume that

(4.29) Ao, — A€ [0, M)

(see (4.24)).
Let @ € Wy P (w,Q) be the unique solution of

(4.30) /av(x)|Vﬂ|p_2VﬂV<pdx _ )\/ bo () |ulP~2ugp dz
Q Q

for any ¢ € WO1 P(w, ) (Lemma 3.7 guarantees the existence of @). It follows from
(4.28)—(4.30) and from Lemma 4.7 that

(4.31) u,, — T in WP (w, Q).

Now, (4.27), (4.31) imply u =@ and wu,, — u in Wy?(w, Q). Hence we have

Joau(@ |Vu|pd$ S f Jo av(z |Vu|pdx

Yulpde = @0 )|alp dz
Jo o)l sewiBng ot

Ay Z A=

 Joa(® |Vuv|pda;_
 Jobo(@)|uulPdz

v

This implies that A = A, and u = u,, (see the uniqueness of u, > 0, [|[uy|[ L (o) = R
in Section 3).
In particular, this means that

Uy, — Uy in WP (w,Q),
which contradicts (4.18). This completes the proof of Proposition 4.8. a
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4.9. Remark. The proofs in Section 4 can be performed in the same way
working with L> () instead of La*‘q——r(ﬂ) in the case ¢* = p. Hence we obtain the
following special version of Theorem 4.5.

4.10. Theorem. Let (4.2)-(4.4) be fulfilled with a(x) € L>*() and ¢* = p.
Then for a given real number R > 0 there exists the least eigenvalue A > 0 and the
corresponding eigenfunction u € Wy " (w, Q) U L>®(Q) of (4.1) such that u > 0 a.e. in
Q and ||ul

Lr(Q) = R.

4.11. Remark. Since the eigenvalue problem (4.13) is homogeneous, we can
define the operator S: L4 () — L% (Q) which associates with v € L4"(Q) the first
nonpositive eigenfunction —u, of (4.13) such that || —u, || p+ ) = R. It is clear from
the above considerations that S has the same properties as S defined in Subsection
4.4. Hence repeating the same arguments as in Subsections 4.2-4.4, 4.6-4.8 we prove
the following dual version of Theorem 4.5.

4.12. Theorem. Let the assumptions of Theorem 4.5 be fulfilled. Then for a
given real number R > 0 there exists the least eigenvalue A > 0 and the corresponding
eigenfunction 4 € WO1 P(w, Q) N L>®(Q) of the nonhomogeneous eigenvalue problem
(4.1) such that @ < 0 a.e. in  and |G| e+ () = R.

4.13. Remark. Let A and X be the least eigenvalues guaranteed by Theorem
4.5 and 4.12, respectively, for a given fixed R > 0. Then A # X\ may hold due to the
fact that the eigenvalue problem (4.1) is not homogeneous in general.

5. EXAMPLES

51. Example. Let Q be a bounded domain in R™, p > 1, w(x) be positive
(), = € L*(Q) for s > max{Z2, ﬁ}

and measurable in ) satisfying w(z) € L} e -

loc
Consider the eigenvalue problem

—div(w(a;)e“2| VulP2vu) = AMulP"?u in Q,

5.1
(5.1) u = 0 on 0f2.

In this case we have
a(z,s) = w(z)e® ,b(x,s) =1

for a.e. x € Q and for all s € R.

It follows from Theorem 4.10 that for any given real number R > 0 there exists the
least eigenvalue A > 0 and the corresponding eigenfunction u € Wol’p(w, Q)N L>(Q)
of (5.1) such that u > 0 a.e. in Q and ||ul|Lr(q) = R.
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52. Example. Let us consider for  the plane domain Q = (—1,1) x (—1,1)
(i.e. Q C R?). For z = (z1,72) € Q set

17 Z1 < 0,
w(z) = z5(1—z1)7, x>0, z3 >0,
|.’172|u(1 — .'171)7, T, > 0, Ty < 0

with v, u, v real numbers. Consider the eigenvalue problem

—div(w(z)(1 +u*)| Vu)* Vu) = 2 in Q,

5.2
(5.2) u = 0 on 09.

In this case we have p = 4,
a(w,s) = w(z)(1 + ), b(z, 5) = &°

for a.e. x € Q and for all s € R. Thus the principal part of the differential operator
has a degeneration (or singularity) which is concentrated on a part I'; of the boundary
o9,

I ={z=(z1,22); &1 = 1,22 € (—1,1)},

as well as on a segment I's in the interior of €2,
I's = {.’17 = (.’171,.’172); ) € (0, 1),.’172 = 0}

Condition (2.1) indicates that we have to choose v and p from the interval (-1, 3)
with no condition on . Let us assume that

(5.3) V,ue(—l,g), 76(—00,%).

It follows from (5.3) that .7 € L3(9) and g = 12 (see Subsection 2.2). Hence the
growth condition (4.3) is fulfilled e.g. with ¢* = 10. Applying Theorem 4.5 we have
the following assertion.

Let us assume (5.3). Then for a given real number R > 0 there exists the least
eigenvalue A > 0 and the corresponding eigenfunction u € W01’4(w,ﬂ) N L>(Q) of
(5.2) such that u > 0 a.e. in  and ||ul|L10(q) = R.

Note that for v, i and vy positive we have a degeneration of the same extent at I'y
and I'y. On the other hand, the singularity can occur in a limited extent at T's (for
v or p negative, but bigger than —1), but big enough at I'y (for any v < 0).
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